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Face Recognition Using LDA-Based Algorithms

Juwei Lu, Kostantinos N. Plataniotis, and Anastasios N. Venetsanopoulos

Abstract—tow-dimensional feature representation with en- problem is to introduce weighting functions into LDA. Object
hanced discriminatory power is of paramount importance to face classes that are closer together in the output space, and thus can
recognition (FR) systems. Most of traditional linear discriminant potentially result in misclassification, should be more heavily
analysis (LDA)-based methods suffer from the disadvantage that . . . L
their optimality criteria are not directly related to the classifi- yve|ght§d In th-e Input SPace- This |de§1 has been .furtherlexttlended
cation ability of the obtained feature representation. Moreover, N [7] with the introduction of the fractional-step linear discrim-
their classification accuracy is affected by the “small sample size” inant analysis algorithm (F-LDA), where the dimensionality re-
(SSS) problem which is often encountered in FR tasks. In this duction is implemented in a few small fractional steps allowing
short paper, we propose a new algorithm that deals with both of ¢, the relevant distances to be more accurately weighted. Al-

the shortcomings in an efficient and cost effective manner. The .
proposed here method is compared, in terms of classification though the method has been successfully tested on low-dimen-

accuracy, to other commonly used FR methods on two face Sional patterns whose dimensionalityis< 5, it cannot be di-
databases. Results indicate that the performance of the proposed rectly applied to high-dimensional patterns, such as those face
method is ove_rall superior_ to those of traditional FR approaches, images used in this paper [it should be noted at this point that
such as the Eigenfaces, Fisherfaces, and D-LDA methods. a typical image pattern of size (112 92) (Fig. 2) results to
Index Terms—Direct LDA, Eigenfaces, face recognition, Fish- a vector of dimensiomD = 10304], due to two factors: 1)
erfaces, fractional-step LDA, linear discriminant analysis (LDA), the computational difficulty of the eigen-decomposition of ma-
principle component analysis (PCA). trices in the high-dimensional image space; 2) the degenerated
scatter matrices caused by the so-called “small sample size”
|. INTRODUCTION (SSS) problem, which widely exists in the FR tasks where the
EATURE selection for face representation is one of centrn tmhl;esra(:rf];rlzlsnl[z?_?g]linples 's smaller than the dimensionality

ISSues to face recognition (FR) systems. Among VanouSThe traditional solution to the SSS problem requires the in-
solutions to the problem (see [1], [2] for a survey), the MOZbrporation of a PCA step into the LDA framework. In this

Sl:]chssful selelzms to be ;[jr_\osel appegrance-based approagiitpaach, PCA is used as a preprocessing step for dimension-
Wf |fc gerl;graty opderate lrectthy on images tor ag_pearanc reduction so as to discard the null space of the within-class
ol face objects and process the Images as two-timensIol@liar matrix of the training data set. Then LDA is performed
(2-D) h.OI'St'C. patterns, to av0|c_i dificulties associated W'tlﬂw the lower dimensional PCA subspace [4]. However, it has
Ijhree-c.ilmegsm;nfil .(3|'D) modeling, anld §ha£ngr la;?,maﬁléen shown that the discarded null space may contain signif-
dgte9t|qn [2]. rllnmp eLc[c))Amponent ana yS|sf (I I) an d'nfe?r,rant discriminatory information [5], [6]. To prevent this from
|scr|m|nanF analysis ( ) are tW_O powertu tools used fof,, pening, solutions without a separate PCA step, called direct
data reduction and feature extraction in the appe_arance-b (D-LDA) methods have been presented recently [5], [6]. In
approaches. Two state-of-the-art FR methods, Eigenfaces jgl | pa framework, data are processed directly in the orig-

and Fisherfaces [4], built on the two techniques, respective Hal high-dimensional input space avoiding the loss of signifi-

havg been proved to be very successful. . cant discriminatory information due to the PCA preprocessing
It is generally believed that, when it comes to solving protg—te

lems of pattern classification, LDA-based algorithms outper.- In this paper, we introduce a new feature representation

form PCA-based ones, since the former optimizes the IOW'q'h'ethod for FR tasks. The method combines the strengths of

mensional representation of the objects with focus on the most | bA and F-LDA approaches, while at the same time
discriminant feature extraction while the latter achieves simp ercomes their shortcomings and Ii’mitations In the proposed

object reconstrugt.ion [4]_[6].' However, the classification pe'ffamework, hereafter DF-LDA, we first lower the dimension-
formance of traditional LDA is often degraded by the fact th tIity of the original input space by introducing a new variant

their separability criteria are not directly related to their cla%-f D-LDA that results in a low-dimensional SSS-free subspace
sification accuracy in the output space [7]. A solution to tI”'\‘/?/here the most discriminatory features are preserved. The
variant of D-LDA developed here utilizes a modified Fisher’s
Manuscript received January 15, 2001; revised April 16, 2002. criterion to avoid a problem resulting from the wage of the
The authors are with Multimedia Laboratory, Edward S. Rogers, Sr. Depaglarg eigenvalues of the within-class scatter matrix as possible
ment of Electrical and Computer Engineering, University of Toronto, Torontca. . in 161. Al ighti f . . d di
ON M5S 3G4, Canada (e-mail: kostas@dsp.toronto.edu). ivisors in [6]. Also, a weighting function is introduced into
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step can be applied to carefully reorient the SSS-free subspéte- 40 in the ORL database, resulting in rd8lgTw) = 39.
resulting in a set of optimal discriminant features for facgl’ can be easily found by solving eigenvectors of a {389)

representation. matrix rather than the original (10 36410 304) matrix through
an algebraic transformation [3], [6]. Thénl’ N B) can be ob-
[I. DIRECT FRACTIONAL-STEP LDA (DF-LDA) tained by solving the null space of projectionSaf; Ty into A’,

ﬁﬁh”e the projection is a small matrix of size (3939).
Based on the analysis given above, it can be known that the
(?ost significant discriminant information exist in the intersec-
y — e .
length N(= T, x I), i.e..z; € RN belonging to one of’ tion subspaceA er),whlch is usually low d|menS|.on.aI so that
c : . ; N it becomes possible to further apply some sophisticated tech-
classeqdZ;}i.,, where(I,, x I,) is the image size arld™ de- . )
¢ . SOV . nigues, such as the rotation strategy of the LDA subspace used
notes aV-dimensional real space, the objective is to find a trans- . X 27
. TR . - In F-LDA, to derive the optimal discriminant features from the
formation, based on optimization of certain separability cri- )
. i o intersection subspace.
teria, to produce a representatipn= ¢(z;), wherey, € R
with M < N. The representatiop; should enhance the sepag \/griant of D-LDA

rability of the different face objects under consideration.

The problem of low-dimensional feature representation in
systems can be stated as follows. Given a sdt thining face
images{z;}% |, each of which is represented as a vector

The maximization process in (1) is not directly linked to the
A. Where are the Optimal Discriminant Features? classification error which is the criterion of performance used
to measure the success of the FR procedure. Modified versions

Let Srw andSwrr denote the between- and within-classy; 1 athod. such as the F-LDA approach, use a weighting

scatter matrices ofthetrair_wing image set, respec_tively. LDA'”'?ﬁnction in the input space, to penalize those classes that are
approaches such as the Flshe_rfgce method' [4]find a set of b%?é’cée and can potentially lead to misclassifications in the output
vectors, denoted by that maximizes the ratio betwe&sw

d4s space. Thus, the weighted between-class scatter matrix can be
andSwra expressed as:

(Y7 Sprw )|

|(PTSwra¥)| @)

C

¥ =arg iy Sprw = Z bidh; ()

Assuming thaBw g is nonsingular, the basis vectobscor- =1
respond to the firsd/ eigenvectors with the largest eigenvalueghere¢; = (L;/L)'/? Zle (w(di;)Y?(z; — 7;), Z; is the
of (SyvruSeTw). The M-dimensional representation is thermean of clas&;, L; is the number of elements %, andd;; =
obtained by projecting the original face images onto the sulz; — z,|| is the Euclidean distance between the means of class
space spanned by thid eigenvectors. However, a degeneratefland clasg. The weighting functionu(d;;) is a monotonically
Swrs in (1) may be generated due to the SSS problem widedgcreasing function of the distandg. The only constraint is
existing in most FR tasks. It was noted in the introduction thgdat the weight should drop faster than the Euclidean distance
a possible solution is to apply a PCA step in order to remoy@tween the means of classind classj with the authors in
the null space o8y rn prior to the maximization in (1). Never- [7] recommending weighting functions of the foran(d;;) =
theless, it recently has been shown that the null spaBevafy  (d;;)=%" withp = 2, 3, .. ..
may contain significant discriminatory information [5], [6]. AS  Most LDA based algorithms including Fisherfaces [4] and
a consequence, some of significant discriminatory informatian-L DA [6] utilize the conventional Fisher’s criterion denoted
may be lost due to this preprocessing PCA step. by (1). In this work we propose the utilization of a variant of the

The basic premise of the D-LDA methods that attempt teonventional metric. The proposed metric can be expressed as
solve the SSS problem without a PCA step is, that the null spae#ows:
of Swry contains significant discriminant information if the R
projection of Sgrw is not zero in that direction, and that no ‘(‘I’TSBTW‘I’)‘
significant information will be lost if the null space 8frw is V= arg max 1(UTSror )| ®3)
discarded. Assuming thad and B represent the null space of
Sprw andSwrh, while A’ = RN — AandB’ = RN — B whereStor = Swrn +§BTW, andéBTw is the weighted be-
are the complement spaces.dfand B, respectively, the op- tween-class scatter matrix defined in (2). This modified Fisher’s
timal discriminant subspace sought by D-LDA is the intersectiterion can be proven to be equivalent to the conventional one
tion spacd.A’ N B). The method in [6] first diagonalizeéssw by introducing the analysis of [11] where it was shown that in
to find .A’ when seek the solution of (1), while [5] diagonalize®" Vz € RY, if f(x) > 0, g(x) > 0 and f(z) + g(x) > 0,
Swrr to find B. Although it appears that the two methods arand b (z) = f(x)/g(x), ha(z) = f(x)/(f(z) + g(x)), the
not significantly different, it may be intractable to calculd#e function h,(z) has the maximum (including positive infinity)
when the size o8y is large, which is the case in most FR apat pointzg € RY if f ho(z) has the maximum at point.
plications. For example, a typical face pattern of (:192) re- For the reasons explained in Section II-A, we start by solving
sults toSwry andSgTw matrices with dimensionality (10 304 the eigenvalue problem @grw. It is intractable to directly
x 10304). Fortunately, the rank &gTw is determined by compute eigenvectors & rw Which is a large sizéN x N)
rankSgrw) = min(N, C — 1), with C the number of image matrix. Fortunately, the first: (<C — 1) most significant eigen-
classes, which is usually a small value in most of FR tasks, e.xgectors of Sgrw, Which correspond to nonzero eigenvalues,
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L

Input: A set of training face images {z;};_,, each of which is represented as a
N-dimensional vector.
Output: A low-dimensional representation y of z with enhanced
discriminatory power, after a transformation y = ¢(z).
Algorithm:
Step 1. Calculate those eigenvectors of ®f ®, with non-zero eigenvalues:
Enm =1 ...en], where m < C — 1 and ®, is from Sprw = ®,87.
Step 2. Calculate the first m most significant eigenvectors and their
corresponding eigenvalues of S grw by V=®,E,, and A, = V7§ BTw V.
Step 3. Let U= VA, 2 Calculate eigenvectors of UTSrorU, P.
Step 4. Optionally discard those eigenvectors in P with the largest eigenvalues.
Let Py and A, be the M’'(< m) selected eigenvectors and their corresponding

eigenvalues.
L

i=1

T = UPA3"2, and have {m}f=1, where x; = I'Tz;.

Step 5. Map all face images {z;};_, to the M’-dimensional subspace spanned by

Step 6. Further reduce the dimensionality of x; from M’ to M by performing a
F-LDA on {x;}-,, and let W (size M’ x M) be the bases of the output space.
Step 7. The optimal discriminant feature representation of z can be obtained
by y = ¢(z) = (TW)"z.

Fig. 1. Pseudocode for the computation of the DF-LDA algorithm.

can be indirectly derived from the eigenvectors of the matrtkis point that the D-LDA method of [6] uses the conventional
(®F'®y) with size(C x C), where®, = [¢1 - - - ¢.] [3]. Let \;  Fisher’s criterion of (1) witlStor replaced bySyru. How-
ande; be theith eigenvalue and its corresponding eigenvectever, since the subspace spanned'lmpntains the intersection
of (& ®,),i = 1---C, sorted indecreasingeigenvalue order. space(A’ N B), it is possible that there exist zero eigenvalues
Since(®,®] ) (Pre;) = \i(Pye;), vi = Pye; isthe eigenvector in A,,. To prevent this from happening, a heuristic threshold
of Sprw. was introduced in [6]. A small threshold valuevas set and
To remove the null space &grw, the firstm (£C —1) any value below was adjusted te. Obviously, performance
eigenvectors:V. = [v;---v,,] = ®,E,, whose cor- heavily depends on the proper choice of the value for the artifi-
responding eigenvalues are greater than 0, are useid)threshold:;, which is done in a heuristic manner [6]. Unlike
where E,, = [e;---e,]. It is not difficult to see that the method in [6], due to the modified Fisher’s criterion of (3),
VTSprwV = Ay, with A, = diagiA2---A2], a(m x m) di- the nonsingularity of\,, = Q”StorQ can be guaranteed by
agonal matrix. LeU = VA; /. ProjectingSgrw andStor  the following lemma.
into the subspace spanned by we haveUTSgrwU = 1 Lemma 1: SupposeB is a real matrix of sizé N x N). Fur-
andU”S1o1U. Then, we diagonaliz& " Sto1U which is a thermore, let us assume that it can be represent®l-asb o’
tractable matrix with sizém x m). Letp; be theith eigenvector Where® is a real matrix of sizé N x M). Then, the matrix
of UTSTOTU- wherei = 1---m, sorted inincreasingorder (I + B) is positive definite, i.e.J + B > 0, wherel is the
according to corresponding eigenvaluésin the set of ordered (IV x N) identity matrix.
eigenvectors, those that correspond to the smallest eigenvalues Proof: SinceB” = B, I + B is a real symmetric matrix.
maximize the ratio in (1) and they should be considered as thét= be anyN x 1 nonzero real vector, we havé (I + B)z =
most discriminatory features. We can discard the eigenvectarsz + 7 Bz = o7z + (®Tz)T (®Tz) > 0. According to [12],
with the largest eigenvalues, and denote Mig( <m) selected the matrix! + B that satisfies the above condition is positive

eigenvectors aB = [p; - - - par/]. Defining a matrixQ = UP,  definite, i.e../ + B > 0. |
we can obtaiQ” StorQ = A, with A, = diag\; - - X,.], Similar to Sgrw, Swru can be expressed &yru =
a(M’ x M") diagonal matrix. ®,®7, and thenU" SywryU = (U'®,)(UT®,,)". Since

Based on the derivation presented above, a set of optirﬂéTSBT_wU = Land(UTSwyU) is real symmetric it can
discriminant feature basis vectors can be derived thrdugh be easily seen thalJ"S1orU) is positive definite, and thus
QA 2. To facilitate comparison, it should be mentioned atw = Q"StoTQ is nonsingular.



198

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

4000 12
o 24 0%%
00 7 4 10:) & . ’% 2 eO@ooo [e]
2000 L 8 ¥ )
% Ay i 20 ",
1000 o % 6 ° oo 18 :_#li +
+ - v‘%
0 *%0 % 4 s . 16F N %’3
1000 { %% @8 2% 14 e 78
+
2000 + x 12 @
e, OO 0 & 2
‘o X X
3000 2t * * o 12 .
4
10000 5000 0 5000 0 25 0 5 0 10 5 0

@ (b) ©

Fig. 3. Distribution of 170 face images of five subjects (classes) randomly selected from the UMIST database in (a) PCA-based subspace, (beD-LDA-bas
subspace, and (c) DF-LDA-based subspace.

C. Rotation and Reorientation of the D-LDA Subspace in a realistic application involving large dimensionality spaces.

Through the enhanced D-LDA step discussed above, a |0W3is becomes possible due to the integrated structure of the
dimensional SSS-free subspace spanneH bgs been derived DF-LDA algorithm, the pseudocode implementation of which

without losing the most important, for discrimination purposeg,anhbe f;und ifn Eig. ; . fth b
information. In this subspac8ro is nonsingular and has been T ee _eCt oft € above rotation strat_egy of the D'L.DA sub-
whitened due td'”StorT = I. Thus, an F-LDA step can be SPace is |Ilustrateq in Fig. 3, where the first two mostS|gn|f|qant
safely applied to further reduce the dimensionality frdf to features OT each image extracted by PCA, D'LI,DA (the variant
the required)/ now. pr_oposed in Section II-B) and DF—LF)A, respec_tlve_ly, are visu-
To this end, we firstly project the original face images intgl'zed' The PCA-based representation shown in Fig. 3(a) is op-

the M’-dimensional subspace, obtaining a representatjon timal in terms of image reconstruction, thereby provides some
I'Tyz wherei = 1.9 I ’Let S, be the between—classinSight on the original structure of image distribution, which
i =12, ..., L

scatter matrix offx; }=_,, andv,, be theM’th eigenvector of is highly complex and nonseparable. Although the separability
S; which corresponds to the smallest eigenvalueS gf This

of subjects is greatly improved in the D-LDA-based subspace,
eigenvector will be discarded when dimensionality is reduc gme c_:lasses still overlap as ~°’.*?°V_V” in Fig. 3(b). It can be seen
from M’ to (M’ — 1). A problem may be encountered durin rom Fig. 3(c) that the separability is further enhanced, and_dlf-
the dimensionality reduction procedure. If clasgasand Z; eren_t clas_ses tend to be equally spaced after a few fractional
are well separated in th&/’-dimensional input space, this will (reorientation) steps.
produce a very smalb(d;;). As a result, the two classes may
heavily overlap in th¢ M’ —1)-dimensional output space which
is orthogonal toy,, . To avoid the problem, a kind of “automatic Two popular face databases, the ORL [8] and the UMIST
gain control” is introduced to the weighting procedure in F-LDA13], are used to demonstrate the effectiveness of the proposed
[7], where dimensionality is reduced fromd’ to (M’ — 1) at DF-LDA framework. The ORL database contains 40 distinct
r > 1 fractional steps instead of one step directly. In each stggersons with ten images per person. The images are taken at
S, and its eigenvectors are recomputed based on the chandjfferent time instances, with varying lighting conditions, fa-
of w(d;;) in the output space, so that th&/’ — 1)-dimensional cial expressions and facial details (glasses/no glasses). All per-
subspace is reoriented and severe overlap between classes isdhe are in the upright, frontal position, with tolerance for some
output space is avoided;, will not be discarded untit itera- side movement. The UMIST repository is a multiview database,
tions are done. consisting of 575 images of 20 people, each covering a wide

It should be noted at this point that the approach of [7] haange of poses from profile to frontal views. Fig. 2 depicts some

only been applied in small dimensionality pattern spaces. $amples contained in the two databases, where each image is
the best of the author's knowledge the work reported hesealed into (112 92), resulting in an input dimensionality of
constitutes the first attempt to introduce fractional reorientatiod = 10 304.

I1l. EXPERIMENTAL RESULTS
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Fig. 4. Comparison of error rates obtained by the four FR methods as functions of the number of feature vectois(dhere —'* is used in DF-LDA for
the ORL,w(d) = d—8 for the UMIST, andr = 20 for both.

To start the FR experiments, each one of the two databases
is randomly partitioned into a training set and a test set Wiﬁ.]VERAGE PERCENTAGE OFERRORRATES OFDF-LDA OVER THAT OF OTHERS

TABLE |

no overlap beMeen the two. The pa}rtition of the ORL Qatabase Methods Figenfaces | Fisherfaces | D-LDA
is done following the recommendation of [14], [15] which call

for five images per person randomly chosen for training, and the Eort 74.18% 38.51% 80.03%
other five for testing. Thus, a training set of 200 images and a test Eumist 26.75% 47.68% 79.6%
set with 200 images are created. For the UMIST database, eight (¢, + £,mie)/2 [ 50.47% 43.1% 79.82%

images per person are randomly chosen to produce a training set
of 160 images. The remaining 415 images are used to form the
test set. In the following experiments, the figures of merit are
error rates averaged over five runs (four runs in [14] and thr@&the other three methods on both databasesat.end/; be
runs in [15]), each run being performed on such random paﬁ{lﬂe error rates ofthe.DF—LDA and one of the other three methods
tions in the two databases. It is worthy to mention here that bdsPectively, where is the number of feature vectors. We can
experimental setups introduce SSS conditions since the num@@iain the average percentage of the error rate of DF-LDA over
of training samples are in both cases much smaller than fhét of the other meth0d152 W1 = >_;25 (i/ ;) for the ORL
dimensionality of the input space. Also, we do have observé@tabase anflymisc = >°;-5 (a:/ ;) for the UMIST database.
some partition cases, where zero eigenvalues occurteg s The results summarized in Table | indicate that the average error
discussed in Section 1I-B. In these cases, in contrast with tii€ of DF-LDA is approximately 50.5%, 43% and 80% of that
failure of D-LDA [6], DF-LDA was still able to perform well. 0f Eigenface, Fisherface and D-LDA, respectively. It is of in-
In addition to D-LDA [6], DF-LDA is compared against two terest to observe the performance of Eigenfaces vs that of Fish-
popular feature selection methods, namely: Eigenfaces [3] aidaces. Not surprisingly, Eigenfaces outperform Fisherfaces in
Fisherfaces [4]. For each of the four methods, the FR procediffé ORL database, because Fisherfaces may lost significant dis-
consists of 1) a feature extraction step where four kinds of fegfiminant information due to the intermediate PCA step. The
ture representation of each training or test sample are extracitgilar observation has also been found in [10], [16].
by projecting the sample onto the four feature spaces generall he weighting functionw(d;;) influences the performance
ized by Eigenface, Fisherface, D-LDA, and DF-LDA, respe@f the DF-LDA method. For different feature extraction
tively, and 2) a classification step in which each feature repré&sks, appropriate values for the weighting exponent function
sentation obtained in the first step is fed into a simple nearé§ould be determined through experimentation using the
neighbor classifier. It should be noted at this point that, since tA¥ailable training set. However, it appears that there is a set
focus in this short paper is on feature extraction, a very simgé values for which good results can be obtained for a wide
classifier, namely nearest neighbor, is used in step 2). We antR0gde of applications. Following the recommendation in [7]
ipate that the classification accuracy of all four methods coe examine the performance of the DF-LDA method for
pared here will improve if a more sophisticated classifier is us&fdi;) € {d=*, d~°, d~'?, d~'°}. Results obtained through
instead of the nearest neighbor. However, such an experimerif@ utilization of these weighting functions are depicted in
beyond the scope of this short paper. Fig. 5 where error rates are plotted against the feature vectors
The error rate curves obtained for the four methods are sho@iected (output space dimensionality). The lowest error rate
in Fig. 4 as functions of the number of feature vectors. TH¥ the ORL database is approximately 4.0% and it is obtained
number of fractional steps used in DF-LDAsis= 20 and the Using a weighting function ofv(d) = d~'° and a set of
weighted function utilized iss(d) = d—8. From Fig. 4, itcanbe M = 22 feature basis vectors, a result comparable to the best
seen that the performance of DF-LDA is overall superior to thEgsults reported previously in the literatures [14], [15].
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Fig. 5. Error rates of DF-LDA as functions of the number of feature vectorsmith20 and different weighting functions.
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