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Chapter 1

Gaussian Mixtures and their

Applications to Signal Processing

Abstract

There is a number of engineering applications in which a function should be estimated from data.

Mixtures of distributions, especially Gaussian mixtures, have been used extensively as models in

such problems where data can be viewed as arising from two or more populations mixed in varying

proportions [1]-[3]. The objective of the chapter is to highlight the use of mixture models as a way

to provide eÆcient and accurate solutions to problems of important engineering signi�cance. Using

the Gaussian mixture formulation, problems are treated from a global viewpoint that readily yields

and uni�es previous, seemingly unrelated results. The proposed work reviews the existing method-

ologies, examines current trends, provides connections with other methodologies and practices, and

discusses application areas.
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Nomeclature

� family of distributions

F (xj�̂) conditional distribution

�̂ unknown parameter

�̂ estimated value

N(x;�i;�i) d�dimensional Gaussian

� mean value

� covariance

wi mixing coeÆcient

ML maximum likelihood

EM expectation-maximization

log� log likelihood

Z missing data (EM algorithm)

LRT: likelihood ratio test

Ng number of mixture components

RBF radial basis functions

PNN probabilistic neural network

x(k) state vector

Zk = z(1); z(2); :::; z(k); ::: observation record

x̂(kjk) = E(x(k)jZk) mean-squared-error �ltered estimate

EKF Extended Kalman Filter

Jh(
�x(k)) Jacobian matrix

AGSF Adaptive Gaussian Sum Filter

CMKF verted measurement Kalman �lter

� -mixture � -contaminated Gaussian mixture model

i(k) intersymbol inference

n(k) thermal noise

NMSE normalized mean square error
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1.1 Introduction

Central to unsupervised learning in adaptive signal processing, stochastic estimation, and pattern

recognition is the determination of the underlying probability density function of the quantity of

interest based on available measurement data [4]. If no a-priori knowledge of the functional form

of the requested density is available non-parametric techniques should be used. Therefore, over

the years a number of techniques ranging from data histograms and kernel estimators, to neural

network and fuzzy system based approximators have been proposed [4], [7], [8]. On the other hand

if some impartial a-priori knowledge regarding the data characteristics is available, the requested

probability function is assumed to be of a known functional form but with a set of unknown

parameters. The parametrized function provides a partial description where the full knowledge of

the underlying phenomenon is achieved through the speci�c values of the parameters.

Let x be an d -dimensional vector with a probability distribution F (x) and probability density

f(x) . In most engineering problems, a density such as the multidimensional Gaussian is assumed.

More often families of parametric distributions are used [14]. In this case the family is considered

to be a linear combination of given distributions. This family is often called parametric since their

members can be characterized by a �nite number of parameters [9]-[12], [15], [18], [23]-[26].

The family of distributions considered in this chapter can be de�ned as:

� = [F (xj�); �2�] (1.1)

Suppose that a sequence of random identically distributed observation's x1; x2; :::; xn are drawn

form F (xj�̂) with �̂ unknown to the observer. An estimate of the unknown parameter �̂ which can

be obtained as a function of the observations can be used to completely characterize the mixture

[10], [18], [16].

Let us assume that associated with each one of the random samples x1; x2::: is a probability

distribution with the possibility some of the samples being from F (xj�1) , some from F (xj�2) , etc,
with �1 , �2 are di�erent realizations of the unknown parameter � . In other words any sample

x could be from any of the member distributions in the parametric family � [5]. De�ning a

mixing distribution G(�) which describes the probability that point � characterizes the mixture,

the sample x can be considered as having a distribution

H(x) =

Z
F (xj�)dG(�) (1.2)

which is called a mixture. In most engineering applications a �nite number of points �1; �2; :::; �g

are assumed. Then the mixing distribution is expressed as:

G(�) =

NgX
i=1

P (�i)Æ(� � �i) (1.3)

Substituting (3) into the mixture expression of (2) the �nite mixture

H(x) =

NgX
i=1

F (xj�i)P (�i) (1.4)

can be obtained. The parameter points used to discritize the mixture can be known a-priori

with the only unknown elements in the above expression the mixing parameters P (�i) . In such a

scenario the distributions used in the mixture (basis functions) are determined a-priori. Thus, only

the mixture coeÆcients are �t to the observations, usually through the minimization of an error
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criterion. Alternatively, the basis functions themselves (through their parameters) are adapted to

the data in addition to the mixing coeÆcients. In such a case, the optimization of the mixture

parameters becomes a diÆcult non-linear problem and the type of the basis function selected as well

as the type of the optimization strategy used becomes very important. Because of their simplicity

and their eÆcient representation in terms of the �rst two moments Gaussian densities are most

often used as the basis functions [5].

The discussion in this chapter is intended to provide a perspective on the Gaussian mixture

approach to developing solutions and methodologies for signal processing problems. We will discuss

in detail a number of engineering areas of application of �nite Gaussian mixtures. In engineering

applications the �nite mixture representation can be used to: (i) directly represent the underlying

physical phenomenon, e.g. tracking in a multi-target environment, medical diagnosis, etc., and (ii)

indirectly model underlying phenomena that do not necessarily have a direct physical interpreta-

tion, e.g. outlier modeling in communication channels. The problem of tracking a target using

polar coordinate measurements in used here to demonstrate the applicability of the Gaussian mix-

ture model to model an actual physical phenomenon. The process of tracking a target involves the

reception and processing of received signals. The Gaussian mixture model is used to approximate

the densities involved in the derivation of the optimal Bayesian estimator needed to provide reliable

and cost e�ective estimates of the state of the system. In addition, we also discuss in detail the

problem of narrowband interference suppression as an example of indirect application of the Gaus-

sian mixture model. Spread-spectrum communication systems often use estimation techniques to

reject narrowband interference. The basic assumption is that the direct sequence spread-spectrum

signal along with the background noise can be viewed as non-Gaussian measurement noise. The

Gaussian mixture framework is then used to model the non-Gaussian measurement channels. Sim-

ilar treatment of signals can easily be extended to any application subject to onnlinear e�ects or

non-Gaussian measurements, e.g. biomedical systems. For example, Gaussian mixtures have been

used to model random noise, magnetic �eld inhomogeneites and biological variations of the tissue

in magenetic resonance imaging (MRI) as well as computerized tomography (CT) [27]-[30].

After a brief review of the mathematical aspects of Gaussian mixtures, three methodologies

for estimating mixture parameters are discussed. Particular emphasis is placed on the expecta-

tion/maximization (EM) algorithm and its applicability to the problem of adaptive mixture pa-

rameter determination. Computational issues are also analyzed with emphasis on the computer

generation of mixture variables. Then the framework is applied to two problems and numerical

results are presented. The results included in the chapter are meant to be illustrative rather than

exhaustive. Finally, to demonstrate the versatility and the powerful nature of the framework con-

nections with other research areas are drawn with particular emphasis on the connection between

Gaussian mixtures and the radial-basis functions (RBF) networks.

1.2 Mathematical Aspects of Gaussian Mixtures

1.2.1 The approximation Theorem

In an adaptive signal processing, unsupervised learning environment the usefulness of the Gaussian

mixture model depends on two factors. First, whether or not the approximation is suÆciently

powerful to represent a broad class of density functions, most notably those that are encountered

in engineering applications. Secondly, if such an approximation can be obtained in a reasonable

manner through a parameter estimation scheme which allows the user to compute the optimal

values of the mixture parameters from a �nite set of data samples [6], [51]-[53], [13].
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Regarding the �rst question a Gaussian mixture can be constructed to approximate arbitrary

well any given density. This can be proven by utilizing the Wiener's theorem of approximation, or

by considering delta functions of a positive type. This methodology, �rst presented in [8], [51], is

reviewed in this chapter. The resulting class of density functions is rich enough to approximate all

density functions of engineering interest [8], [51].

We start reviewing the methodology by brie
y discussing the characteristics and properties of

Delta functions. Delta families of positive type are families of functions which converge to a delta,

(impulse) function as a parameter characterizing the family converges to a limit value. Speci�cally,

let Æ� be a family of functions on the interval (�1;1) which are integrable over every interval.

This is called delta family of positive type if the following conditions are satis�ed.

1.
R a
�a Æ�(x) dx!� as �!�0 for some a .

2. For every constant 
 > 0 Æ� tends to zero uniformly for 
�jxj�1 as �!�0 .

3. Æ�(x)�0 for all x and � .

If such a function required to satisfy the condition that

Z
1

�1

Æ�(x) dx = 1 (1.5)

then it de�nes a probability density function for all � . It can seen by inspection that the Gaussian

density tends to the delta function as the variance tends to zero, and therefore can be used as a

basis functions for approximation purposes [51], [73].

Using the delta families, the following result can be used for the approximation of an arbitrary

density function p .

The sequence p�(x) which is formed by the convolution of Æ� and p

p�(x) =

Z
1

�1

Æ�(x� u)p(u) du (1.6)

converges uniformly to p(x) on every interior subinterval of (�1;1) .

When the density p has a �nite number of discontinuities the above holds true except at the

points of discontinuity. Since the Gaussian density can be used as a delta family of positive type,

the approximation p� can be written as follows:

p�(x) =

Z
1

�1

N�(x� u)p(u) du (1.7)

which forms the basis for the Gaussian sum approximation. The term Æ�(x�u)p(u) is integrable
on (�1;1) and it is at least piecewise continuous. Thus, p�(x) itself can itself be approximated

on any �nite interval by a Riemann sum. In particular if a bounded interval (a; b) is considered

the function is given as:

p�;n(x) =
1

k

nX
i=1

N�(x� xi)[�i � �i�1] (1.8)

where the interval (a; b) is divided into n subintervals by selecting points such that:

a = �0 < �1 < �2 < ::: < �n = b (1.9)
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In each such subinterval, a point xi is chosen such as:

p(xi)[�i � �i�1] =

Z �i

��i�1

p(x) dx (1.10)

which is possible by the mean value theorem. The normalization constant k ensures that the

density p�;n is a density function.

Consequently, an approximation of p� over some bounded interval (a; b) can be written as:

p�;n(x) =
nX
i=1

wiN�i(x� xi) (1.11)

where
Pn

i=1wi = 1 and wi�0 for all i .

The relation between the last two equations is obvious by inspection. However, in the last

equation the variance �i can vary from one term to another. This has be done to obtain greater


exibility for a approximations using Gaussian mixtures with �nite number of terms. As the number

of terms in the mixture increase, it is necessary to require that �i tend to become equal and vanish.

Under this framework, an unknown d�dimensional distribution (density function) can be ex-

pressed as a linear combination of Gaussian terms. The form of the approximation is a s follows:

p(x) =

NgX
i=1

!iN(x;�i;�i) (1.12)

where N(:) represents a d�dimensional Gaussian density de�ned as:

N(x;�;�) =
1

(2�)0:5j�j0:5
exp(�0:5(x � �)���1(x� �)) (1.13)

where � , � are the mean and covariance of the Gaussian basis fu nctions and wi in (5) is the ith

mixing coeÆcient (weight ) with the assumption that !i�0 , 8i = 1; 2; ::Ng and
PNg

i=1 !i = 1 .

1.2.2 The identi�ability problem

The problem most often encountered in the context of �nite mixtures is that of the identi�ability,

meaning the uniqueness of representation in the mixture [20]- [22], [31]. If the Gaussian mixture of

(12) is identi�able then the equation:

MX
i=1

wiF (xj�
i) =

M 0X
j=1

w0

jF (xj�
j) (1.14)

implies that:

1. M =M 0

2. for each i; 1�i�M , there exists uniquely j , 1�j�M 0 such that wi = w0

j and F (xj�i) =

F (xj�j) ;

There exist extensive literature on the problem of mixture identi�ability. A necessary and suÆcient

condition that the class � of all �nite mixtures be identi�able is � be a linearly independent set
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over the �eld of real numbers (Teicher, Yakowitz and Spragins) [20], [31], [5]. Using the above condi-

tions the identi�ability of several common distribution functions have been investigated. Among the

class of all �nite mixtures, that of Gamma distributions, the one-dimensional Cauchy distribution,

the one-dimensional Gaussian and �nally the multi-dimensional Gaussian family is identi�able.

The following theorem, discusses the identi�ability problem [21], [31]:

Theorem:

A necessary and suÆcient condition that the class of all �nite mixtures of the family @ be identi-

�able is that F be a linearly independent set over the �eld of real numbers.

Proof

Necessity:

Let
PM

i=1 �iFi = 0 8x , �i real numbers be a linear relation in @ . Assume that the �i 's are

subscripted so that �i < 0 if i < N . We then have

NX
i=1

�iFi +
MX

i=N+1

�iFi = 0�!
NX
i=1

j�ijFi =
MX

i=N+1

j�ijFi

Since the Fi are distribution functions d.f or c.d.f, Fi(1) = 1 , thus

NX
i=1

j�ij =
MX

i=N+1

j�ij = b > 0

Therefore, if we de�ne wi =
j�ij

b
we have that

NX
i=1

w1
iFi =

MX
i=N+1

wiFi

Since by de�nition wi > 0 and
PN

i=1w
1
i =

PM
i=N+1wi = 1 the coeÆcients satisfy the require-

ments for mixing parameters.

The relation
PN

i=1w
1
i Fi =

PM
i=N+1wiFi a sserts that there exist two distinct representation of

a �nite mixture so that leph cannot be identi�able.

Since the proof of necessity requires that @ is identi�able, we are led to a contradiction which

followed from assuming that the members of the family are linearly dependent. Consequently, the

conclusion follows that the member of the family form a linearly independent set over the �eld of

real numbers.

SuÆciency:

If a given mixture is a linearly independent set then it can be considered as a basis which span the

family @ . If there were two distinct representations of the same mixture, this contradict the unique
representation property of a basis. This does not mean that there exists only one representation of

the mixture but rather , that given a basis for span the family consisting of (Fi)
M
i=1 the relationPN

i=1w
1
i Fi =

PM
i=N+1wiFi implies always that w1

i = wi . The unique representation property of a

basis, allows the conclusion that if F is a linearly independent set is suÆcient for identi�ability.

The problem of identi�ability it is of signi�cant practical importance in all practical applications

of mixtures. Without resolving the problem of the unique characterization of the mixture model, a

reliable estimation procedure to determine its parameters cannot be de�ned. There are many classes

of mixture models in which we are unable to de�ne a unique representation. A simple example of

such non-identi�able mixture is the uniform distribution which it can be expressed as a mixture

of two other uniform distributions, e.g. U(; 0:5; 0:5) = 0:5U(x; 0:25; 0:25) + 0:5U(x; 0:75; 0:25) .

However, by utilizing the theorems summarized above it has been proven that the class of all �nite

mixtures of Gaussian (normal) distributions is identi�able [1], [5].
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1.3 Methodologies for mixture parameter estimation

The problem of determining the parameters of the mixture to best approximate a given density

function can be solved in more than one ways. There exist considerable literature on mixture

parameter estimation with a variety of di�erent approaches ranging from the moments method

[46], to the moment generation function [3], graphical methods [47], Bayesian methods [9] and the

di�erent variations of the maximum likelihood method [1], [4], [10], [32]. In this chapter we will

concentrate on the maximum likelihood approach.

There are two di�erent methodologies in estimating the parameters of the Gaussian mixture by

using the maximum likelihood principle. The �rst approach is the iterative one, in which the pa-

rameter values are re�ned by processing the data iteratively. Alternatively, one can use a recursive

approach, re�ning the mixture parameter values with each new available data value. A recursive

procedure requires that the latest value of a parameter within the mixture model depends only on

the previous value of the estimate and the current data sample. Generally speaking, an iterative

procedure will produce better results than a recursive one. On the other hand, the recursive pa-

rameter estimator is usually much faster than the iterative one. In the case of the Gaussian mixture

approximation, we are interested to estimate, from the data, the mixing coeÆcients (weights) and,

if needed, the �rst two moments of the Gaussian basis functions.

The method of choice for the estimation of the Gaussian mixture parameters is currently the

Expectation/Maximization (EM) algorithm [32], [33]. This is an iterative procedure, which starts

with an initial estimate of the mixture's parameters. Based on that initial guess the method

constructs a sequence of estimates by �rst evaluating the expectation of the log likelihood of the

current estimate, and then proceeds by determining the new parameter value which maximizes

this expectation. Although the EM methodology is most often used we continue our analysis by

reviewing �rst the classical maximum likelihood approach to the problem of mixture parameter

estimation. In this approach estimates of the mixture parameters are obtained by maximizing the

marginal likelihood function of (n) independent observations drawn form the mixture. A detail

description of the method follows in the next section.

1.3.1 The maximum likelihood approach

Let us assume that a set of unlabeled data samples (x1; x2; :::; xn) are drawn from a Gaussian

mixture density

p(x) =

NgX
i=1

p(!i)p(xj!i) =
XNg

i=1
!iN(x; �i) (1.15)

with
PNg

i=1 !i = 1 , !i�0 for all i and � the unknown parameter vector which summarizes the

uncertainty on the me an value and the variance (covariance) of the Gaussian basis function. By

applying the Bayes rule the following relation hold:

p(!ijx) =
p(!i)p(xj!i)

p(x)
=

!iN(x; �i)PN
j=1 !jN(x; �j)

(1.16)

We are seeking parameters � and ! which minimize the log-likelihood of the available samples:

log� =

nX
k=1

logp(xk) (1.17)
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Using Lagrange multipliers (17) can be rewritten as follows:

log�̂ =
nX

k=1

logp(xk)� �(
nX
i=1

!i � 1) (1.18)

Taking the partial derivative with respect to !i , and setting it equal to 0 we have the following

expression:

!̂i =
1

�

nX
k=1

p(!ijxk) (1.19)

To obtain estimates of the generic basis parameter � the partial derivative with respect to �

is set equal to 0 :

nX
k=1

p(!ijxk)
@

@�i
N(xk; �i) = 0 (1.20)

For the case of a multi-dimensional Gaussian density, the parameter vector � is comprised by

the mean value and the covariance matrix. Taking the partial deriva tives of the logarithm with

respect to their elements together we have the following relations:

�̂i =

Pn
k=1 p(!ijxk)xkPn
k=1 p(!ijxk)

(1.21)

�̂i =

Pn
k=1 p(!ijxk)(xk � �̂i)

� (xk � �̂i)Pn
k=1 p(!ijxk)

(1.22)

The system of equations (16), (21), (22), can be solved using iterative methods. However, when

such an approach is used singular solutions may occur since a component density centered on a

single design sample may have a likelihood that approaches in�nity as the variance (covariance) of

the component approaches zero. The simplest way to avoid this problem is to utilize a new set of

design data samples for each iteration of the solution, making in this way impossible for a single

data sample to dominate the whole component density.

Although simple in concept, this method does not work well in practice. Therefore, alternative

solutions have been developed to alleviate the problem. Among them is the stochastic gradient

descent solution discussed in [23] and reviewed in the next section.

1.3.2 The stochastic gradient descent approach

Let us start for the generic parametric-update formula devised through the utilization of the max-

imum likelihood solution. For both the mean and the variance (covariance) the update equation

has the following form:

�n =

Pn
k=1 p(!jxk)�(xk)Pn

k=1 p(!jxk)
(1.23)

After some simple algebraic manipulation, a recursive expression for the �n+1 as a function of �n
can be obtained as:

�n+1 = �n + 
n+1(�n+1 � �n) (1.24)

with
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n+1 =
p(!jxn+1)Pn+1
k=1 p(!jxn+1)

(1.25)

The last equation can also be formulated in a recursive format. However, the denominator for

the calculation of the correction term is not bounded for growing data sets (n) and thus such an

estimation procedure would require in�nite memory. Therefore, if we assume only a �nite sample

set with samples drawn unbiased from the unknown distribution and with the �xed set size (n)

large, then approximately the correction factor can be calculated as follows:


n+1�
p(!jxn+1)

(n+ 1)p(!)
(1.26)

By utilizing equations (24), (26) explicit time update equations for the parameters of the Gaus-

sian mixture can be written. Although it maybe impossible to obtain convergence from only one

iteration if the design set is too small, acceptable estimates can be obtained if the data samples are

drawn with replacement until a stable solution is obtained.

1.3.3 The Expectation/Maximization (EM) approach

As before we assume that a set of unlabeled data samples (x1; x2; :::; xn) are drawn from a Gaussian

mixture density

p(x) =

NgX
i=1

p(!i)p(xj!i) =
XNg

i=1
!iN(x; �i) (1.27)

with
PNg

i=1 !i = 1 , !i�0 for all i and �i is the unknown parameter vector consisting of the

elements of the mean value �i and the distinct elements of the covariance (variance) �i of the

Gaussian basis function N(x; �i) . The EM algorithm utilizes the concept of missing data which

in our case is the knowledge of which Gaussian function each data sample is coming from. Let

us assume that the variable Zj provides the density membership for the jth sample available. In

other words, if Zij = 1 then xj has a density N(x; �i) . The values of the Zij are unknown and

are treated by EM as missing information on to be estimated along with the parameters � and !

of the mixture model. The likelihood of the model parameters � , w given the joint distribution

of the data set and the missing values Z can be de�ned as:

logL(�; wj(x1; x2; :::; xn); Z) =
nX
i=1

NgX
j=1

Zijlog(p(xij�j)!j) (1.28)

The EM algorithm iteratively maximizes the expected log likelihood over the conditional dis-

tribution of the missing data, Z given (i) the observed data x1; x2; :::; xn and (ii) the current

estimates of the mixture model parameters � and ! . This is achieved by repeatedly applying the

E-step and the M-step of the algorithm. The E-step of EM �nds the expected value of the log like-

lihood over the values of the missing data Z given the observed data and the current parameters

� = �0 and ! = !0 .

It can be shown that the following equation holds true:

Z0
ij =

p(xij�
0
j )!

0
jPg

t=1 pp(xij theta
0
t )!

0
t

(1.29)

with i = 1; 2; :::; n and t = 1; 2; :::; N . The M-step of the EM algorithm maximizes the log-

likelihood over � and ! in order to �nd the next estimates for them, the so-called �1 and !1 .
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The maximization over ! leads to a solution

!1ji =
nX
i=1

Zn
ij

n
(1.30)

We can then maximize over the parameters � by maximizing the terms of the log-likelihood sep-

arately over each �j with j = 1; 2; :::; g . Therefore, evaluation of this step means calculations of

the:

�1j = max�j

nX
i=1

Z0
ijlog(p(xij�j) (1.31)

For the case of Gaussian mixtures the solution to the M -step of the algorithm exists in closed

form. Thus, at the (k + 1)th iteration the current estimates for the mixture coeÆcients, the

elemental means and the covariance matrices are given as:

!j(k + 1) =
nX
i=1

�̂j(k + 1)

n
(1.32)

�̂i(k + 1) =
!j(k)

N
(xj; �i(k))

gX
i=1

!j(kN(xj; �i(k)) (1.33)

�i(k + 1) =

Pn
j=1 �̂j(k + 1)xj

n!i(k + 1)
(1.34)

�i(k + 1) =

Pn
j=1 �̂j(k + 1)(xj � �i(k + 1))(xj � �i(k + 1))

�

n!i(k + 1)
(1.35)

The EM algorithm increases the likelihood function of the data at each iteration, and under

suitable regularity conditions converges to a stationary parameter vector [32]. The convergence

properties of the algorithm have been discussed extensively in the literature. The EM algorithm

produces a monotonic increasing sequence of likelihoods, thus if the algorithm converges it will

reach a stationary point in the likelihood function, which however can be di�erent from the global

maximum. However, like any other optimization algorithm the EM algorithm depends on the

provided initial values to determine the solution. Given a speci�c test of initial conditions it

may converge to the optimal solution, while for another set of initial parameters it may �nd only a

suboptimal one. The �nal set of values as well as the number of iterations needed for the convergence

of the EM algorithm is thus greatly a�ected from the initial parameter values. Therefore, the initial

placement of the Gaussian components are of paramount importance for the convergence of the

algorithm.

In the problem of function approximation or distribution modeling in which the EM algorithm

is used to guide the function approximation a good starting point for the elemental Gaussian terms

may be near the means of the actual underlying component Gaussian terms. To this end many

di�erent techniques have been devised over the years. Among them clustering techniques, such

as the di�erent variants of the K-means algorithm are the most popular [4]. In this approach the

components of the underlying distribution which generates the data are considered as data clusters

and pattern recognition techniques are used to identify them. When the K-means algorithm is used

to identify initial values for the EM algorithm, the number of Gaussian functions in the mixture

(clusters) has to be speci�ed in advance. Having the number of clusters prede�ned, an iterative

procedure is invoked to move the cluster centers in order to minimize the mean square error between

cluster centers and available data points. The procedure can be described as follows:
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1. Randomly select Ng data points as the initial starting locations of the elemental

Gaussian terms (clusters).

2. Assign a novel data point xj to cluster center �i if jxj � �ij�jxj � �lj for all

l = 1; :::; Ng , l 6=j .

3. Calculate the new mean value of the data points associated with the center �i .

4. Repeat steps (1), (2) until the centers are stationary.

Although the above algorithm is simple and works well in many practical applications it has

several drawbacks. The procedure itself depends on the initial conditions and it can converge to

di�erent solutions depending on which initial data points were selected as initial cluster centers.

Thus, if it is used as initial starting point for the EM algorithm then the varying �nal con�guration

of the cluster centers produced by the K-means algorithm may lead to variations in the �nal

Gaussian mixture generated by the EM algorithm [38].

Alternatively, scale space techniques can be utilized to determine the Gaussian term parameters

from the available data samples. Such techniques initially motivated by the use of Gaussian �lters

for edge detection can be provide constructing descriptions of signals and functions by decomposing

the data histogram into sums of Gaussian distributions [39], [40]. The scale-space description of a

given data set indicated the zero-crossing points of the second derivatives of the data at varying

resolutions [41]. When scale space techniques are used to determine the parameters of a Gaussian

mixture we are particularly interested in the location of zero-crossings in the second derivative and

the sign of the third derivative at the zero crossing. By determining the second derivatives of the

data waveform and locating the zero-crossing points the number of Gaussian terms present in the

approximating Gaussian mixture can be identi�ed. The sign of the waveform's second derivative

can be used to determine where the function is convex or concave [40].

In general to determine a (Ng) components normal mixture, (3Ng � 1) parameters must be

estimated. The direct calculation of these parameters as a function of the location of the zero-

crossing points form a system of (3Ng � 1) simultaneous nonlinear equations. To overcome the

computational complexity of a direct estimation, a two stage procedure was proposed in [40]. In

this approach a rough estimate of the parameter values are obtained based on the zero-crossing

locations. With this initial set as a starting point the EM algorithm is utilized to provide the �nal

set of the Gaussian mixture parameters. The procedure can be summarized as follows:

� At any scale, sign changes will alternate left to right. Odd (even) numbered zero-

crossings will thus correspond to lower (upper) turning points.

� Given the locations of upper and lower turning points the point halfway between the

turning point pair is used to provide the initial estimate of the mean �i .

� Half the distance between turning point pairs is used as an estimate of the standard

deviation (covariance)

� Given these initial estimates of the parameters which determine the mixture, the

EM algorithm is used to calculate the optimal set of parameters.
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In summary, clustering techniques, such as the K �means algorithm or scale space �lters can

be used to provide initial values for the EM algorithm. Changes in the initial conditions will result

in varying �nal Gaussian mixtures and although there is no guarantee that the �nal mixture chosen

is optimal those which are based on initial sets selected from these algorithms are usually better.

Finally, to improve the properties of the EM algorithm, a stochastic version of the algorithm,

the so-called Stochastic EM (SEM) algorithm has been proposed in the literature [42]. Stochastic

perturbation and sampling methodologies are used in the context of SEM to reduce the dependence

on the initial values and to speed up convergence. If the initial parameters are suÆciently close to

the actual values, the convergence is exponential for Gaussian mixtures. Although the dependence

on the initial values is largely reduced in the SEM algorithm, SEM seems not appropriate for small

sample records [43].

1.3.4 The EM algorithm for adaptive mixtures

The problem of determining the number (Ng) of components in the Gaussian mixture when the

mixing coeÆcients, means and variances (covariances) of the elemental Gaussian terms are also

unknown parameters to be determined from the data is a diÆcult but important one. Most of the

studies undertaken in the past concern the problem of testing the hypothesis of (Ng = g1 ) versus

the alternative (Ng = g2 ) with the two numbers 1�g1�g2 . If the classical likelihood approach is

utilized to determine the rest of the parameters in the mixture, the maximum likelihood ratio test

(LRT) can be used to determine the actual number of the components in the mixture. The LRT

test rejects the hypothesis Hn
g1

and decides for Hn
g2

whether the likelihood ratio � =
�g1

�g2
�1 is to

small or, equivalently, the log likelihood statistic is too large [43].

Recently, adaptive version of the EM algorithm have also appear in the literature in an attempt

to circumvent the problem of determining the number of components in the mixture. The so-called

adaptive mixture is essentially a recursively calculated Gaussian mixture with the ability to create

new terms or drop existing terms as dictated by the data. In the case of multivariate Gaussian basis

functions examined here, a recursive formulation of the EM algorithm can be used to evaluate the

number of basis function as well as their parameters at every time instant. The parameter update

equations are summarized below:

�̂i(k + 1) =
!j(k)N(xk+1; �i(k))PN
i=1 !j(k)N(xk+1; �i(k))

(1.36)

!j(k + 1) = !j(k) +
1

n
(�̂i(k + 1)� !j(k)) (1.37)

�i(k + 1) = �i(k) +
�̂i(k + 1)

n!j(k)
(xk+1 � �i(k)) (1.38)

�i(k + 1) = �i(k) +
�̂i(k + 1)

n!j(k)
((xk+1 � �i(k + 1))(xk+1 � �i(k + 1))� )� �i(k)) (1.39)

with the time index k de�ned over the interval k = 1; 2; :::; n . Given a new data point

at a certain time instant k the algorithm either updated the parameters of the existing basis

on the mixture by utilizing the equations above or a new term is added to the mixture. The

addition of a new term should be based on the utilization of an appropriate measure as to the

likelihood that the current measurement has been drawn form the existing model. One such measure
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proposed is the Mahalanobis distance between the observation and each of the existing basis in

the Gaussian mixture. For the Gaussian basis mixtures considered here the squared Mahalanobis

distance between a data point xj and a Gaussian basis function with mean value �i and covariance

�i is given as d2M = (xj � �i)
�
�i

�1(xj � mui) . Thus, if the distance between a new point and

each basis function in the current Gaussian mixture exceed a prede�ned threshold then a new term

is created with its mean value given by the location of the point and a covariance which is based on

the covariances of the surrounding terms and their mixing coeÆcients [34]. After the insertion of

the new term, the mixing (weighting) coeÆcients of the Gaussian basis functions are re-normalized

appropriately.

1.4 Computer generation of mixture variables

It is of paramount importance in many practical applications to generate random variables which

can be described in terms of mixtures. The availability of such techniques will not only help the

practitioner to understand the applications of mixtures to a variety of engineering problems but it

can also provide insights useful for modifying or extending mixture methodologies.

Let us assume that the mixture model f(:) =
PNg

j=1 !jfj(:) is available. It can be seen that the

mixture is de�ned in terms of three distinguishable steps:

1. The number of elements present in the mixtures Ng (typically a �nite number is selected).

2. The mixture weights !j , j = 1; 2; :::; Ng which regulate the contribution of each element in

the �nal outcome.

3. The elements (elemental density functions), fj(:) , j = 1; 2; :::; Ng of the mixture.

To generate a random variable X from a given mixture the following steps should be performed:

1. Generate an element identi�er J = P (J = j) = !j . In most applications the

number Ng of mixture elements is chosen to be 2 , in which case the identi�er can

be simply generated as a result of a comparison of a uniform (0; 1) variable with

!j . In the case of g > 2 the identi�er may be generated by one of several discrete

variable generating techniques.

2. Generate realizations Xj , fj(:) for j = 1; 2; :::; g .

3. Using steps (1),(2) calculate X , f(:) .

By the application of this method the resulting random variable X has the desired distribution

f(:) since by construction follows the distribution:

NgX
j=1

fj(:)P (J = j) =

NgX
j=1

fj(:)!j = f(:) (1.40)

The above described methodology can be utilized to generate random variables from a given

mixture model and is used in the simulation studies reporting in this survey.
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In this section an application example is used to demonstrate the applicability of the above

generation method. The problem selected is that of `glint noise generation'. In radar target

applications the observation noise is highly non-Gaussian. It is well documented in the literature

that the so-called `glint noise' possess the characteristics of a long-tailed distribution [63]-[65].

Conventional minimum mean square estimators, can be seriously degraded if non-Gaussian noise is

present. Therefore, it is of paramount importance the accurate modeling of the non-Gaussian noise

phenomenon prior to the development of any eÆcient tracking algorithm. Many di�erent models

have been used for the non-Gaussian glint noise present in target tracking applications. Among

them a mixture approach, originally proposed by Hewer, Martin and Zeh [64], which argue that

the radar glint noise can be modeled as a mixture of background Gaussian noise with outliers.

Their results were based on the analysis of the QQ-plots of glint noise records [65]. Examination

of such records reveals that the glint QQ-plot is fairly linear around the origin, an indication that

the distribution is Gaussian-like around its mean. However, in the tail region, the plot deviates

from linearity and indicates a non-Gaussian, long-tailed character. The data in the tail region is

essentially associated with the glint spikes and are considered to be outliers. These outliers have a

considerable in
uence on conventional target tracking �lters, such as the Kalman �lter which are

quite non-robust. The e�ect of the glint spikes is even greater on the sample variance (covariance)

used in the derivation of the �lter's gain. It is not diÆcult to be seen that variances (covariances)

which are quadratic functions of the data are more sensitive to outliers than the sample means.

Therefore, the glint spikes can be modeled as a Gaussian noise with large variance (covariance)

resulting in an overall glint noise model which can be considered as a Gaussian mixture with

the two components used to model the background (thermal) Gaussian noise and the glint spikes

respectively. The weighting coeÆcients in the mixture (percentage of contamination) can be used

to model the non-Gaussian nature of the glint spikes. Therefore, the glint noise model model can

be generated as the mixture of two Gaussian distributions, each with zero mean and with �xed

variance (covariance).

In most studies the variances (covariances) are proportional to each other. Assuming that the

Gaussian terms are denoted as N1(0; �1) and N2(0; �2) the mixture distribution has the following

form:

f(k; �1; �2)) = (1� k)N1(0; �1) + kN2(0; �2) (1.41)

with 0 < k < 1 . A random variable X of this distribution can be generated by �rst selecting

un iformly a sample U from the interval [0; 1] . If U > k then X is generated by independent

sample from N1(0; �1) . Otherwise, the requested variable X is a sample from N2(0; �2) . In a �rst

experiment it is assumed that the regulatory coeÆcient is the unknown parameter in the mixture.

The weighting coeÆcient assumes the values of k = 0:1 , k = 0:2 , and k = 0:3 respectively. The

variances of the two components are given by �1 = 1:0 and �2 = 100:0 . The resulting noise

pro�les can be seen in Fig. 1. In a second experiment we assume that the weighting coeÆcient

in the mixture is known and the only parameter is the variance of the second component in the

mixture. We assume that the variance of the �rst component is �xed, �1 = 1:0 . The variance �2 of

the second component assumes the values of 10:0 , 100:0 and 1000:0 . By varying the parameters

of the second term in the mixture a di�erent noise pro�le can be obtained. It is evident from Fig.

2 that by increasing the contribution or the variance of the second component in the mixture, the

resulting pro�le deviates more from Gaussian becoming increasingly non-Gaussian.
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1.5 Mixture Applications

In this section we will describe, in detail, three areas of application of Gaussian mixture models

where the model is used either to represent the underlying physical phenomenon or to assist in the

development of an eÆcient and cost e�ective algorithmic solution. The application areas considered

are those of target tracking in polar coordinates and stochastic estimation for nonlinear systems,

non-Gaussian (impulsive) noise modeling and inter-symbol interference rejection, and neural net-

works for function approximation. These applications were selected mainly due to its importance

to the signal processing community. It should be emphasized at this point that Gaussian mixtures

have been applied to a number of di�erent areas. Such areas include among other electrophoresis,

medical diagnosis and prognosis, econometric applications such as switching econometric models,

astronomy, geophysical applications, and applications in agriculture. The interest reader should

refer to the extensive summary of references to Gaussian mixture applications provided in [1] for

mixture applications.

Apart from that Gaussian mixture models are essential tools in other literatures, such as neu-

ral networks, where Radial Basis Functions (RBF) networks and Probabilistic Neural Networks

(PNN) are based on Gaussian mixture models, fuzzy systems where fuzzy basis functions are often

constructed to imitate the Gaussian mixture model, and image processing/computer vision where

Gaussian mixtures can used to model image intensities and to assist in the estimation of the optical


ow [66]-[73], [23], [25], [74], [75].

In the next few paragraphs we consider three case studies in order to illustrate the e�ectiveness

of the Gaussian mixture approach in solving diÆcult signal processing problems. The problem of

target tracking in polar coordinates is considered in the next section.

1.5.1 Applications to non-linear �ltering

Estimation (�ltering) theory has received considerable attention in the past four decades, primarily

due to its practical signi�cance in solving engineering and scienti�c problems. As a result of the

combined research e�orts of many scientists in the �eld, numerous estimation algorithms have

been developed. These can be classi�ed into two major categories. Namely, linear and nonlinear

�ltering algorithms corresponding to linear (or linearized) physical dynamic models with Gaussian

noise statistics and to nonlinear or non-Gaussian physical models [48], [49]. The most challenging

problem arising in stochastic estimation and control is the development of an eÆcient estimation

(�ltering) algorithm which can provide estimates of the state of a dynamical system when non-linear

dynamic models coupled with non-Gaussian statistics are assumed. We seek therefore, the optimal,

in the minimum mean square sense, estimator of the state vector x(k) of a dynamic system which

can be described by the following set of equations:

x(k + 1) = f(x(k); v(k); k) (1.42)

z(k + 1) = h(x(k); w(k); k) (1.43)

where f(:) is the nonlinear function which describes the state evolution over time, and v(k)

is the state process noise which can be of a non-Gaussian nature. In most cases the state noise is

modeled as additive white Gaussian noise with covariance Q(k) . The only information available

about this system is a sequence of measurements z(1); z(2); :::; z(k); ::: obtained at discrete time

intervals. The measurement equation (43) describes the observation model which transforms the

plant state vector into the measurement space. Most often the observation matrix h(:) it is

assumed to be nonlinear with additive measurement noise w(k) . The additive measurement noise
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is considered to be white Gaussian with noise covariance R(k) and uncorrelated to the state noise

process. The initial state vector x(0) , which is in general unknown, is modeled as a random variable,

Gaussian distributed with mean value x̂(0) and covariance P (0) . It is considered uncorrelated to

the noise processes 8k > 0 .

Given the set of measurements Zk = [z(1); z(2); :::; z(k � 1); z(k)] , we desire the mean-squared-

error optimal �ltered estimate x̂(kjk) of x(k) :

x̂(kjk) = E(x(k)jZk) (1.44)

of the system state.

For the case of linear dynamics and additive Gaussian noise the problem was �rst solved by

Kalman through his well known �lter [49]. The so-called Kalman �lter is the optimal recursive

estimator for the this case. However, if the dynamics of the system are non-linear and/or the noise

processes in (42)-(43) are non-Gaussian, the degradation in the performance of the Kalman �lter

will be rather dramatic [50].

The requested state estimate in (44) can be obtained recursively through the application of the

Bayes theorem as follows:

x̂(kjk) = E(x(k)jZk) =

Z
1

�1

x(k)f(x(k)jZk) dx (1.45)

f(x(k); z(k)jZk�1) = f(x(k)jz(k); Zk�1)f(z(k)jZk�1) = f(z(k)jx(k); Zk�1)f(x(k)jZk�1) (1.46)

f(x(k)jz(k); Zk�1) =
f(z(k)jx(k); Zk�1)f(x(k)jZk�1)

f(z(k)jZk�1)
=

f(z(k)jx(k); Zk�1)f(x(k)jZk�1)R
f(z(k)jx(k); Zk�1)f(x(k)jZk�1) dx(k)

(1.47)

Based on the assumptions of the model, the density function f(x(k)jz(k)) can be considered

as Gaussian with mean value h(x(k)) and covariance R(k)

f(x(k)jz(k)) =
1

(2�)m
jR(k)j�0:5exp(�0:5jjz(k) � h(x(k)jj2R�1(k)) (1.48)

In a similar manner the density f(x(k)jx(x� 1)) can be considered Gaussian with mean value

f(x(k � 1)) and covariance Q(k � 1) . Given the fact that the initial conditions are assumed

Gaussian and thus:

f(x(0)jz(0)) =
f(x(0))f(z(0)jx(0))

f(z(0))
(1.49)

a set of equations which can be used to recursively evaluate the state estimate is now available

[48]-[55].

The above estimation problem is solvable only when the density f(x(k)jz(k)) can be evaluated

for all k . However, this is possible only for a linear state space model and if the a-priori noise and

state distributions are Gaussian in nature. In this case, the relations describing the conditional

mean and covariance are the well known Kalman Filter equations [54]. To overcome the diÆculties

associated with the determination of the integrals in (46)-(47) suboptimal estimation procedures

have been developed over the years [51]-[55]. The most commonly used involves the assumption

that the a-priori distributions are Gaussian and that the nonlinear system can be linearized rela-

tive to the latest available state estimate resulting to a Kalman-like �lter, the so-called `Extended'

Kalman Filter (EKF). Although EKF performs well in many practical applications, there are nu-

merous situations in which unsatisfactory results have been reported. Thus, a number of di�erent

methodologies have been appeared on the literature. Among them, the Gaussian sum �lter which
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utilizes the approximation theorem reported in section II to approximate (46)-(47). This estimation

procedure utilizes a Gaussian mixture to approximate the a-posteriori density f(x(k)jz(k); Zk�1)

in conjunction with the linearization procedure used in EKF. This so-called Gaussian sum approach

assumes that at a certain time instant k the one step ahead predicted density f(x(k)jZk�1) can

be written in the form of a Gaussian mixture [51], [52], [54].

Then given the next available measurement and the nonlinear model, the �ltering density

f(x(k)jz(k); Zk�1) is calculated as:

f(x(k)jz(k); Zk�1) = c(k)

NgX
i=1

!iN((x(k) � ai); Bi)f((z(k) � h(x(k))) (1.50)

Parallelizing the EKF operation, the Gaussian sum �lter linearizes h(x(k)) relative to ai so

that f((z(k) � h(x(k))) can be approximated by a Gaussian-like function in the region around

each ai . Once the a-posteriori density f(x(k)jz(k); Zk�1) is in the form of a Gaussian mix-

ture, the prediction step of the nonlinear estimator can be performed in the same manner by

linearizing f(x(k + 1)jx(k)) about each term in the Gaussian mixture de�ned to approximate

f(x(k)jz(k); Zk�1) .

In this review a nonlinear �lter based on Gaussian mixture models is utilized to provide eÆcient,

computationally attractive solution to the radar target tracking problem. In tracking applications

target motions is usually best modeled in a simple fashion using Cartesian coordinates. However, the

target position measurements are provided in polar coordinates (range and azimuth) with respect

to the sensor location. Due to the geometry of the problem and the nonlinear relationship between

the two coordinate systems, tracking in Cartesian coordinates using polar measurements can be

seen as a nonlinear estimation problem, which is described in terms of the following non-linear state

space model:

x(k + 1) = F (k + 1; k)x(k) +G(k + 1; k)v(k) (1.51)

where x(k) is the vector of Cartesian coordinates target states, F (:) is the state transition matrix,

G(:) is the noise gain matrix, and v(k) is the system noise process which is modeled as a zero-mean

white Gaussian random process with covariance matrix Q(k).

The polar coordinate measurement of the target position is related to the Cartesian coordinate

target state as follows:

z(k) = h(x(k)) + w(k) (1.52)

where z(k) is the vector of polar coordinates measurement, h(�) is the Cartesian-to-polar coordinate
transformation, and w(k) is the observation noise process which is assumed to be zero-mean white

Gaussian noise process with covariance matrix R(k). Thus, target tracking becomes the problem

of estimating the target states x(k) from the noisy polar measurements z(k), k = 1; 2; ::: .

A Gaussian mixture model can be used to approximate the densities involved in the derivation

of the optimal Bayesian estimator of (46)-(47) when is applied to the tracking problem.

To evaluate the state prediction density p(x(k)jZk�1) eÆciently we will assume the conditional

density p(x(k�1)jZk�1) to be Gaussian with mean x̂(k�1jk�1) and covariance matrix P (k�1jk�1).
Based on this assumption the state prediction density is a Gaussian density with

x̂(kjk � 1) = F x̂(k � 1jk � 1) (1.53)

P (kjk � 1) = FP (k � 1jk � 1)F T +GQ(k)GT (1.54)

19



Given the state space model of the the problem, the function p(z(k)jx(k)) can be de�ned by

the measurement equation and the known statistics of the measurement noise w(k)

p(z(k)jx(k)) =

Z
p(z(k)jx(k); w(k))p(w(k)jx(k))dw(k)

=

Z
Æ(x(k) � h(x(k)) � w(k))pw(w(k))dw(k)

= pw(x(k)� h(x(k))) (1.55)

Thus, the function p(z(k)jx(k)) can be obtained by applying the transformation w(k) = z(k)�
h(x(0)) to the density function pw(w(k)). Utilizing this observation, we select some initial param-

eters ~�k;i, ~mk;i and ~Bk;i from the known statistics of the noise w(k), and transform these param-

eters from the w(k)-space to the f(k)-space based on the transformation w(k) = z(k) � h(x(k))

z(k) � h(x(k)) and �nally collect them as a Gaussian mixture approximation for the function

p(z(k)jx(k)) (see Fig. 3).
The Gaussian mixture procedure used to approximate the non-linear prediction density p(x(k)jZk�1)

is summarized as follows:

1. For initialization, select the parameters ~�k;i, ~mk;i and ~Bk;i for a prescribed value of N such

that the following sum-of-squared error is minimized.

KX
j=1

�����pw(wk;jj)�
NX
i=1

~�k;iN (wk;j � ~mk;i; ~Bk;i)

�����
2

< � (1.56)

where wk;j : j = 1; : : :;K is the set of uniformly spaced points distributed through the region

containing non-negligible probability and � is the prescribed accuracy.

2. For each new measurement z(k), update the new parameters �k;i, mk;i and Bk;i such that

p(z(k)jx(k))�
NX
i=1

�k;iN(mk;i �D(x(k)); Bk;i) (1.57)

where

mk;i = h�1( �mk;i) (1.58)

�mk;i = z(k)� ~mk;i (1.59)

Bk;i =
h
Jh(mk;i)

T ~B�1
k;i Jh(mk;i)

i
�1

(1.60)

�k;i = jJh(mk;i)j (1.61)

�k;i = �k;i~�k;i (1.62)

Here, we assume the function is invertible; however, if the inverse does not exist, then we

must choose mk;i to be the most likely solution given mk;i = h( ~mk;i). Moreover, Jh(
�x(k)),

Heh(mk;i) are the Jacobian and the Hessian of the function h(x(k)) respectively, evaluated

as:
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JFi
(mk;i) =

@Fi(xn)

@xn

���
xn=mn;i

=
1

2
Jh(mn;i)

T ~B�1
n;i (mn;i � h(mn;i)) (1.63)

HeFi
(mn;i) =

@2Fi(xn)

@xn@xTn

���
xn=mn;i

= �
h
Heh(mn;i)

T ~B�1
n;i (mn;i � h(mn;i)) + Jh(mn;i)

T ~B�1
n;iJh(mn;i)

i
(1.64)

Given the form of the approximation the algorithmic description of the non-linear Adaptive

Gaussian Sum Filter (AGSF) for one processing cycle is as follows (see Fig. 4):

1. Assume that at time k the mean x̂(k � 1jk � 1) and the associated covariance matrix

P (k � 1jk � 1) of the conditional density p(x(k � 1)jZk�1) are available.

The predictive mean x̂(kjk � 1) and the corresponding covariance matrix P (kjk � 1) of the

predictive density p(x(k)jZk�1) are determined through (53)-(54) using the state equation

of the model.

2. The density p(x(k)jZk) is approximated systematically by a weighted sum of Gaussian terms.

3. The Gaussian terms in the mixture are passed to a bank of N Kalman �lters which evaluate

the parameters for the Gaussian mixture approximation for the density p(x(k)jZk) .

4. The Gaussian mixture approximation for the density p(x(k)jZk) is collapsed into one equiv-

alent Gaussian term with mean x̂(kjk) and covariance P (kjk)

A two-dimensional long range target tracking application is simulated to demonstrate the per-

formance of the adaptive Gaussian sum �lter on target state estimation. The target trajectory is

modeled by the second-order kinematic model of (51) with a process noise of standard variation

0.01 m=s2 in each coordinate. The measurements are modeled according to equation (52). The

standard deviations for range errors is assumed to be 50 m and two standard deviations of bearing

error are used �� = 2:5o and 5:73o. The parameters of the model are de�ned as follows:

xn+1 =

2
664

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

3
775xn +

2
664

1=2 0

1 0

0 1=2
0 1

3
775wn (1.65)

zn =

� p
x2
n
+ y2

n

tan
�1 yn=xn

�
+ vn (1.66)

Q =

�
0:0001 0

0 0:0001

�

R = (1)

�
2500 0

0 0:037

�
; (2)

�
2500 0

0 0:01

�

The adaptive Gaussian sum �lter (AGSF) is compared with the Extended Kalman �lter (EKF),

and the converted measurement Kalman �lter (CMKF) in this experiment. All these �lters are

initialized with the same initial �ltered estimate x̂0j0 and the same initial error covariance P0j0
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based on the �rst two measurements. The initial number of Gaussian terms in the preprocessing

stage is 30. After preprocessing the number of the Gaussian terms used in the implementation of

the AGSF is 9. The results presented here are based on 1500 measurements averaged over 1000

independent Monte Carlo realizations of the experiment with the sampling interval of one second

and with two di�erent measurement noise levels. In order to generate the measurement record the

initial state x0 is assumed Gaussian with an average range of 50 km and an average velocity of 20

m=s. For each Monte Carlo realization of the experiment the initial value is chosen randomly from

the assumed Gaussian distribution.

The position errors and the velocity errors for the three �lters are shown in Figs. 5 and 6

respectively for �� = 2:5o. The error is de�ned as the root mean square of the di�erence between

the actual value and the estimated value. The Gaussian sum approach converges faster and yields

estimates of smaller error than the EKF and the CMKF does. For �� = 2:5o the CMKF converges

faster than the EKF initially but it ceases to converge after the �rst 400 measurements. The EKF

on the other hand is very steady and consistent. As �� increases to 5:72
o (0:1rad) the EKF starts

to diverge due to the fact that the EKF is extremely sensitive to the initial �lter conditions. When

the cross-error gets too large, the wrong set of initial conditions can lead to divergence. The CMKF

however it seems to be more robust to inconsistent initial conditions. The AGSF due to its parallel

nature and the fact that the Bayes rule operates as a correcting/adjusting mechanism is also in

position to compensate for inconsistent initial conditions.

1.5.2 Non-Gaussian noise modeling

The Gaussian mixture density approximation has been extensively used to accomplish practical

models for non-Gaussian noise sources in a variety of applications. The appearance of the noise

and its e�ect is related to its characteristics. Noise signals can be either periodic in nature or ran-

dom. Usually noise signals introduced during signal transmission are random in nature resulting

in abrupt local changes in the transmitting sequence. These noise signals cannot be adequately

described in terms of the commonly used Gaussian noise model. Rather, they can be character-

ized as impulsive sequences (interferences) which occur in the form of short time duration, high

energy spikes attaining large amplitudes with probability higher than the probability predicted by

a Gaussian density model.

These are various sources that can generate such non-Gaussian noise signals. Among others,

man made phenomena, such as car ignition systems, industrial machines in the vicinity of the signal

receiver, switching transients in power lines and various unprotected electric switches. In addition,

natural causes, such as lightning in the atmosphere and ice cracking in the antarctic region also

generate non-Gaussian, long-tailed type of noise.

Several models have been used to date to model non-Gaussian noise environments. Some of

these models have been developed directly from the underlying physical phenomenon. On the

other hand, empirically devised noise models have been used over the years to approximate many

non-Gaussian noise distributions. Based on the density approximation theorem presented above,

any non-Gaussian noise distribution can be expressed as, or approximated suÆciently well, by a

�nite sum of known Gaussian pdfs. The Gaussian sum model has been used in the development of

approximate empirical distributions which relate to many physical non-Gaussian phenomena.

The most commonly used empirical model is the � -mixture or � -contaminated Gaussian mix-

ture model in which the noise pdf has the form of:

f(x) = (1� �)fb(x) + �fo(x) (1.67)
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where �2[0; 1] is the mixture weighting coeÆcient. The mixing parameter � regulates the contri-

bution of the non-Gaussian component and usually it varies between 0:01 to 0:25 .

The fb(x) pdf is usually taken to be a Gaussian pdf representing background noise. Among the

choices for the contaminating pdf are various `heavy-tailed' distributions, such as the Laplacian,

or the double exponential. However, most often fo is taken to be Gaussian with variance �2o

taken to be many times the variance of fo , �
2
b . The ratio k =

�2o
�2
b

has generally been taken to

be between 1 and 10,000. Although the parameters of the mixture model are not directly related

to the underlying physical phenomenon, the model is widely used in a variety of applications,

primarily due to its analytic simplicity. The 
exibility of the model allows for the approximation

of many di�erent naturally occurring noise distribution shapes. This approach has been used to

model non-Gaussian measurement channels in narrowband interference suppression, a problem of

considerable engineering interest [60].

Spread-spectrum communication systems often use estimation techniques to reject narrowband

interference. Recently, the interference rejection problem has been formulated as a non-linear

estimation problem using a state-space representation [58]. Following the state-space approach,

the narrowband interference is modeled as the state trajectory and the combination of the direct-

sequence spread spectrum signal with the background noise is treated as non-Gaussian measurement

noise.

The basic idea is to spread the bandwidths of transmitting signals so that they are much greater

than the information rate. The problem of interest is the suppression of a narrowband interferer

in a direct-sequence spread-spectrum (DS/SS) system operating as an N th order autoregressive

process of the form:

ik =
NX
n=1

�nik�n + ek (1.68)

where ek is a zero mean white Gaussian noise process and �1;�2; :::; :;�N�1;�N are the

autoregressive parameters known to the receiver.

The discrete time model arises when the received continuous time signal is passed through an

integrate-and-dump �lter operating at the chip rate [59].

The Direct Sequence Spread Spectrum (DS/SS) modulation waveform is written as:

m(t) =

Nc�1X
k=0

ckq(t� k�c) (1.69)

where Nc is the pseudo-noise chip sequence used to spread the transmitted signal and ; q() is

a rectangular pulse of duration �c . he transmitted signal can be then expressed as:

s(t) =
X
k

bkm(t� kTb) (1.70)

where b(k) is the binary information sequence and Tb = Nc�c is the bit duration. Based on that,

the received signal is de�ned as:

z(t) = as(t� �) + n(t) + i(t) (1.71)

where a is an attenuation factor, � is a delay o�set, n(t) is wideband Gaussian noise and i(t)

is narrow-band interference. Assuming that n(t) is band-limited and hence white after sampling,

with � = 0 and a = 1 for simplicity, if the received signal is chip-matched and sampled at the chip
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rate of the pseudo-noise sequence, the discrete time sequence resulting from the continuous model

above can be re-written as follows:

z(k) = s(k) + n(k) + i(k) (1.72)

The system noise contains an inference component i(k) and a thermal noise component n(k) . We

assume binary signaling and a processing gain of K chips/bit so that during each bit interval, a

pseudo-random code sequences of length K is transmitted. The code sequences can be denoted as:

SK = [s1(1); s1(2); :::; s1(K)] (1.73)

with s12(+1;�1) .
Based on this, a state space representation for the received signal and the interference can be

constructed as follows:

x(k) = �x(k � 1) + v(k)

z(k) = Hx(k) +w(k) (1.74)

with x(k) = [ik; ik�1; :::; ik�N+1]
� , v(k) = [ek; 0; :::; 0]

� , H = [1; 0; :::; 0] , and

� =

���������

�1 �2 � � � �N

1: 0: � � � 0:

. . . . . . . . . . . . . . . . .

0: 0: � � � 1:

���������
.

The additive observation noise w(k) in the state space model is de�ned as:

v(k) = n(k) + s(k)

Since the �rst component of the system state x(k) is the interference i(k) , an estimate of the

state contains an estimate of i(k) which can be subtracted from the received signal in order to

increase the system's performance. The additive observation (measurement) noise v(k) is the sum

of two independent variables, one is Gaussian distributed and the other takes on values �1 or

�1 with equal probability. Therefore its density is the weighted sum of two Gaussian densities

(Gaussian sum) [59], [60]:

f(w(k)) = (1� �)N(�; �2n) + �N(��; ��2n) (1.75)

with � = 0:5 and � = 1 .

In summary, the narrowband interference is modeled as the state trajectory and the combination

of the DS/SS signal and additive Gaussian noise is treated as non-Gaussian measurement noise.

Nonlinear statistical estimators can be used then to estimate the narrowband interference and to

subtract it from the received signal. Due to the nature of the non-Gaussian measurement noise a

non-linear �lter should be used to provide the estimates. The non-linear �lter takes advantage of

the Gaussian-mixture representation of the measurement noise to provide on-line estimates of the

inter-symbol interference. By collapsing the Gaussian mixture at every step through the utilization

of the Bayes theorem, a Kalman-like recursive �lter with constant complexity can be devised.

For the state space model of (72) if the measurement noise is expressed in terms of the Gaussian

mixture of (73) an estimate x̂(kjk) of the system state x(k) at time instant k, can be computed

recursively by an Adaptive Gaussian Sum Filter (AGSF) as follows:
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x̂(kjk) = x̂(kjk � 1) +K(k)(z(k) � ẑ(kjk � 1) (1.76)

P (kjk) = (I �K(k)H(k))P (kjk � 1) (1.77)

x̂(kjk � 1) = �(k; k � 1)x̂(k � 1jk � 1) (1.78)

P (kjk � 1) = �(k; k � 1)P (k � 1jk � 1)�(k; k � 1)� +Q(k � 1) (1.79)

with initial conditions x̂(0j0) = x̂(0) and P (0j0) = P (0) .

K(k) = P (kjk � 1)H� (kjk � 1)P�1
z (kjk � 1) (1.80)

ẑ(kjk � 1) =

NgX
i=1

!i(k)ẑi(kjk � 1) (1.81)

ẑi(kjk � 1) = H(k)x̂(kjk � 1) + �i (1.82)

Pzi(kjk � 1) = H(k)P (kjk � 1)H� (k) +Ri (1.83)

In case of (73), Ng = 2 , with �i = � and R1 = �2n , R2 = ��2n .

The corresponding innovation covariance and the a-posteriori weights used in the Bayesian

decision module are de�ned as:

Pz(kjk � 1) =

NgX
i=1

(Pzi(kjk � 1) + (ẑ(kjk � 1)� ẑi(kjk � 1))(ẑ(kjk � 1)� ẑi(kjk � 1))� )!i(k)

(1.84)

!i(k) =
((2�)�mjPzij

�1exp(�0:5(jjz(k) � ẑi(kjk � 1)jj2
P
�1

zi
(kjk�1)

)))ai

c(k)
(1.85)

where, j:j denotes the determinant of the matrix, and jj:jj the inner product. The parameter
ai are the initial weighting coeÆcients used in Gaussian mixture which describes the additive

measurement noise. In case of (73) a1 = (1� �) and a2 = � .

Finally, the normalization factor c(k) is calculated recursively as follows:

c(k) =

NgX
i=1

((2�)�mjPzij
�1exp(�0:5(jjz(k) � ẑi(kjk � 1)jj2

P
�1

zi
(kjk�1)

)))ai (1.86)

Simulation results are included here to demonstrate the e�ectiveness of such an approach. In

this study the interferer is found by channeling white noise through a second-order in�nite-duration

impulse response (IIR) with two poles at 0.99:

ik = 1:98ik�1 � 0:9801ik�2 + ek (1.87)

where ek is zero mean white Gaussian noise with variance 0:01 . The regulatory coeÆcient �

used in the Gaussian mixture of (73) is set to be � = 0:2 and the ratio � is taken to be � = 10
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or � = 10; 000 with �n = 1:0 . The non-Gaussian measurement noise pro�le, for a single run, is

depicted in Fig. 7 (� = 10 ) and in Fig. 10 for � = 10; 000 .

The normalized mean square error (NMSE) is utilized for �lter comparison purposes in all

experiments. The data were averaged through Monte Carlo techniques. Given the form of the

state vector, the �rst component of x(k) is used in the evaluation analysis. The NMSE is therefore

de�ned as:

NMSE =
1

MCRs
(

MCRsX
k=1

(xk1r � x̂k1j)
2

xk
2
1r

)

where MCRs is the number of Monte Carlo runs, x1r the actual value and x̂1j is the outcome

of the j -�lter under consideration.

In this experiment, 100 independent runs (Monte Carlo runs), each 1000 samples in length were

considered. Due to its high complexity and the unavailability of suitable nonlinear transformation

for the `score function' the Masreliez �lter was not included in these simulation studies.

Two di�erent plot types are reported in the paper. First, state estimation plots for single Monte

Carlo runs are included to facilitate the performance of the di�erent estimation schemesi (Figs. 8,

11). In addition, the normalized mean square error plots for all the simulation studies are also

reported (Figs. 9, 12). From the plots included in the chapter we can clearly see the improvement

accomplished by the utilization of the new �lter versus the Kalman �lter and the Masreliez �lter.

The e�ects have appeared more pronounced at more dense non-Gaussian (impulsive) environments.

This trend was also veri�ed during the error analysis utilizing the Monte Carlo error plots (Figs.

9, 12).

1.5.3 Radial Basis Function Networks

Although Gaussian mixtures have been used for many years in adaptive signal processing, stochastic

estimation, statistical pattern recognition, Bayesian analysis, and decision theory only recently have

been considered by the neural networks community as a valuable tool for the development of a rich

class of neural nets, the so-called Radial Basis functions (RBF) networks [72]. RBF networks can

be used to provide an e�ective and computationally eÆcient solution to the interpolation problem.

In other words given a sequence of (n) available data points X = (x1; x2; :::; xn) (which can be

vectors) and the corresponding (n) measurement values Y (y1; y2; :::; yn) the objective is to de�ne

a function F satisfying the interpolation condition F (xi) = yi , i = 1; 2; :::; n . The RBF neural

approach consists of choosing F from a linear space of dimension (n) which depends on the data

points xi [73]. The basis of this linear space is chosen to be the set of radial functions. Radial

functions are a special class of functions in which their response decreases or increases monotonically

with distance from a central point. The central point, the distance scale as well as the shape of

the radial function are parameters of the RBF neural model. Although many radial functions have

de�ned and used in the literature, the typical one is the Gaussian which, in the case of a scalar

input, is de�ned as:

f(x; c; r) = exp(�
(x� c)2

r2
) (1.88)

with parameters the center c and the radius r . A single layer network consisting of such Gaussian

basis functions is usually called Radial Basis Function (RBF) net in the neural network literature.

Optimization techniques can be used to adjust the parameters of the basis functions in order

to achieve better results. Assuming that the number of basis (Gaussian) functions is �xed the
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interpolation problem is formulated as follows:

F (x) =

NgX
i=1

!if(x; ci; r) (1.89)

Although the number Ng of elemental Gaussian terms in the mixture expression can be de�ned

a-priori, it can also be considered as a parameter. In such a case the smallest possible number of

Gaussian bases is targeted.

In this setting the problem is the equivalent of solving of set of (3Ng) nonlinear equations using

(n) data points. Thus, the problem is to determine the Gaussian centers and radius along with

the mixture parameters from the sample data set.

One of the most convenient ways to implement this is to start with an initial set of parameters

and then iteratively modi�ed them until a local minimum is reached in the error function between

the available data set and the approximating Gaussian mixture.

However, de�ning a smooth curve from available date is an ill-posed problem in the sense that

the information in the data may not be suÆcient to uniquely reconstruct the function mapping

in regions where data samples are not available. Moreover, if the available data set is subject to

measurement errors or stochastic variations, additional steps, such as introduction of penalty terms

in the error function are needed in order to guarantee good results. In a general d� dimensional

space the Gaussian radial basis can be as f(x) = exp(�0:5jjx � �ijj��1

i
) where �i and �i represent

the mean vector and the covariance matrix of the ith radial basis function.

The quadratic term in the Gaussian basis function form can be written as an expanded form

jjx� �ijj��1

i
=

dX
k=1

dX
j=1

�ikj(xj � �ij)(xk � �ik) (1.90)

with �ij the jth element of the mean vector �i and �kj the (j; k) element of the shape matrix

��1
i . The elements of the shape function can be evaluated in terms of the marginal standard

deviations �ij , �ik and the correlation coeÆcient. Assuming that the shape matrix is positive

diagonal, a much simpler expression can be obtained. In such a case, the output of the ith

Gaussian basis function can be de�ned as:

oi = exp(�0:5
dX

k=1

(xk � �ik)
2

�ik
) (1.91)

with 1�i�Ng .

The output of the ith Gaussian basis function forms a hyper-ellipsoid in the d�dimensional

space with the mean and the variance the parameters which determine the geometric shape and

the position of that hyper-ellipsoid. Therefore, the Radial basis network consists of an array of

Gaussian functions determined by some parameter vectors [68].

F (x) =

NgX
i=1

!iexp(�0:5
dX

k=1

(xk � �ik)
2

�ik
) (1.92)

Radial basis function networks have extensively be used to approximate non-linear functions

[78]. In most cases single hidden layer structures with Gaussian units are used due to their simplicity

and fast training. To demonstrate the function approximation capabilities of the RBF network,

a simple scalar example is considered. The RBF network consists of 5 Gaussian units equally
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weighted. Figure 13 depicts the initial placement of the �ve Gaussian terms, as well as the overall

function to be approximated. It can be seen from the plot that the basis functions are equally

distributed on the interval [50 � 200]. Figure 14 depicts the �nal location of the Gaussian basis

functions. The unequal weights and the shifted placement of the basis functions provides an eÆcient

and cost e�ective approximation to the original function.

The deterministic function approximation approach is probably not the best way to characterize

an RBF network when the relationship between the input and output parameters is a statistical

rather a deterministic one. In was suggested in [79] that in this case it is better to consider the input

and output pair x; F (x) as realizations of random vectors which are statistically dependent. In such

a case, if a complete statistical description of the data is available, the output value can be estimated

given only the input values. However, since complete statistical description is seldom available in

most cases the optimal statistical estimator cannot be realized. One way to overcome the problem

is to assume a certain parametric model and use the data to construct a model which �ts the

data reasonably well [80]. A number of di�erent neural network based on parametric modeling of

data have been proposed in the literature. Among them the so-called probabilistic neural networks

(PNN) [25], [73] and the Gaussian-mixture (GM) model of [81], [80]. The GM model is a parametric

probabilistic model based on the the Gaussian mixture model discussed through out this chapter.

In the context of GM it is assumed that the available input/output pairs result from a mixture

of Ng populations of Gaussian random vectors, each one with a probability of occurrence of !i ,

i = 1; :::; Ng . Given that assumption a Gaussian-mixture basis function network (GMBFN) [80]

can be used to provide estimate of the output variable given a set of input values and the set of Ng

Gaussian bases. The GMBFN parallelizes the Gaussian mixture models used in the development

of non-linear statistical estimators. Parameter estimation techniques, such as the EM algorithm

discussed in this survey can be used to estimate the parameters of the GMBFN model during

training. The GMBFN network can be viewed as the link between the Gaussian mixture models

used in statistical signal processing and the RBF networks used for function approximation. This

type of networks has been shown to have good approximation capabilities in nonlinear mappings and

has been proven to provide eÆcient solutions in application problems, such as channel equalization

and image restoration.

1.6 Concluding Remarks

In this article we reviewed some of the issues related to the Gaussian mixture approach and its

applications to signal processing. Due to the nature of the Gaussian mixture model special atten-

tion was given to nonlinear, non-Gaussian signal processing applications. Novel signal processing

techniques were developed to provide e�ective, simple, and computationally attractive solutions

in important application problems, such as target tracking in polar coordinates and interference

rejection in impulsive channels. Emphasis was also given on theoretical results, such as the approx-

imation theorem and the EM algorithm for mixture parameter estimation. Although these issues

are not related to any particular practical application, they can provide the practitioner with the

necessary tools needed to support a successful application of Gaussian mixtures.

The authors' intention was to illustrate the applicability of the Gaussian mixture methodology

in signal processing applications and to highlight the similarities between Gaussian mixture models

used in statistical signal processing and neural network methodologies, such as RBF used in function

approximation and optimization. Since mixture model analysis yields a large number of theorems,

methods, applications and test procedures, there is much pertinent theoretical work as well as

research on Gaussian mixture applications which has been omitted for reasons of space and time.
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Apart from the practical problems discussed here there are a large class of problems that ap-

pear to be amenable to solution by Gaussian mixtures. Among them emerging areas of signi�cant

importance, such as data mining, estimation of video 
ow and modeling of (computer) communi-

cation channels. It is the authors' belief that Gaussian mixture models provide e�ective tools foe

these emerging signal processing applications and thus surveys on Gaussian mixture analysis and

applications can contribute to further advances in these emerging research areas.
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Figure 1.1: Gaussian mixture generation: The E�ect of the Weighting CoeÆcient
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Figure 1.9: Intersymbol Interference-I: Monte Carlo Evaluation
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Figure 1.10: Intersymbol Interference-II: Measurement Noise Pro�le
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Figure 1.12: Intersymbol Interference-II: Monte Carlo Evaluation
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Figure 1.13: Function Approximation via RBF Nets: Initial Placement of the Gaussian Terms
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Figure 1.14: Function Approximation via RBF Nets: Final Placement of the Gaussian Terms
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