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Abstract

In this paper, we address the false rejection problem due
to small solid state sensor area available for fingerprint
image capture. We propose a minutiae data synthesis
approach to circumvent this problem. Main advantages
of this approach over existing image mosaicing approach
include low memory storage requirement and low com-
putational complexity. Moreover, possible overhead on
the search engine (for fingerprint matching) due to data
redundancy could be reduced. Extensive experiments
were conducted to determine the best transformation
suitable for minutiae alignment. We demonstrate
the idea of synthesis with an example using physical
fingerprint images. The proposed synthesis system is also
found to improve (lower) the number of false rejects due
to the use of different fingerprint regions for matching.
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1 Introduction

In general, an automatic fingerprint identification or ver-
ification (see e.g. [1, 2, 3, 4]) system consists of three
main processing stages namely, image acquisition, fea-
ture extraction andmatching. In image acquisition, query
and template database images are acquired through var-
ious input devices. Development over the years has seen
through means that mechanically scan the ink based fin-
gerprints into the computer system, and means which di-
rectly capture the fingerprints using more sophisticated
solid state sensors. With fingerprint images which could
be distorted or contaminated with noise, the automated
system seeks to extract characteristic features which are
discriminating and yet invariant with respect to image
orientation. The final stage of fingerprint identification or
verification is to search and verify matching image pairs.

The use of inkless sensors has advanced the data ac-
quisition aspects in an automatic fingerprint identifica-
tion/verification system. This includes optical and solid
state devices. By means of CCD array and laser technolo-
gies, the optical sensors offer a cost effective solution for
fingerprint image capture. Conforming to the regulation
by National Institute of Standard and Technology (NIST,
USA), conventional optical sensors have a sensing area of
1-inch by 1-inch. The solid state sensors, which adopt ca-
pacitance, electric field, pressure or temperature sensing
technologies, offer a more compact means for fingerprint
image capture with additional features to detect presence
of fingers such as locally adjustable automatic gain con-
trol [5]. However, due to manufacturing limitation and
cost factors, most solid state sensors do not come with
large sensing area (e.g. Veridicom’s iTouch has a sensing
area of 1.5cm by 1.5cm and Infineon’s FingerTip has a
sensing area of 11.1mm by 14.3mm). Moreover, the imag-
ing area for the finger is further restricted to the area in

contact with the sensor. This, as compared to conven-
tional ink based rolled fingerprint impression, possesses
a much smaller information area. A consequence of this
can be seen in using different partial areas of the same
finger for matching, which causes false rejection. For this
reason, during enrollment of a person in a database, a
rolled fingerprint would be preferred over a plain touch
impression.

Apart from requiring the individual user to ensure
good placement of fingerprint area during image ac-
quisition process, few automatic fingerprint identifica-
tion/verification system has addressed the problem of
false rejection cause by using different image regions for
matching. While acquiring a few separate fingerprint im-
ages during registration could simply handle the false re-
jection problem, much of the acquired information could
be redundant (due to much common regions) and hence
takes up unnecessarily large storage space. Moreover,
overheads of the multi-modal search would increase due to
the much larger number of records available for matching.
In [6], an image mosaicing technique is developed for con-
structing a rolled fingerprint from an image sequence of
partial fingerprints. The proposed fingerprint mosaicing
algorithm consists of four stages namely, (i) segmentation
of foreground and background areas in each frame; (ii)
weighting of each image’s contribution using a foreground
mask; (iii) stacking of the weighted gray scale frames to
compute the mosaic gray scale image; (iv) stacking of
the foreground masks to compute a confidence index at
every pixel. Although mosaicing technique possesses the
capability of acquiring a larger area of fingerprint image,
it is at the expense of large storage requirement for a
much larger synthesized image. Moreover, as seen from
the pixel level computation which is applied directly to
the acquired image, the computational cost is high.

In this paper, we propose a minutiae based syn-
thesis method for an automatic fingerprint identifica-
tion/verification system. The proposed methodology not
only synthesize necessary information for fingerprint iden-
tification, but also possesses several desired features:

1. no restriction on the hardware sensor area;

2. small storage requirement since the synthesized data
contains only the necessary minutiae information
needed for matching. This is especially useful for
search within a large database in fingerprint identi-
fication;

3. low computational complexity.

The paper is organized as follows: in section 2 we pro-
vide a brief overview on fingerprint identification and ver-
ification problems related to the subject matter. This is
followed by section 3 where our representation system for
minutiae data and our methodology for minutiae synthe-
sis are presented. Section 4 provides an outline on minu-
tiae detection, minutiae alignment and several transfor-
mations available for minutiae alignment. In section 5,
we perform experimental study to decide upon the best
transformation for our application. Then, on top of a
minutiae synthesis example, we provide an evaluation of



the synthesis system in aspects of false rejection. Some
concluding remarks are drawn in section 6.

2 Fingerprint Identifica-
tion/Verification

While fingerprint identification refers to the process of
matching a query fingerprint against a template finger-
print database to establish the identity of an individual,
fingerprint verification refers to determination of whether
two fingerprints are from the same finger or not. Since
verification is a comparison of a query fingerprint against
an enrolled template fingerprint, it is also termed as one-
to-one matching. Identification, on the other hand, is
termed as one-to-many matching.
In view of effective search within a huge database in

an identification problem, fingerprint matching is usually
carried out at two levels namely, the coarse level and the
fine level. The coarse level matching is also referred to as
classification (see e.g. [7, 8, 9, 10]) where fingerprints are
grouped into few classes so that a fine level search can be
performed within the matched class.
As it is difficult to use the raw digital fingerprint image

directly for matching in an automatic fingerprint identifi-
cation/verification system, a suitable computer represen-
tation is essential. Several desirable properties for such
representation can be identified as:

1. retention of the discriminating power of each finger-
print (information content),

2. stable with respect to noise and distortion,

3. small in data storage size, and

4. ease in manipulation (e.g. adding new data points).

Here, we note that large information content may pose a
constrain to small data storage size requirement.
According to [11], eighteen different types of finger-

print features can be identified. These features include
ridge endings, ridge bifurcations, short ridges and ridge
crossovers which are collectively termed as minutiae. It
has been widely accepted that local ridge structures (a
collection of minutiae details) from two fingerprints match
each other if the fingerprints are from the same source
[11, 12]. Hence, the problem of fingerprint verification
can be reduced to a point pattern matching problem when
these local structures are considered.

3 Minutiae Data Synthesis
Our representation for the fingerprint consists of a global
structure and a local structure [13]. The global struc-
ture consists of positional and directional information of
ridge endings and ridge bifurcations. The local structure
consists of relative information of each detected minutia
with other neighboring minutiae. Since the local struc-
ture contains relative information which is insensitive to
rotation and translation, the main issue concerning minu-
tiae data synthesis is to establish the relationship between
the global structures of two fingerprints acquired with
common regions.
Let

M = {(xi, yi,ϕi, ti)}, i = 1, 2, ...n (1)

be the set of minutiae containing the positional informa-
tion (x, y), directional information (ϕ) and minutiae type
information (ti = 0 indicates a ridge ending and ti = 1
indicates a bifurcation) for n minutiae elements in the
global structure.
Suppose we have a total of m number of minutiae data

sets from m partial fingerprints of the same finger, then

we can write for the kth minutiae data set as:

Mk = {(xi, yi,ϕi, ti)}k, i = 1, 2, ...nk, k = 1, 2, ...,m.
(2)

Among these minutiae data sets, there would be com-
mon regions whereby information is redundant. If it is
to search through each individual minutiae data sets for
matching, it would not be cost effective since these redun-
dant information are being searched through more than
once. Moreover, the geometrical relationships among
these minutiae data sets are no longer preserved since
these data sets are treated as separate entity. In order
to save data storage space with respect to redundancy as
well as to provide a good overall picture about the minu-
tiae sets, a synthesis with consideration to relationship
between data sets is needed.
For fingerprint images with common regions, we can

express the resultant synthesized information as:

M∪m
1
=

m!
k=1

{fk(xi, yi,ϕi, ti)}k , i = 1, 2, ...nk (3)

where fk, k = 1, 2, ...,m denote the necessary topological
transformations for aligning the different sets of minutiae
data. Suppose o1 is the number of overlapping points
betweenM1 andM2. Then the number of minutiae points
inM∪2

1
can be expressed as n(M∪2

1
) = n1+n2−o1. Now

let o2 be the number of overlapping points between M∪2
1

and M3. And the number of minutiae points in M∪3
1
is

n(M∪3
1
) = n1 + n2 + n3 − o1 − o2. In short, the total

number of minutiae points in the synthesized minutiae
data set M∪m

1
can be written as:

n(M∪m
1
) =

m"
k=1

nk −
m−1"
k=1

ok, (4)

where ok is the number of overlapping minutiae points
between M∪k

1
and Mk+1. Hence, if each ok is of consid-

erable size, the total number of minutiae in the synthe-
sized data set (n(M∪m

1
)) can be significantly smaller than#m

k=1 nk .
Upon acquiring two images for synthesis, the task im-

mediately after minutiae detection is to find correspon-
dence between these two images so that the global minu-
tiae information between the two images can be aligned.
A match between these two images is performed utilizing
both local and global minutiae information. Two minu-
tiae data sets are considered matched if a weighted score
between the local and the global information exceeds a
certain threshold value. The match shall reject the input
image if the intersecting region is too small for good cor-
respondence. We shall discuss our alignment method in
a separate section.
Let Mj and Mk, j "= k, j, k ∈ {1, 2, ...,m}, be two fin-

gerprint minutiae data sets to be synthesized. Suppose
there are p corresponding points (minutiae coordinates)
between the two images. Denote this set of p correspond-
ing points by C. Then, a topological transformation f
can be determined relating Mj and Mk from

xj = f(xk) (5)

where xj = {(xi, yi)}j and xk = {(xi, yi)}k for all i ∈ C.
Since the transformation will be used for aligning those
non-corresponding minutiae points, a careful study on its
sensitivity with respect to noise and deformation is nec-
essary. We shall discuss various transformation models
for image points alignment in the following section.

4 Minutiae Detection and
Alignment

For minutiae detection, we adopt an adaptive ridge trac-
ing algorithm which is evolved from [14]. Our approach



adaptively traces the gray-level ridges of the fingerprint
image and applies adaptive oriented filters to the image
only at those regions that require to be smoothed. A long
tracing line will be obtained when there is little variation
in contrast and when the bending level of the ridge is
low. Main advantage of our approach is that tracing is
by adaptive piece wise linear approximation of the ridges
which speeds up the process of ridge detection as com-
pared to other methods which adopt either pixel wise or
fixed step tracing [15]. The tracing is only performed
within the region of interest. The region of interest is
segmented based on the local certainty level c(x, y) at
pixel (x, y) on image I.
Several stopping criteria for ridge tracing which deter-

mines detection of minutiae are adopted as:

1. Tracing exits from region of interest. In this case,
minutiae extraction will not be performed.

2. Tracing ridge line intersects another already traced
skeleton ridge line. Under this condition, a bifurca-
tion minutiae is detected.

3. Tracing ridge line ends when the tracing line is
shorter than a threshold value and when the next
traced point lies on another ridge.

In addition to minutiae detection, post processing is per-
formed to remove spurious minutiae.
Having the minutiae extracted for two images, it is

necessary to align the two sets of data so that they form
a larger picture of the fingerprint. Several problems which
are inherent to this alignment process are enumerated as
follows:

1. Translation and rotation variance between the two
fingerprint images.

2. Some minutiae may be dropped and some spurious
minutiae may be detected.

3. Deformation of the fingerprint images which induces
location errors.

Together with an indication of ridge ending and ridge
bifurcation, the notation in (1) provides a global descrip-
tion of the minutia. Since this feature vector is not rota-
tion and translation invariant, we construct a local feature
vector for our alignment purpose. In what follows, only a
brief outline on the local structure for alignment match-
ing will be provided. The interested reader is referred to
[13] for greater details.
Letmj , j = 1, 2, ..., l be the jth nearest neighbour with

respect tom0. The distance betweenm0 andmj can then
be expressed as

dj0 =
$
(xj − x0)2 + (yj − y0)2. (6)

Denote by ϕ0 the direction ofm0, the relative radial angle
for mj with respect to m0 is given by

θj0 = tan
−1

%
yj − y0

xj − x0

&
− ϕ0, −π ≤ θj0 ≤ π. (7)

Let cj0, j = 1, 2, ..., l be the ridge count between m0 and
mj , then together with corresponding minutiae type tj0

we pack the local feature vector as

Flj = [dj0, θj0, cj0, tj0]
T , j = 1, 2, ..., l. (8)

It is obvious that this local structure is rotation and trans-
lation invariant since it contains only relative information.
Hence, it can be used directly for preliminary local align-
ment matching.
A match weighting the similarity between the local fea-

ture vectors from the two images is performed so that
a common reference can be established. Once the pre-
liminary correspondence between these local features is
established, the transformation required for global align-
ment can be found. To validate good correspondences

for this transformation, a further match combining both
local and global information is adopted.
Generally, transformation means can be classified in

linear form and nonlinear form. Consider two sets of
image points: x = (x, y) and X = (X,Y ). The prob-
lem here is to find the best transformation f that relates
these two sets of image points, i.e. x = f(X). For linear
transformations, we have x = TX where T denotes the
transformation matrix.
Affine geometry compares distances only on the same

line or on parallel lines. As compared to the Euclidean
geometry, affine geometry relaxes the requirement on per-
pendicularity. Hence transformation under affine geome-
try is more general as compared to that under Euclidean
geometry.
Projective geometry is the result of relaxing the restric-

tions preserving parallel lines but require that straight
lines remain straight lines for any changes we might im-
pose on the figure.
Topology encompasses the projective, affine and

Euclidean geometries. An even smaller set of properties is
invariant under topological transformation (e.g. preserv-
ing only closed curves, order and connectivity). Here,
only the quadratic type of topological transformation is
investigated.

5 Experiments

5.1 Transformation study
In this section, we perform experimental study, using
physical fingerprint data, to determine a suitable trans-
formation for minutiae synthesis. We collect 5 images
corresponding to 5 different areas (centre, top-left, top-
right, bottom-left and bottom-right) for each finger for
the experiment. A total of 200 images were captured us-
ing the Veridicom Sensor for 40 fingers.
Matching was first performed to obtain the correspond-

ing coordinates between two images which are to be syn-
thesized. We used the centre area as the base image to
match with one of the other areas (top-left, top-right,
bottom-left and bottom-right) of the same finger. The
matched image pairs with 10 or more corresponding minu-
tiae coordinates were then used for the following trans-
formation study. As a result, only 50 matched pairs were
found to have 10 or more matched points.
To assess the accuracy of each transformation dis-

cussed in previous section, 3/4 of the matched points
were used for identifying the transformation parameters
(fitting) and the rest of 1/4 were used for extrapolation
test (testing). The distribution of the sum of squared er-
rors (SSE) for these matched pairs are plotted in Fig. 1
and Fig. 2 for fit data and test data respectively. The
continuous line (‘ ’) corresponds to SSE distribution for
affine transformation. The dashed line (‘- -’) and the
dotted line (‘...’) correspond to projective transformation
and topological transformation respectively. The mean
value and the standard deviation (STD) for these errors
are also tabulated in Table 1 to reflect an overall view of
these results.
As seen from Fig. 1, the topological (quadratic) trans-

formation provides the best fit since the dotted curve falls
below the other two curves for all samples. This is also
reflected in Table 1 since the mean SSE and the stan-
dard deviation (STD) are the smallest among the three
transformations. As for test data not included in the fit-
ting process, results from Fig. 2 and Table 1 show that
affine transformation gives the best result, in the sense
of lowest mean SSE and lowest STD. It is important to
note that both the mean SSE and STD for the other two
transformations (projective and topological) are consider-
ably huge as compared to those by affine transformation.
Main reason being that coordinate warping according to
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Figure 1: Sum of squared error distribution for
fit data
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Figure 2: Sum of squared error distribution for
test data

the fit data (interpolation) may not necessary fit well the
test data (extrapolation). Base on this study, the affine
transformation is adopted for alignment in our minutiae
synthesis system.

5.2 A minutiae synthesis example
In this part, we show an example of synthesizing three
fingerprint images. As shown in Fig. 3 through Fig. 5,
three fingerprint images are captured from three differ-
ent portions of the same finger. Minutiae points (shown
in circles in Figures 3-5) are detected from these finger-
print images using the ridge tracing algorithm. A visual
examination on these figures shall reveal that the minu-
tiae information extracted in each image contains similar
points (found in common regions) and dissimilar points
(found outside common regions). It is also observed that
even within the common region, some minutiae detected
in one image may not be detected in another image due to
different image qualities. Due to these reasons, when any
two of these three images are used for matching in a fin-
gerprint identification or verification system, false rejec-
tion would occur when the threshold related to the total
number of matched minutiae pairs is set rather high.
Fig. 6 shows the synthesized minutiae points collected

from Figures 3-5, using Fig. 3 as the background image.

Table 1: Sum of Squared Errors for fit and test
data

Sum of squared error for fit data
Affine Projective Nonlinear

Mean 31.1304 62.2254 16.4531
STD 25.3905 87.7418 19.4167

Sum of squared error for test data
Affine Projective Nonlinear

Mean 28.2344 227.7379 464.9472
STD 29.7245 428.2317 1559.9000

The ‘circles’ in the figure indicates the original detected
minutiae points from Fig. 3, whereas the ‘plus’ and ‘stars’
indicate those additional minutiae points transferred from
Fig. 4 and Fig. 5 respectively. As seen from Fig. 6, these
additional minutiae points have found correct correspon-
dences on the fingerprint image (Fig. 3) which are not
detected in the original capture. A match comparing a
query image data with minutiae data from Fig. 6 will have
a higher matching count.
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Figure 3: Fingerprint sample 1 with detected
minutiae

5.3 Performance evaluation
In this experiment, we show that the fingerprint synthesis
method can improve performance in terms of False Rejec-
tion caused by using different regions of fingerprints for
matching. A test sample consisting of 115 query images
and 6×115 template images were used for matching eval-
uation. The query images were randomly acquired from
different partial regions of a finger of each individuals.
The first five sets (labeled as (a)-(e)) of template images
consist of different partial regions (i.e. centre, top-left,
top-right, bottom-left, bottom-right) from each enrolled
finger. The last set (label as (f)) of templates consists
of synthesized data which are obtained by merging those
corresponding data from the same finger of the first five
sets. As such, the last set of templates contains the same
number of records as those in the first five sets, but with
richer information.
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Figure 4: Fingerprint sample 2 with detected
minutiae

In Table 2, the percentages of match between the query
image data set with each of the six template data sets
are shown. It is seen that the synthesized data set (f)
has provided the highest percentage of match for similar
fingers.
The number of matched minutiae pairs are also plot-

ted in Fig. 7 for all test samples. In this figure, the solid
line represents the distribution of the number of matched
minutiae pairs corresponding to the synthesized template
set (f) while all other dotted lines represent the distrib-
ution corresponding to template sets (a)-(e). It is seen
from this figure that the number of matched minutiae
pairs (solid line) provides almost a covering envelope for
the synthesize template set over all other template sets.
This indicates that most of the synthesized data set has
successfully captured the required minutiae information
from individual template data set. Those ‘uncovered’
cases corresponds to much distorted information due to
incorrect as well as inaccurate transformation as a result
of the matching process. It is thus noted that obtaining
as much matching minutiae pairs before synthesizing the
data could possibly help to improve the situation.

Table 2: Percentage of match for each template
set

Data sets
(a) (b) (c) (d) (e) (f)

57.39% 50.88% 54.95% 41.12% 36.79% 80.00%

6 Conclusion
In view of the limitation in solid state image sensor area,
we propose, in this paper, a method to synthesize fin-
gerprint data. The method is advantages over existing
mosaicing technique in terms of low computational cost
and low memory storage requirements. Several transfor-
mation models were compared for minutiae points align-
ment. The affine transformation, which was found to
provide good interpolation and extrapolation capabilities,
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Figure 5: Fingerprint sample 3 with detected
minutiae

was adopted for minutiae data synthesis. The synthesized
template data set was found to improve matching perfor-
mance in the sense of reducing false rejection which was
caused by using different fingerprint regions of the same
finger for matching.
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