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ABSTRACT

In this paper, we address the false rejection problem due to small
solid state sensor area available for fingerprint image capture.
We propose a minutiae data synthesis approach to circumvent
this problem. Main advantages of this approach over existing
image mosaicing approach include low memory storage require-
ment and low computational complexity. Moreover, possible
matching search overhead due to data redundancy could be re-
duced. Extensive experiments were conducted to determine the
best transformation suitable for minutiae alignment. Among the
three transformations presented, affine transformation is found
to be most suited for minutiae alignment. We demonstrate the
idea of synthesis with an example using physical fingerprint im-
ages. The proposed synthesis system is also shown to reduce the
number of false rejects caused by the use of different fingerprint
regions for matching.

1. INTRODUCTION

In general, an automatic fingerprint identification or verification
(see e.g. [1, 2, 3, 4]) system consists of three main processing
stages namely, image acquisition, feature extraction and match-
ing. In image acquisition, query and template database images
are acquired through various input devices. Development over
the years has seen through means that mechanically scan the
ink based fingerprints into the computer system, to means which
directly capture the fingerprints using sophisticated solid state
sensors. With fingerprint images which could be distorted or
contaminated with noise, the automated system seeks to extract
characteristic features which are discriminating for different fin-
gers and yet invariant with respect to image orientation for same
fingers. The final stage of fingerprint identification or verification
is to search and verify matching image pairs.

The use of ink-less sensors has advanced the data acquisition
aspects in an automatic fingerprint identification or verification
system. This includes optical and solid state devices. By means
of CCD array and laser technologies, the optical sensors offer a
cost effective solution for fingerprint image capture. Conforming
to the regulation by National Institute of Standard and Tech-
nology (NIST, USA), conventional optical sensors have a sens-
ing area of 1-inch by l-inch. As for solid state sensors, which
adopt capacitance, electric field, pressure or temperature sens-
ing technologies, they offer compact means for fingerprint image
capture with features to detect presence of fingers such as locally
adjustable automatic gain control [5]. However, due to manu-
facturing limitation and cost factors, most solid state sensors do
not come with large sensing area (e.g. Veridicom’s ¢Touch has a
sensing area of 1.5cm by 1.5cm and Infineon’s FingerTip has a
sensing area of 11.1mm by 14.3mm). Moreover, the imaging area
for the finger is further restricted to the area in contact with the
sensor. This, as compared to conventional ink based rolled fin-
gerprint impression, possesses a much smaller information area.
A consequence of this can be seen in using different partial areas
of the same finger for matching, which causes false rejection. For
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this reason, during enrollment of a person in a database, a rolled
fingerprint would be preferred over a plain touch impression.

Apart from requiring the individual user to ensure good
placement of fingerprint area during image acquisition process,
few automatic fingerprint identification/verification system has
addressed the problem of false rejection cause by using differ-
ent image regions for matching. While acquiring a few separate
fingerprint images during registration could simply handle the
false reject problem, much of the acquired information could be
redundant (due to much common regions) and hence takes up
unnecessarily large storage space. Moreover, overheads of the
multimodal search would increase due to the much larger num-
ber of records available for matching. In [6], an image mosaicing
technique is developed for constructing a rolled fingerprint from
an image sequence of partial fingerprints. The proposed finger-
print mosaicing algorithm consists of four stages namely, (i) seg-
mentation of foreground and background areas in each frame; (ii)
weighting of each image’s contribution using a foreground mask;
(iii) stacking of the weighted gray scale frames to compute the
mosaic gray scale image; (iv) stacking of the foreground masks
to compute a confidence index at every pixel. Although mo-
saicing technique possesses the capability of acquiring a larger
area of fingerprint image, it is at the expense of larger sensor
area for rolling as well as larger storage requirement for a much
larger synthesized image. Moreover, as seen from the pixel level
computation which is applied directly to the acquired image, the
computational cost is high.

In this paper, we propose a minutiae based synthesis method
for an automatic fingerprint identification/verification system.
The proposed methodology not only synthesize necessary infor-
mation for fingerprint identification, but also possesses several
desired features: (i) no restriction on the hardware sensor area;
(ii) small storage requirement since the synthesized data contains
only the necessary minutiae information needed for matching.
This is especially useful for search within a large database in fin-
gerprint identification; and (iii) low computational complexity
for the synthesis algorithm.

2. MINUTIAE DATA SYNTHESIS

Our representation for the fingerprint consists of a global struc-
ture and a local structure {7]. The global structure consists of
positional and directional information of ridge endings and ridge
bifurcations. The local structure consists of relative informa-
tion of each detected minutia with other neighboring minutiae.
Since the local structure contains relative information which is
insensitive to rotation and translation, the main issue concerning
minutiae data synthesis is to establish the relationship between
the global structures of two fingerprints acquired with common
regions.

Let

M = {(zi,yi,0i,ti)}, 1 =1,2,..n (1)

be the set of minutiae containing the positional information (z, v},
directional information () and minutiae type information (¢; =



0 indicates a ridge ending and t; = 1 indicates a bifurcation) for
n minutiae elements in the global structure.

Suppose we have a total of m number of minutiae data sets
from m partial fingerprints of a same finger, then we can write
for the k' minutiae data set as:

M = {(zi,vi, 00, ti) e, 1=1,2,..nk, k=1,2,...,m. (2)

Among these minutiae data sets, there would be common regions
whereby information is redundant. If it is to search through each
individual minutiae data sets for matching, it would not be cost
effective since these redundant information are being searched
through more than once. Moreover, the geometrical relation-
ships among these minutiae data sets are no longer preserved
since these data sets are treated as separate entity. In order
to save data storage space with respect to redundancy as well
as to provide a good overall picture about the minutiae sets, a
synthesis with consideration to relationship between data sets is
needed.

For fingerprint images with common regions, we can express
the resultant synthesized information as:

m
Mom = |J {fe@i v it e, 1= 1,2, mk (3)
k=1

where fr, k =1,2,...,m denote the necessary topological trans-
formations for aligning the different sets of minutiae data. Sup-
pose o1 is the number of overlapping points between M; and M.
Then the number of minutiae points in M ;2 can be expressed as
"(Muf) = nj + ng — 0;. Now let o2 be the number of overlap-
ping points between M, 2 and M3. And the number of minutiae
points in Mu§ is n(MU;I;) = ny + no + na — 01 — o02. In short,
the total number of minutiae points in the synthesized minutiae
data set Mu'lﬂ can be written as:

m m~—1
n(Mup) = ng - ;Z ok,
k=1 =1

where oy, is the number of overlapping minutiae points between

Mu;lC and Mg.1. Hence, if each oy is of considerable size, the

total number of minutiae in the synthesized data set (n(Myp))

4

can be significantly smaller than Y 7, ng.

Upon acquiring two images for synthesis, the task immedi-
ately after minutiae detection is to find correspondence between
these two images so that the global minutiae information between
the two images can be aligned. We shall discuss our alignment
method in a separate section.

Let M; and My, j # k, 7,k € {1,2,...,m}, be two fingerprint
minutiae data sets to be synthesized. Suppose there are p corre-
sponding points {minutiae coordinates) between the two images.
Denote this set of p corresponding points by C. Then, a topo-
logical transformation f can be determined relating M; and My
from x; = f(xx) where x; = {(zi,%:)}; and xx = {(zs,¥i) }x
for all © € C. Since the transformation will be used for aligning
those non-corresponding minutiae points, a careful study on its
sensitivity with respect to noise and deformation is necessary.
We shall discuss various transformation models for image points
alignment right after the following section.

3. MINUTIAE DETECTION AND ALIGNMENT

For minutiae detection, we adopt an adaptive ridge tracing algo-
rithm which is evolved from [8]. Our approach adaptively traces
the gray-level ridges of the fingerprint image and applies adaptive
oriented filters to the image only at those regions that require to
be smoothed. A long tracing line will be obtained when there
is little variation in contrast and when the bending level of the
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ridge is low. Main advantage of our approach is that tracing is
by adaptive piece wise linear approximation of the ridges which
speeds up the process of ridge detection as compared to other
methods which adopt either pixel wise or fixed step tracing [9].
The tracing is only performed within the region of interest. The
region of interest is segmented based on the local certainty level
c(z,y) at pixel (z,y) on image I.

Having the minutiae extracted for two images, it is necessary
to align the two sets of data so that they form a larger picture of
the fingerprint. Problems which are inherent to this alignment
process include: (i) translation and rotation variance between
the two fingerprint images; (ii) deformation of the fingerprint
images which induces location errors.

Together with an indication of ridge ending and ridge bifur-
cation, - the notation in (1) provides a global description of the
minutia. Since this feature vector is not rotation and translation
invariant, we use a local feature vector for the alignment purpose.
Let mj, 5 = 1,2,...,0 be the ™" nearest neighbour with respect
to mg. Denote the distance between mg and m; by djo and
the relative radial angle for m; with respect to mop by 6;0. Let
cjo, 7 = 1,2,...,1 be the ridge count between mo and m;, then
together with corresponding minutiae type t;o the local feature
vector is packed as Fy; = [djo, 00, cj0,tj0]T, 7 =1,2,..,L Itis
obvious that this local structure is rotation and translation in-
variant since it contains only relative information. Hence, it can
be used directly for preliminary local alignment matching. A
match weighting the similarity between the local feature vectors
from the two images is performed so that a common reference
can be established. The reader is referred to [7] for greater de-
tails on these local and global structures and the corresponding
matching.

Once the preliminary correspondence between these local
features is established, the transformation required for global
alignment can be found. To validate good correspondences for
this transformation, a further match combining both local and
global information is adopted. We shall discuss such transforma-
tion for image points alignment in the following section.

4. TRANSFORMATIONS FOR ALIGNMENT

Consider two sets of image points: x = (z,y) and X = (X,Y).
The problem here is to find the best transformation f that relates
these two sets of image points, i.e. x = f(X). For linear transfor-
mations, we have x = TX where T denotes the transformation
matrix. In the following, we examine different transformation
models for our fingerprint data synthesis application.

4.1. Affine transformation

Affine geometry compares distances only on the same line or on
parallel lines. As compared to the Euclidean geometry, affine
geometry relaxes the requirement on perpendicularity. Hence
transformation under affine geometry is more general as com-
pared to that under Euclidean geometry. An affine transforma-
tion T relating x and X can be written as:

T -—
k)
where the six unknown transformation parameters (t;;, ¢ = 1,2;

j = 1,2,3) can be solved using at least three pairs of non-collinear
corresponding image points (z,y) and (X,Y).

t13
t;
23 1

t12
1 27]

t1)
toy

(5

4.2. Projective transformation

Projective geometry is the result of relaxing the restrictions pre-
serving parallel lines but require that straight lines remain straight



lines for any changes we might impose on the figure. In homoge-
nous coordinates, projective transformation can be written as:

x1 tin tiz ti3 X
g | = | tor toa o3 Y |, (6)
z3 ta1 t32 1 1
for which
O tuX +t12Y + i3 _ T2 _ ta X +tY +to3
z3  t; X +tz¥ +17 T3

ta1 X +ta2Y +1
)

For each point on the image plane, one can form two equations
using z and ¥ from and (7):

t11 X + t12Y +t13 — ta1z X ~ tapzY
to1 X +to2Y +to3 — ta1yX — ta2yY

®
®

The eight unknowns can be solved using at least 4 corresponding
points from the image data.

z)

y.

4.3. Topological transformation

Topology encompasses the projective, affine and Euclidean geome-
tries. An even smaller set of properties is invariant under topo-
logical transformation (e.g. preserving only closed curves, order
and connectivity). In this study, only the quadratic type of topo-
logical transformation is investigated. The following transforma-
tion presents one quadratic transformation without interaction
between the orthogonal coordinates.

2 = tiX+tY+its +t7X2+t8Y2,

] taX +t5Y +te +to X2 +t10Y2.

(10)
(1)

Minimization objective and solution:

For topological (nonlinear) transformation setup as above,
the following least squares minimization objective can be used
to solve for the unknown transformation parameters:

12 ~\2
F=> [@-8+ -9, (12)
i
where z; and y; are the measured image point coordinates.

Packing (10) and (11) in matrix form, we can write for each
image data point, Ab = ¢, where

A = X Y 1L 0 0 0 X2 Y? 0 o
= 00 0 X Y 1 0 0 X% Y2
b = [t1t2t3 ta ts te t7 s to t10)T, c=[xy]T. (13)

The solution to the least squares minimization objective (12) is
the parameter vector b satisfying the normal equation AT Ab =
ATc where A, b and c are stacked according to multiple data
points.

5. EXPERIMENTS

5.1. Transformation study

In this section, we perform experimental study, using physical
fingerprint data, to determine the best transformation for minu-
tiae synthesis. We collect 5 images corresponding to 5-different
areas (centre, top-left, top-right, bottom-left and bottom-right)
for each finger for the experiment. A total of 200 images were
captured using the Veridicom Sensor for 40 fingers.

Matching was first performed to obtain the corresponding
coordinates between two images which are to be synthesized.
We used the centre area as the base image to match with one
of the other areas (top-left, top-right, bottom-left and bottom-
right) of the same finger. The matched image pairs with 10 or
more corresponding minutiae coordinates were then used for the
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Fig. 1. (a) and (b) Sum of squared error distribution
for fit and test data

Table 1. Sum of Squared Errors for fit and test data

Sum of squared error_for fit data

Affine_| Projective | Nonlinear
Mean | 31.1304 €7.2254 16.4531
STD 25.3905 87.7418 19.4167

Sum of squared error_for test data

Affine Projective Nonlinear
Mean 28.2344 227.7379 464.9472
STD 29.7245 428.2317 1559.9000

following transformation study. As a result, only 50 matched
pairs were found to have 10 or more matched points.

To assess the accuracy of each transformation discussed in
previous section, 3/4 of the matched points were used for identi-
fying the transformation parameters (fitting) and the rest of 1/4
were used for extrapolation test (testing). The distribution of the
sum of squared errors (SSE) for these matched pairs are plotted
in Fig. 1(a) and Fig. 1(b) for fit data and test data respectively.
The continuous line (‘___’) corresponds to SSE distribution for
affine transformation. The dashed line (‘- -’) and the dotted line
(*...) correspond to projective transformation and topological
transformation respectively. The mean value and the standard
deviation (STD) for these errors are also tabulated in Table 1 to
reflect an overall view of these results.

As seen from Fig. 1(a), the topological (quadratic) transfor-
mation provides the best fit since the dotted curve falls below
the other two curves for all samples. This is also reflected in
Table 1 since the mean SSE and the standard deviation (STD)
are the smallest among the three transformations. Here we note
that the projective transformation, being sensitive to the ma-
trix inversion, shows rather poor results as compared to that
of affine transformation. As for test data not included in the
fitting process, results from Fig. 1(b) and Table 1 show that
affine transformation gives the best result, in the sense of lowest
mean SSE and lowest STD. It is important to note that both the
mean SSE and STD for the other two transformations (projective
and topological) are considerably huge as compared to those by
affine transformation. Main reason being that coordinate warp-
ing according to the fit data (interpolation) may not necessary
fit well the test data (extrapolation). Base on this study, the
affine transformation is adopted for alignment in our minutiae
synthesis system.

5.2. A minutiae synthesis example

In this part, we show an example of synthesizing three fingerprint
images. As shown in Fig. 2(a) through Fig. 2(c), three fingerprint
images are captured from three different portions of the same fin-
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Fig. 2. Fingerprint samples with detected minutiae

ger using Veridicom’s iTouch sensor. Minutiae points (shown in
circles in Fig. 2(a)-2(c)) are detected from these fingerprint im-
ages using the ridge tracing algorithm. A visual examination on
these figures shall reveal that the minutiae information extracted
in each image contains similar points (found in common regions)
and dissimilar points (found outside common regions). It is also
observed that even within the common region, some minutiae
detected in one image may not be detected in another image due
to different image qualities. Due to these reasons, when any two
of these three images are used for matching in a fingerprint iden-
tification or verification system, false rejection would occur when
the threshold related to the total number of matched minutiae
from the. query image is set rather high.

Fig. 2(d) shows the synthesized minutiae points from Fig. 2(a)-

2(c)) using Fig. 2(a) as the background image. The ‘circles’ in
the figure indicates the original detected minutiae points from
Fig. 2(a), whereas the ‘plus’ and ‘stars’ indicate those addi-
tional minutiae points transferred from Fig. 2(b) and Fig. 2(c)
respectively. As seen from this figure, these additional minutiae
points have found correct correspondences on the fingerprint im-
age (Fig. 2(a)) which are not detected in the original capture. A
match comparing a query image data with minutiae data from
Fig. 2(d) will have a higher matching count.

5.3. Performance evaluation

In this experiment, we show that the fingerprint synthesis method
can improve performance in terms of False Rejection caused by
using different regions of fingerprints for matching. A test sam-
ple consisting of 600 query images and 2 x 60 template data
sets (set(a) and set(b)) were used for this matching evaluation.
All images were captured using Veridicom’s iTouch sensor. The
query images were randomly acquired from different partial re-
gions (some of these are very much towards the edge) of each
finger. Set(a) template data were obtained from the central re-
gion of each finger and set(b) template data were obtained from
synthesizing five different regions of each finger.

Scoring results in terms of the frequency plots and ROC
plots are shown in Fig. 3 for 36000 matchings. The dashed
curves and the continuous curves represent matching results us-
ing set(a) templates and set(b) templates respectively. Due to
the use of different partial fingerprint regions for matching, re-
sults obtained from using set(a) templates are rather poor as
seen from the figure. The situation has been significantly im-
proved by using set(b) templates for matching. Notice that by
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using the syhthesized templates, both matching curves for the
same fingers (curves on the right) and those for different fingers
(curves on the left) in the frequency plots show a shift of scores
towards the higher region. However, this does not show dete-
rioation of performance in terms of false acceptance rate. In fact
it shows improvement of matching performance as seen from the

RO

C curves.

6. CONCLUSION

In view of the limitation in solid state image sensor area, we

pro,
for
ove:

pose, in this paper, a method to synthesize fingerprint data
data acquisition enhancement. The method is advantages
r existing mosaicing technique in terms of low computational

cost and low memory storage requirements. Several transforma-
tion models were compared for minutiae points alignment. The
affine transformation, which was found to provide good interpo-

lati
dat

on and extrapolation capabilities, was adopted for minutiae
a synthesis. The synthesized template data set was found

to improve matching performance in the sense of reducing false
rejection caused by using different fingerprint regions from the
same finger for matching.
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