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Abstract

Increasingly large amount of multidimensional data are being generated on a daily
basis in many applications. This leads to a strong demand for learning algorithms
to extract useful information from these massive data. This paper surveys the field
of multilinear subspace learning (MSL) for dimensionality reduction of multidimen-
sional data directly from their tensorial representations. It discusses the central
issues of MSL, including establishing the foundations of the field via multilinear
projections, formulating a unifying MSL framework for systematic treatment of the
problem, examining the algorithmic aspects of typical MSL solutions, and catego-
rizing both unsupervised and supervised MSL algorithms into taxonomies. Lastly,
the paper summarizes a wide range of MSL applications and concludes with per-
spectives on future research directions.
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1 Introduction

With the advances in data collection and storage capabilities, massive multidi-
mensional data are being generated on a daily basis in a wide range of emerg-
ing applications, and learning algorithms for knowledge extraction from these
data are becoming more and more important. Two-dimensional (2D) data in-
clude gray-level images in computer vision and pattern recognition [1–4], mul-
tichannel EEG signals in biomedical engineering [5, 6], and gene expression
data in bioinformatics [7]. Three-dimensional (3D) data include 3D objects in
generic object recognition [8], hyperspectral cube in remote sensing [9], and
gray-level video sequences in activity or gesture recognition for surveillance or
human-computer interaction (HCI) [10,11]. There are also many multidimen-
sional signals in medical image analysis [12], content-based retrieval [1, 13],
and space-time super-resolution [14] for digital cameras with limited spatial
and temporal resolution. In addition, many streaming data and mining data
are frequently organized as third-order tensors [15–17]. Data in environmen-
tal sensor monitoring are often organized in three modes of time, location,
and type [17]. Data in social network analysis are usually organized in three
modes of time, author, and keywords [17]. Data in network forensics are often
organized in three modes of time, source, and destination, and data in web
graph mining are commonly organized in three modes of source, destination,
and text [15].

These massive multidimensional data are usually very high-dimensional, with
a large amount of redundancy, and only occupying a subspace of the input
space [18]. Thus, for feature extraction, dimensionality reduction is frequently
employed to map high-dimensional data to a low-dimensional space while re-
taining as much information as possible [18,19]. However, this is a challenging
problem due to the large variability and complex pattern distribution of the
input data, and the limited number of samples available for training in prac-
tice [20]. Linear subspace learning (LSL) algorithms are traditional dimension-
ality reduction techniques that represent input data as vectors and solve for
an optimal linear mapping to a lower dimensional space. Unfortunately, they
often become inadequate when dealing with massive multidimensional data.
They result in very high-dimensional vectors, lead to the estimation of a large
number of parameters, and also break the natural structure and correlation
in the original data [2, 21, 22].

Due to the challenges in emerging applications above, there has been a press-
ing need for more effective dimensionality reduction schemes for massive mul-
tidimensional data. Recently, interests have grown in multilinear subspace
learning (MSL) [2, 21–26], a novel approach to dimensionality reduction of
multidimensional data where the input data are represented in their natural
multidimensional form as tensors. Figure 1 shows two examples of tensor data
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representations for a face image and a silhouette sequence. MSL has the po-
tential to learn more compact and useful representations than LSL [21,27] and
it is expected to have potential future impact in both developing new MSL
algorithms and solving problems in applications involving massive multidi-
mensional data. The research on MSL has gradually progressed from heuristic
exploration to systematic investigation [28] and both unsupervised and super-
vised MSL algorithms have been proposed in the past a few years [2, 21–26].

It should be noted that MSL belongs to tensor data analysis (or tensor-based
computation and modeling), which is more general and has a much wider
scope. Multilinear algebra, the basis of tensor data analysis, has been studied
in mathematics for several decades [29–31] and there are a number of recent
survey papers summarizing recent developments in tensor data analysis. E.g.,
Qi et al. review numerical multilinear algebra and its applications in [32]. Muti
and Bourennane [33] survey new filtering methods for multicomponent data
modelled as tensors in noise reduction for color images and multicomponent
seismic data. Acar and Yener [34] surveys unsupervised multiway data anal-
ysis for discovering structures in higher-order data sets in applications such
as chemistry, neuroscience, and social network analysis. Kolda and Bader [35]
provide an overview of higher-order tensor decompositions and their appli-
cations in psychometrics, chemometrics, signal processing, etc. These survey
papers primarily focus on unsupervised tensor data analysis through factor
decomposition. In addition, Zafeiriou [36] provides an overview of both unsu-
pervised and supervised nonnegative tensor factorization (NTF) [37, 38] with
NTF algorithms and their applications in visual representation and recogni-
tion discussed.

In contrast, this survey paper focuses on a systematic introduction to the field
of MSL. To the best knowledge of the authors, this is the first unifying survey of
both unsupervised and supervised MSL algorithms. For detailed introduction
and review on multilinear algebra, multilinear decomposition, and NTF, the

(a) A 2D face. (b) A 3D silhouette sequence.

Fig. 1. Illustration of real-world data in their natural tensor representation.
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Table 1
List of Important Acronyms.

Acronym Description

EMP Elementary Multilinear Projection

LDA Linear Discriminant Analsysis

LSL Linear Subspace Learning

MSL Multilinear Subspace Learning

PCA Principal Component Analysis

SSS Small Sample Size

TTP Tensor-to-Tensor Projection

TVP Tensor-to-Vector Projection

VVP Vector-to-Vector Projection

readers should go to [30–36,39,40] while this paper serves as a complement to
these surveys. In the rest of this paper, Section 2 first introduces notations and
basic multilinear algebra, and then addresses multilinear projections for direct
mapping from high-dimensional tensorial representations to low-dimensional
vectorial or tensorial representations. This section also provides insights to the
relationships among different projections. Section 3 formulates a unifying MSL
framework for systematic treatment of the MSL problem. A typical approach
to solve MSL is presented and several algorithmic issues are examined in this
section. Under the MSL framework, existing MSL algorithms are reviewed,
analyzed and categorized into taxonomies in Section 4. Finally, MSL applica-
tions are summarized in Section 5 and future research topics are covered in
Section 6. For easy reference, Table 1 lists several important acronyms used
in this paper.

2 Fundamentals and Multilinear Projections

This section first reviews the notations and some basic multilinear opera-
tions [30, 31, 41] that are necessary in defining the MSL problem. The im-
portant concepts of multilinear projections are then introduced, including el-
ementary multilinear projection (EMP), tensor-to-vector projection (TVP),
and tensor-to-tensor projection (TTP), and their relationships are explored.
Table 2 summarizes the important symbols used in this paper for quick refer-
ence.
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Table 2
List of Important Notations

Notation Description

In the (input) dimensionality of the n-mode

M the number of training samples

N the order of a tensor object, the number of indices/modes

P the number of EMPs in a TVP

Pn the n-mode dimensionality in the projected space of a TTP

U(n) the nth projection matrix

u
(n)T

p the n-mode projection of the pth EMP

vec(·) the vectorized representation

X an input tensor sample

Y the projection of X on {U(n)}

y(p) the projection of X on {u(n)T

p , n = 1, ..., N}

‖ · ‖F the Frobenius norm

2.1 Notations

This paper follows the notation conventions in multilinear algebra, pattern
recognition, and adaptive learning literature [30, 31, 41]. Vectors are denoted
by lowercase boldface letters, e.g., x; matrices by uppercase boldface, e.g.,
X; and tensors by calligraphic letters, e.g., X . Their elements are denoted
with indices in parentheses. Indices are denoted by lowercase letters, spanning
the range from 1 to the uppercase letter of the index, e.g., p = 1, 2, ..., P . In
addressing part of a vector/matrix/tensor, “:” denotes the full range of the
respective index and n1 : n2 denotes indices ranging from n1 to n2. In this
paper, only real-valued data are considered.

2.2 Basic Multilinear Algebra

As in [30, 31, 41], an Nth-order tensor is denoted as: A ∈ RI1×I2×...×IN , which
is addressed by N indices in, n = 1, ..., N , with each in addressing the n-mode
of A. The n-mode product of a tensor A by a matrix U ∈ RJn×In , denoted as
A×n U, is a tensor with entries [30]:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN) =
∑
in

A(i1, ..., iN) ·U(jn, in). (1)
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(a) (b) (c) (d)

Fig. 2. Visual illustration of n-mode vectors: (a) a tensor A ∈ R8×6×4, (b) the
1-mode vectors, (c) the 2-mode vectors, and (d) the 3-mode vectors.

Fig. 3. Visual illustration of 1-mode unfolding of a third-order tensor.

The scalar product of two tensors A,B ∈ RI1×I2×...×IN is defined as:

< A,B >=
∑
i1

∑
i2

...
∑
iN

A(i1, i2, ..., iN) · B(i1, i2, ..., iN) (2)

and the Frobenius norm of A is defined as [30]

‖ A ‖F=
√
< A,A >. (3)

The “n-mode vectors” of A are defined as the In-dimensional vectors obtained
from A by varying its index in while keeping all the other indices fixed. A
rank-one tensor A equals to the outer product of N vectors:

A = u(1) ◦ u(2) ◦ ... ◦ u(N), (4)

i.e.,
A(i1, i2, ..., iN) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN) (5)

for all values of indices. Unfolding A along the n-mode is denoted as

A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ), (6)

where the column vectors of A(n) are the n-mode vectors of A. Figures 2(b),
2(c), and 2(d) illustrate the 1-mode, 2-mode, and 3-mode vectors of a tensor
A in Fig. 2(a), respectively. Figure 3 shows the 1-mode unfolding of the tensor
A in Fig. 2(a).
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The distance between tensors A and B can be measured by the Frobenius
norm [2]:

dist(A,B) =‖ A − B ‖F . (7)

Although this is a tensor-based measure, it is equivalent to a distance measure
of corresponding vector representations, as proven in [42]. Let vec(A) be the
vector representation (vectorization) of A, then

dist(A,B) =‖ vec(A)− vec(B) ‖2 . (8)

This implies that the distance between two tensors as defined in (7) equals to
the Euclidean distance between their vectorized representations.

2.3 Multilinear Projections

A multilinear subspace is defined through a multilinear projection that maps
the input tensor data from one space to another (lower-dimensional) space [43].
Therefore, multilinear projection is a key concept in MSL. There are three
basic multilinear projections based on the input and output of a projection:
the traditional vector-to-vector projection (VVP), TTP, and TVP.

2.3.1 Vector-to-Vector Projection

Linear projection is a standard transformation used widely in various appli-
cations [44, 45]. A linear projection takes a vector x ∈ RI and projects it to
another vector y ∈ RP using a projection matrix U ∈ RI×P :

y = UTx = x×1 UT . (9)

In typical pattern recognition applications, P << I. Therefore, linear projec-
tion is a VVP. When the input to VVP is an Nth-order tensor X with N > 1,
it needs to be reshaped into a vector as x = vec(X ) before projection. Figure
4(a) illustrates the VVP of a tensor object A. Besides the traditional linear
projection, there are alternative ways to project a tensor to a low-dimensional
space, as shown in Fig. 4(b), which will be discussed below.

2.3.2 Tensor-to-Tensor Projection

A tensor can be projected to another tensor of the same order, named as
TTP. As an Nth-order tensor X resides in the tensor space RI1

⊗RI2 ...
⊗RIN

[30,43], the tensor space can be viewed as the Kronecker product of N vector
(linear) spaces RI1 , RI2 , ..., RIN [43]. To project a tensor X in a tensor space
RI1

⊗RI2 ...
⊗RIN to another tensor Y in a lower-dimensional tensor space
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RP1
⊗RP2 ...

⊗RPN , where Pn ≤ In for all n, N projection matrices {U(n) ∈
RIn×Pn , n = 1, ..., N} are used so that [31]

Y = X ×1 U(1)T ×2 U(2)T ...×N U(N)T . (10)

It can be done in N steps, where in the nth step, each n-mode vector is
projected to a lower dimension Pn by U(n), as shown in Fig. 5(a). Figure 5(b)
demonstrates how to project a tensor in 1-mode using a 1-mode projection
matrix, which projects each 1-mode vector of the original tensor to a low-
dimensional vector.

2.3.3 Tensor-to-Vector Projection

The third multilinear projection is TVP, which is referred to as the rank-one
projections in some works [46–48]. It projects a tensor to a vector, which can
be viewed as multiple projections from a tensor to a scalar, as illustrated in
Fig. 6(a), where the TVP of a tensor A ∈ R8×6×4 to a P × 1 vector consists
of P projections from A to a scalar. Thus, the projection from a tensor to a

(a) Vector-to-vector (linear) projection.

(b) Alternative ways to project a tensor.

Fig. 4. Ways to project a tensor to a low-dimensional space.
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(a) Projection of a tensor in all modes.

(b) Projection of a tensor in one mode.

Fig. 5. Illustration of tensor-to-tensor projection.

scalar is considered first.

A tensor X ∈ RI1×I2×...×IN can be projected to a point y through N unit
projection vectors {u(1)T , u(2)T , ..., u(N)T } as:

y = X ×1 u(1)T ×2 u(2)T ...×N u(N)T , ‖ u(n) ‖= 1 for n = 1, ..., N, (11)

where ‖ · ‖ is the Euclidean norm for vectors. It can be written in the scalar
product (2) as:

y =< X ,u(1) ◦ u(2) ◦ ... ◦ u(N) > . (12)

Denote U = u(1)◦u(2)◦...◦u(N), then y =< X ,U >. This multilinear projection
{u(1)T ,u(2)T , ...,u(N)T } is named as an EMP, the projection of a tensor on a
single line (resulting a scalar), with one projection vector in each mode. Figure
6(b) illustrates an EMP of a tensor.

Thus, the TVP of a tensor object X to a vector y ∈ RP in a P -dimensional
vector space consists of P EMPs {u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p = 1, ..., P , which

can be written concisely as {u(n)T

p , n = 1, ..., N}Pp=1. The TVP from X to y is
then

y = X ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1, (13)
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(a) Tensor-to-vector projection.

(b) Elementary multilinear projection.

Fig. 6. Illustration of tensor-to-vector projection through elementary multilinear
projection (EMP).

where the pth component of y is obtained from the pth EMP as:

y(p) = X ×1 u(1)T

p ×2 u(2)T

p ...×N u(N)T

p . (14)

2.4 Relationships between Multilinear Projections

The following examines the relationships between the three basic multilinear
projections. It is easy to verify that VVP is the special case of TTP and
TVP with N = 1, and EMP is a degenerated version of TTP with Pn = 1
for all n. On the other hand, each projected element in TTP can be viewed
as the projection of an EMP formed by taking one column from each of the
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projection matrices. Thus, the projected tensor in TTP is effectively obtained
through

∏N
n=1 Pn interdependent EMPs, while in TVP, the P EMPs obtained

sequentially are not interdependent in general.

Furthermore, the projection using an EMP {u(1)T ,u(2)T , ...,u(N)T } can be writ-
ten as [28]

y =< X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ). (15)

Thus, an EMP is equivalent to a linear projection of vec(X ), the vectorized
representation of X , on a vector vec(U). Since U = u(1) ◦ u(2) ◦ ... ◦ u(N), (15)
indicates that EMP is equivalent to a linear projection with constraint on the
projection vector such that it is the vectorized representation of a rank-one
tensor.

The number of parameters to be estimated in a particular projection is an im-
portant concern in practice. Compared with a projection vector of size I×1 in
VVP specified by I parameters (I =

∏N
n=1 In for an Nth-order tensor), an EMP

in TVP can be specified by
∑N

n=1 In parameters. Hence, to project a tensor of
size

∏N
n=1 In to a vector of size P × 1, TVP needs to estimate only P ·∑N

n=1 In
parameters, while VVP needs to estimate P · ∏N

n=1 In parameters. The im-
plication in pattern recognition problem is that TVP has fewer parameters
to estimate while being more constrained on the solutions, and VVP has less
constraint on the solutions sought while having more parameters to estimate.
For TTP with the same amount of dimensionality reduction

∏N
n=1 Pn = P ,∑N

n=1 Pn × In parameters need to be estimated. Table 3 contrasts the number
of parameters to be estimated by the three projections for the same amount
of dimensionality reduction. From the table, it can be seen that the parame-
ter estimation problem in conventional VVP becomes extremely difficult for
higher-order tensors. This often leads to the small sample size (SSS) problem
in practice when there are limited number of training samples available.

Table 3
Number of parameters to be estimated by three multilinear projections.

Input Output VVP TVP TTP∏N
n=1 In P P ·∏N

n=1 In P ·∑N
n=1 In

∑N
n=1 Pn × In

10× 10 4 400 80 40 (Pn = 2)

100× 100 4 40,000 800 400 (Pn = 2)

100× 100× 100 8 8,000,000 2,400 600 (Pn = 2)∏4
n=1 100 16 1,600,000,000 6,400 800 (Pn = 2)
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3 The Multilinear Subspace Learning Framework

This section formulates a general MSL framework. It defines the MSL problem
in a similar way as LSL, as well as tensor and scalar scatter measures for opti-
mality criterion construction. It also outlines a typical solution and discusses
related issues.

3.1 Linear Subspace Learning

LSL algorithms [18,44] solve for a linear projection satisfying some optimality
criteria, given a set of training samples. The problem can be formulated as
follows.

Linear Subspace Learning: A set of M vectorial samples {x1, x2, ..., xM} is
available for learning, where each sample xm is an I×1 vector in a vector space
RI . The LSL objective is to find a linear transformation (projection) U ∈ RI×P

such that the projected samples (the extracted features) {ym = UTxm} satisfy
an optimality criterion, where ym ∈ RP×1 and P < I.

Among various LSL algorithms, principal component analysis (PCA) [19] and
linear discriminant analysis (LDA) [44] are two most widely used ones in a
broad range of applications [49, 50]. PCA is an unsupervised algorithm that
does not require labels for the training samples, while LDA is a supervised
method that makes use of class specific information. Other popular LSL al-
gorithms include independent component analysis (ICA) [51] and canonical
correlation analysis (CCA) [52].

3.2 Multilinear Subspace Learning

MSL is the multilinear extension of LSL. It solves for a multilinear projection
with some optimality criteria, given a set of training samples. This problem
can be formulated similarly as follows.

Multilinear Subspace Learning: A set of M Nth-order tensorial samples
{X1, X2, ..., XM} is available for learning, where each sample Xm is an I1×I2×
...× IN tensor in a tensor space RI1×I2×...×IN . The MSL objective is to find a
multilinear transformation (projection) such that the projected samples (the
extracted features) satisfy an optimality criterion, where the dimensionality
of the projected space is much lower than the original tensor space.
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Mathematically, the MSL problem can be written in a general form as

{U(n)} = arg max
{U(n)}

Φ
(
{U(n)}, {Xm}

)
(16)

or
{u(n)T

p }Pp=1 = arg max
{u(n)T

p }Pp=1

Φ
(
{u(n)T

p }Pp=1, {Xm}
)
, (17)

where Φ(·) denotes a criterion function to be maximized, or without loss of
generality, −Φ(·) is to be minimized. {U(n)}, {u(n)T

p }Pp=1, and {Xm} are more

compact forms of {U(n), n = 1, ..., N}, {u(n)T

p , n = 1, ..., N}Pp=1, and {Xm,m =
1, ...,M}, respectively.

Two key components for MSL are the multilinear projection employed and the
objective criterion to be optimized. The projection to be solved can be any of
the three types of basic multilinear projections discussed in Sec. 2.3. Thus, the
well-studied LSL can be viewed as a special case of MSL where the projection
to be solved is a VVP. Thus, the focus of this paper will be on MSL through
TTP and TVP. This general formulation of MSL is important for evaluating,
comparing, and further developing MSL solutions.

3.3 Scatter Measures for Multilinear Subspace Learning

In analogy to the definition of various scatters for vectorial features in LSL [44],
tensor-based and scalar-based scatters in MSL are defined here.

Definition 1 Let {Am,m = 1, ...,M} be a set of M tensor samples in RI1⊗RI2 ...
⊗RIN . The total scatter of these tensors is defined as:

ΨTA =
M∑

m=1

‖ Am − Ā ‖2F , (18)

where Ā is the mean tensor calculated as

Ā =
1

M

M∑
m=1

Am. (19)

The n-mode total scatter matrix of these samples is then defined as:

S
(n)
TA

=
M∑

m=1

(
Am(n) − Ā(n)

) (
Am(n) − Ā(n)

)T
, (20)

where Am(n) is the n-mode unfolded matrix of Am.

Definition 2 Let {Am,m = 1, ...,M} be a set of M tensor samples in RI1
⊗
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RI2 ...
⊗RIN . The between-class scatter and the within-class scatter of these

tensors are defined as:

ΨBA =
C∑
c=1

Mc ‖ Āc − Ā ‖2F , and ΨWA =
M∑

m=1

‖ Am − Ācm ‖2F , (21)

respectively, where C is the number of classes, Mc is the number of samples
for class c, cm is the class label for the mth sample Am, Ā is the mean tensor,
and the class mean tensor is

Āc =
1

Mc

∑
m,cm=c

Am. (22)

Next, the n-mode scatter matrices are defined accordingly.

Definition 3 The n-mode between-class scatter matrix of these samples is
defined as:

S
(n)
BA

=
C∑
c=1

Mc ·
(
Āc(n) − Ā(n)

) (
Āc(n) − Ā(n)

)T
, (23)

and the n-mode within-class scatter matrix of these samples is defined as:

S
(n)
WA

=
M∑

m=1

(
Am(n) − Ācm(n)

) (
Am(n) − Ācm(n)

)T
, (24)

where Āc(n) is the n-mode unfolded matrix of Āc.

The tensor scatters defined above are for MSL based on TTP. For MSL based
on TVP, scalar-based scatters are defined, which can be viewed as degenerated
versions of the vector-based or tensor-based scatters.

Definition 4 Let {am,m = 1, ...,M} be a set of M scalar samples. The total
scatter of these scalars is defined as:

STa =
M∑

m=1

(am − ā)2, (25)

where ā is the mean scalar calculated as

ā =
1

M

M∑
m=1

am. (26)

Definition 5 Let {am,m = 1, ...,M} be a set of M scalar samples. The
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between-class scatter of these scalars is defined as:

SBa =
C∑
c=1

Mc(āc − ā)2, (27)

and the within-class scatter of these scalars is defined as:

SWa =
M∑

m=1

(am − ācm)2, (28)

where

āc =
1

Mc

∑
m,cm=c

am. (29)

3.4 Typical Approach and Algorithmic Issues

While a linear projection (VVP) in LSL often has closed-form solutions, this
is not the case for TTP and TVP in MSL. Instead, these two tensor-based
projections have N sets of parameters to be solved, one in each mode, and
the solution to one set often depends on the other sets (except when N = 1,
the linear case), making their simultaneous estimation extremely difficult, if
not impossible. Therefore, a suboptimal, iterative procedure originated from
the alternating least square (ALS) algorithm [53–55] is usually employed to
solve the tensor-based projections by alternating between solving one set of
parameters (in one mode) at a time. Specifically, the parameters for each
mode are estimated in turn separately and are conditioned on the parameter
values for the other modes. At each step, by fixing the parameters in all the
modes but one mode, a new objective function depending only on the mode
left free to vary is optimized and this conditional subproblem is linear and
much simpler to solve through unfolding tensors to matrices. The parameter
estimations for each mode are obtained in this way sequentially and iteratively
until convergence. This process is described in Fig. 7(a) and also illustrated
in Fig. 7(b).

Consequently, the issues due to the iterative nature of the solution, such as ini-
tialization, the order of solving the projections, termination, and convergence,
need to be addressed. In addition, for MSL through TTP, a mechanism is of-
ten needed to determine the desired subspace dimensionality {P1, P2, ..., PN}.
This is because it is costly to exhaustively test the large number of possible
combinations of the N values, P1, P2, ..., PN , for a specific amount of dimen-
sionality reduction, especially for higher-order tensors. In contrast, the value
P is relatively easier to determine for MSL through TVP.

To end this section, Table 4 summarizes the key differences between MSL
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Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M}, the
desired tensor subspace dimensionality.

Output: The multilinear projection that maximizes an optimality crite-
rion in the projected space.

Algorithm:

Step 1 (Initialization): Initialize the multilinear projection.

Step 2 (Local optimization):

• For k = 1 : K
· For n = 1 : N

Solve for the n-mode projection as a linear problem obtained
through fixing projections in all the other modes and unfold-
ing tensors to matrices.

· If k = K or the algorithm converges, break and output the current
multilinear projection.

(a) The pseudo-code.

(b) Algorithm flow.

Fig. 7. Illustration of a typical multilinear subspace learning algorithm.

and LSL. In the table, massive data refers to data with its dimensionality
beyond the processing power of common computational hardwares when LSL
algorithms are used, such as high-resolution face images or standard gait sil-
houette sequences. A key difference between MSL and LSL is the number of
parameters to be estimated for the same dimensionality reduction problem,
as illustrated in Table 3. Consequently, as pointed out in [22], MSL is less
susceptible to the SSS problem and overfitting compared to LSL.
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Table 4
Linear versus multilinear subspace learning.

Comparison Linear subspace learning Multilinear subspace learning

Representation Reshape into vectors Natural tensorial representation

Structure Break natural structure Preserve natural structure

Parameter Estimate a large number of parameters Estimate fewer parameters

SSS problem More severe SSS problem Less SSS problem

Massive data Hardly applicable to massive data Able to handle massive data

Optimization Closed-form solution Suboptimal, iterative solution

4 Taxonomy of Multilinear Subspace Learning Algorithms

This section reviews several important MSL algorithms under the MSL frame-
work. Due to the fundamentality and importance of PCA and LDA, the focus
is on the multilinear extensions of these two classical linear algorithms. Figures
8 and 9 depict taxonomies for these algorithms, one for multilinear extensions
of PCA and the other for multilinear extensions of LDA, respectively, which
will be discussed in detail in the following. The historical basis of MSL will
also be described.

Fig. 8. A taxonomy of unsupervised multilinear subspace learning algorithms.
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4.1 Unsupervised Multilinear Subspace Learning Algorithms

The development of unsupervised MSL started with the treatment of images
directly as matrices rather than vectors.

4.1.1 Unsupervised MSL through TTP

A two-dimensional PCA (2DPCA) algorithm is proposed in [56]. This al-
gorithm solves for a linear transformation that projects an image to a low-
dimensional matrix while maximizing the variance measure. It works directly
on image matrices but there is only one linear transformation in the 2-mode.
Thus, the image data is projected in the 2-mode (the row mode) only while
the projection in the 1-mode (the column mode) is ignored, resulting in poor
dimensionality reduction. The projection can be viewed as a special case of
second-order TTP, where the 1-mode projection matrix is an identity matrix.

A more general algorithm named the generalized low rank approximation of
matrices (GLRAM) was introduced in [57], which takes into account the spa-
tial correlation of the image pixels within a localized neighborhood and applies
two linear transforms to both the left and right sides of input image matrices.
This algorithm solves for two linear transformations that project an image to
a low-dimensional matrix while minimizing the least-square (reconstruction)
error measure. Thus, projections in both modes are involved and the projec-
tion is TTP with N = 2. Better dimensionality reduction results than [56] are
obtained according to [57].

Although GLRAM exploits both modes for subspace learning, it is formulated
for matrices only. Later, the work in [58] presents tensor approximation meth-
ods for third-order tensors using slice projection, while the so-called concur-

Fig. 9. A taxonomy of supervised multilinear subspace learning algorithms.
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rent subspaces analysis (CSA) is formulated in [27] for general tensor objects
as a generalization of GLRAM for higher-order tensors. The CSA algorithm
solves for a TTP minimizing a reconstruction error metric, however, how to
determine the tensor subspace dimensionality is not addressed in this work.

Whereas GLRAM and CSA advanced unsupervised MSL, they are both for-
mulated with the objective of optimal reconstruction or approximation of ten-
sors. Therefore, they ignored an important centering step in unsupervised
subspace learning algorithms developed for recognition, such as the classical
PCA, where the data is centered first before obtaining the subspace projec-
tion. It should be pointed out that for the reconstruction or approximation
problem, centering is not essential, as the (sample) mean is the main focus
of attention [21]. However, in recognition applications where the solutions in-
volve eigenproblems, non-centering (in other words, an average different from
zero) can potentially affect the eigen-decomposition in each mode and lead to
a solution that captures the variation with respect to the origin rather than
capturing the true variation of the data (with respect to the data center) [21].

In contrast, the generalized PCA (GPCA) proposed in [1] is an extension of
PCA that works on matrices. GPCA is exactly the same as GLRAM except
that the projection takes the centered data rather than the original coordinate
as input. Nonetheless, this work is formulated only for matrices, and important
issues such as initialization and subspace dimensionality determination are not
studied in this work either.

The multilinear PCA (MPCA) algorithm proposed in [21] generalizes GPCA
to work for tensors of any order, where the objective is to find a TTP that
captures most of the original tensorial input variations (Definition 1). Fur-
thermore, methods for systematic subspace dimensionality determination are
proposed for the first time in the literature, in contrast to heuristic methods
in [27, 57]. With the introduction of a discriminative tensor feature selection
mechanism, MPCA is further combined with LDA for general tensor object
recognition in [21].

In [59], a TTP-based MSL algorithm named Bayesian tensor analysis (BTA)
is proposed to generalize the Bayesian PCA algorithm [60] and develop prob-
abilistic graphical models for tensors. BTA is able to determine the subspace
dimensionality automatically by setting a series of hyper parameters. As the
mean is subtracted from the input tensor in dimensionality reduction using
BTA, it can be considered as a probabilistic extension of MPCA as well. In [61],
two robust MPCA (RMPCA) algorithms are proposed, where iterative algo-
rithms are derived on the basis of Lagrange multipliers to deal with sample
outliers and intra-sample outliers. In [62], the non-negative MPCA (NMPCA)
extends MPCA to constrain the projection matrices to be non-negative. Fur-
thermore, NMPCA preserves the non-negativity of the original tensor samples,
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which is important when the underlying data factors have physical or psycho-
logical interpretation. The solution for NMPCA is developed by exploiting the
structure of the Grassmann manifold [62].

In addition, an incremental tensor analysis (ITA) framework is proposed in [17]
for summarizing higher-order data streams represented as tensors. The data
summary is obtained through TTP and is updated incrementally. Three vari-
ants of ITA are introduced in [17]: dynamic tensor analysis (DTA) that in-
crementally maintains covariance matrices for all modes and uses the leading
eigenvectors of covariance matrices as projection matrices [15], streaming ten-
sor analysis (STA) that directly updates the leading eigenvectors of covariance
matrices using the SPIRIT algorithm [63], and window-based tensor analysis
(WTA) that uses similar updates as DTA while performing alternating iter-
ation to further improve the results. The ITA framework focuses on approxi-
mation problem, hence, the objective is to minimize the least square error and
it can be considered as an incremental version of CSA for streaming data.

4.1.2 Unsupervised MSL through TVP

In comparison to the review above, there are much fewer unsupervised MSL
algorithms based on TVP. The tensor rank-one decomposition (TROD) al-
gorithm introduced in [64] is TVP-based and it is formulated only for image
matrices. This algorithm looks for a second-order TVP that projects an image
to a low-dimensional vector while minimizing a least-square (reconstruction)
error measure. Hence, the input data is not centered before learning. The solu-
tion of TROD relies on a heuristic procedure of successive residue calculation,
i.e., after obtaining the pth EMP, the input image is replaced by its residue.

None of the above unsupervised MSL algorithms takes into account the cor-
relations among features and shares an important property with PCA, i.e.,
zero-correlation among extracted features. It is well-known that PCA derives
uncorrelated features, which contain minimum redundancy and ensure linear
independence among features. Uncorrelated features can also greatly simplify
the subsequent classification task and they are highly desirable in recogni-
tion applications. An uncorrelated MPCA (UMPCA) algorithm is proposed
in [25], which extracts uncorrelated multilinear features through TVP while
capturing most of the variation in the original data input (Definition 4). The
UMPCA solution consists of sequential iterative steps for successive variance
maximization. The work in [25] has also derived a systematic way to deter-
mine the maximum number of uncorrelated multilinear features that can be
extracted by the method.
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4.2 Supervised Multilinear Subspace Learning Algorithms

Similar to unsupervised MSL, the development of supervised MSL started
with 2D extensions of LDA.

4.2.1 Supervised MSL through TTP

Like GLRAM and GPCA, the 2D LDA (2DLDA) introduced in [65] solves
for two linear transformations that project an image to a low-dimensional
matrix, but with a different objective criterion. For the input image samples,
the between-class and within-class scatter measures are defined for matrix
representations (Definition 2). A matrix-based discrimination criterion is then
defined as the scatter ratio, which is to be maximized in 2DLDA. Unlike the
unsupervised MSL algorithms reviewed above, 2DLDA does not converge over
iterations.

Later, as a higher-order extension of 2DLDA, the discriminant analysis with
tensor representation (DATER) 1 was proposed to perform discriminant anal-
ysis on more general tensorial inputs [2]. The DATER algorithm solves for a
TTP maximizing the tensor-based scatter ratio (Definition 2). However, this
algorithm does not converge over iterations either.

In [23], the general tensor discriminant analysis (GTDA) algorithm is pro-
posed. The GTDA algorithm also solves for a TTP. The difference with DATER
is that it maximizes a tensor-based scatter difference criterion (Definition 2),
with a tuning parameter involved [66]. The criterion used is dependent on
the coordinate system, as pointed out in [67], and the tuning parameter is
heuristically determined in [23]. In contrast with 2DLDA/DATER, this al-
gorithm has good convergence property [23] and it is the first discriminative
MSL algorithm that converges to a local solution.

4.2.2 Supervised MSL through TVP

In this category, the first algorithm is the tensor rank-one discriminant analysis
(TR1DA) algorithm proposed in [46, 47], derived from the TROD algorithm
[64]. The TR1DA algorithm is formulated for general tensor objects and it
looks for a TVP that projects a tensor to a low-dimensional vector while
maximizing the scalar scatter difference criterion (Definition 5). Therefore, the
criterion is also dependent on the coordinate system and there is no way to
determine the optimal tuning parameter either. Furthermore, as in TROD, this

1 Here, the name used when the algorithm was first proposed is adopted as it is
more commonly referred to in the literature.
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algorithm also relies on the repeatedly-calculated residues, originally proposed
in [68] for tensor approximation. The adoption of this heuristic procedure here
lacks theoretical explanation for a discriminative criterion.

Similar to the case of unsupervised MSL, the supervised MSL algorithms dis-
cussed so far do not take the correlations among features into account and
they do not derive uncorrelated features as in the classical LDA [69, 70]. As
mentioned in Sec. 4.1.2, uncorrelated features are highly desirable in many ap-
plications [70]. An uncorrelated multilinear discriminant analysis (UMLDA)
algorithm is formulated in [26]. UMLDA aims to extract uncorrelated dis-
criminative features directly from tensorial data through solving a TVP to
maximize a scalar scatter ratio criterion (Definition 5). The solution consists
of sequential iterative processes and incorporates an adaptive regularization
procedure to enhance the performance in the small sample size scenario. Fur-
thermore, an aggregation scheme is adopted to combine differently initialized
and regularized UMLDA recognizers for enhanced generalization performance
while alleviating the regularization parameter selection problem. This exten-
sion is called regularized UMLDA with aggregation (R-UMLDA-A) [26].

4.3 The Historical Basis of MSL

Multilinear algebra, the extension of linear algebra, has been studied in math-
ematics around the middle of the 20th century [29]. It built on the concept of
tensors and developed the theory of tensor spaces.

A popular early application of multilinear algebra is multi-way analysis in
psychometrics and chemometrics starting from the 60s and 70s, for factor
analysis of multi-way data sets, which are higher-order tensors characterized by
several sets of categorical variables that are measured in a crossed fashion [53–
55,71]. Two main types of decomposition methods have been developed in this
field: the Tucker decomposition [30,41,71,72], and the canonical decomposition
(CANDECOMP) [30, 41, 53], also known as the parallel factors (PARAFAC)
decomposition [30,41,54]. There are also other tensor decompositions such as
CANDECOMP with linear constraints (CANDELINC) [73].

In the 90s, the developments in higher-order statistics of multivariate stochas-
tic variables have attracted interests in higher-order tensors from the signal
processing community [74]. The Tucker decomposition was reintroduced and
further developed in [30] as an extension of the singular value decomposition
(SVD) to higher-order tensors: the higher-order SVD (HOSVD) solution. Its
computation leads to the calculation of N different matrix SVDs of differently
unfolded matrices. The ALS algorithm for the best Rank-(R1, R2, ..., RN) ap-
proximation of higher-order tensors was studied in [31], where tensor data was
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iteratively projected into a lower dimensional tensor space. The application
of HOSVD truncation and the best Rank-(R1, R2, ..., RN) approximation to
dimensionality reduction in ICA was discussed in [75].

The work in [30,31] led to the development of new multilinear algorithms and
the exploration of new application areas for tensor data analysis. Multilinear
analysis of image data is pioneered by the TensorFace method [76, 77], which
employs the multilinear algorithms proposed in [30,31] to analyze the factors
involved in the formation of facial images. Similar analysis has also been done
for motion signatures [78] and gait sequences [79]. However, in these multiple
factor analysis work, input data such as images or video sequences are still
represented as vectors. These vectors are arranged into a tensor according
to multiple factors involved in their formation for subsequent analysis. Such
tensor formation needs a large number of training samples captured under
various conditions, which is often impractical and may have the missing-data
problem. Furthermore, the tensor data size is usually huge, leading to high
memory and computational demands.

In the last few years, several methods were proposed for direct learning of a
subspace from tensorial data [1,2,21,23,25–27,47,56,64,65]. Besides the MSL
algorithms reviewed above, there is also a multilinear extension of the CCA
algorithm named as tensor CCA in [80]. In addition, solutions are proposed
in [81, 82] to rearrange elements within a tensor to maximize the correlations
among n-mode vectors for better dimensionality reduction performance. Fur-
thermore, systematic treatment of this topic has appeared in [28,42]. Besides
the multilinear extensions of LSL algorithms, multilinear extensions of lin-
ear graph-embedding algorithms were also introduced in [43, 48, 83–86], in a
similar fashion as the existing MSL algorithms reviewed in this paper.

5 Multilinear Subspace Learning Applications

Due to the advances in sensor and storage technology, MSL is becoming in-
creasingly popular in a wide range of application domains involving tensor-
structured data sets. This section will summarize several applications of MSL
algorithms in real-world applications, including face recognition and gait recog-
nition in biometrics, music genre classification in audio signal processing, EEG
signal classification in biomedical engineering, anomaly detection in data min-
ing, and visual content analysis in computer vision. Other MSL applications
include handwritten digit recognition [27, 57], image compression [1, 27, 64],
image/video retrieval [1, 87], and object categorization and recognition [46].
For more general tensor data applications, [35], [88], [89] and [90] are good
references.
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5.1 Face Recognition and Gait Recognition

Face and gait are two typical physiological and behavioral biometrics, respec-
tively. Compared with other biometric traits, face and gait have the unique
property that they facilitate human recognition at a distance, which is ex-
tremely important in surveillance applications. Face recognition has a large
number of commercial security and forensic applications, including video surveil-
lance, access control, mugshot identification, and video communications [10,
91]. Gait is a person’s walking style and it is a complex spatio-temporal bio-
metric [10, 91]. The interest in gait recognition is strongly motivated by the
need for an automated human identification system at a distance in visual
surveillance and monitoring applications in security-sensitive environments,
e.g., banks, parking lots, malls, and transportation hubs such as airports and
train stations [21]. Many MSL algorithms are first applied to appearance-
based learning for face recognition [2, 27, 56, 57, 86, 92, 93] and/or gait recog-
nition [21, 23, 94–97], where the input face images or binary gait silhouette
sequences are treated as tensorial holistic patterns as shown in Fig. 1.

5.2 Music Genre Classification

Music genre is a popular description of music content for music database
organization. The NMPCA algorithm proposed in [62] is designed for music
genre classification, combined with the nearest neighbor or support vector
machines (SVM) classifiers. A 2D joint acoustic and modulation frequency
representation of music signals is utilized in this work to capture slow temporal
modulations [62], inspired by psychophysiological investigations on the human
auditory system. The acoustic signal is first converted to a time-frequency
auditory spectrogram and a wavelet transform is applied to each row of this
spectrogram to estimate its temporal modulation content through modulation
scale analysis [62]. In three different sets of experiments on public music genre
data sets, NMPCA has achieved the state-of-the-art classification results.

5.3 EEG Signal Classification

Electroencephalography (EEG) records brain activities as multichannel time
series from multiple electrodes placed on the scalp of a subject to provide a
direct communication channel between brain and computer, and it is widely
used in noninvasive brain computer interfaces (BCI) applications [98]. In [5], a
tensor-based EEG classification scheme is proposed, where the wavelet trans-
form is applied to EEG signals to result in third-order tensor representations
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in the spatial-spectral-temporal domain. GTDA is then applied to obtain low-
dimensional tensors, from which discriminative features are selected for SVM
classification. Motor imagery experiments on three data sets demonstrate that
the proposed scheme can outperform many other existing EEG signal classifi-
cation schemes, especially when there is no prior neurophysiologic knowledge
available for EEG signal preprocessing.

5.4 Anomaly Detection

In streaming data applications such as network forensics, large volumes of
high-order data continuously arrive incrementally. It is challenging to per-
form incremental pattern discovery on such data streams. The ITA frame-
work in [17] is devised to tackle this problem and anomaly detection is one
of its targeted applications. The abnormality is modeled by the reconstruc-
tion error of incoming tensor data streams and a large reconstruction error
often indicates an anomaly. The proposed method is illustrated on a network
monitoring example, where three types of anomalies (abnormal source hosts,
abnormal destination hosts, and abnormal ports) can be detected with very
high precision.

5.5 Visual Content Analysis

As a dimensionality reduction technique, MSL can also be used for various
visual content analysis tasks [87, 99–103]. E.g., the MPCA algorithm is used
to visualize and summarize a crowd video sequence in a 2D subspace in [100].
In [101], an optical flow tensor is built and GTDA is used to reduce the
dimensionality for further semantic analysis of video sequences. For 3D facial
data modeling, the BTA algorithm is employed for the 3D facial expression
retargeting task [59]. In [102], a modified version of the DTA algorithm (with
mean and variance updating) is applied on a weighted tensor representation
for visual tracking of human faces, and in [103], an automatic human age
estimation method is developed using MPCA for dimensionality reduction of
tensorial Gaussian receptive maps.

6 Conclusions and Future Works

This paper presents a survey of an emerging dimensionality reduction ap-
proach for direct feature extraction from tensor data: multilinear subspace
learning. It reduces the dimensionality of massive data directly from their
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natural multidimensional representation: tensors. This survey covers multi-
linear projections, MSL framework, typical MSL solutions, MSL taxonomies,
and MSL applications. MSL is a new field with many open issues to be ex-
amined further. The rest of this section outlines several research topics that
worth further investigation. Two main directions have been identified. One is
towards the development of new MSL solutions, while the other is towards the
exploration of new MSL applications.

In future research, new algorithms can be investigated along the following
directions. The systematic treatment on MSL will benefit the development of
new multilinear learning algorithms, especially by extending the rich ideas and
algorithms in the linear counterparts to the multilinear case. This paper has
focused on the extensions of PCA and LDA to their multilinear counterparts.
In future work, more complex multilinear mapping can be investigated, for
example, by developing multilinear extensions of graph-embedding algorithms
such as Isomap [104], Locally Linear Embedding [105], and Locality Preserving
Projections [106,107] under the MSL framework. As mentioned in Section 4.3,
there have been some developments already in this area [43, 48, 84–86]. The
MSL framework can help the understanding of these existing solutions and
it can also benefit their further development. Furthermore, in MSL, there are
still many open problems remaining, such as the optimal initialization, the
optimal projection order, and the optimal stopping criterion. There has been
some attempts in solving some of these problems in [21]. However, further
research in this direction is needed for deeper understanding on these issues
and even alternative optimization strategies can be explored.

Besides the applications reviewed in Sec. 5, there are a wide range of appli-
cations dealing with real-world tensor objects where MSL may be useful, as
mentioned in the Introduction of this paper. Examples include high-resolution
and 3D face detection and recognition [108–111], clustering or retrieval of im-
ages or 3D objects [8,112], space-time analysis of video sequences [11,113], and
space-time super-resolution [14]. In addition, massive streaming data are fre-
quently organized as multidimensional objects, such as those in social network
analysis, web data mining, and sensor network analysis [17]. Some tensor-based
techniques have been developed in these fields [15,16] and further investigation
of MSL for these applications under the framework presented in this paper can
be fruitful.

To summarize, the recent prevalence of applications involving massive mul-
tidimensional data has increased the demand for technical developments in
the emerging research field of MSL. This overview provides a foundation upon
which solutions for many interesting and challenging problems in tensor data
applications can be built. It is the authors’ hope that this unifying review and
the insights provided in this paper will foster more principled and successful
applications of MSL in a wide range of research disciplines.
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