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Abstract

Low-dimensional feature representation with enhanced discriminatory power is of paramount impor-

tance to face recognition (FR) systems. Most of traditional linear discriminant analysis (LDA) based

methods suffer from the disadvantage that their optimality criteria are not directly related to the classi-

fication ability of the obtained feature representation. Moreover, their classification accuracy is affected

by the “small sample size” (SSS) problem which is often encountered in FR tasks. In this short paper,

we propose a new algorithm that deals with both of the shortcomings in an efficient and cost effective

manner. The proposed here method is compared, in terms of classification accuracy, to other commonly

used FR methods on two face databases. Results indicate that the performance of the proposed method

is overall superior to those of traditional FR approaches, such as the Eigenfaces, Fisherfaces and D-LDA

methods.
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I. Introduction

Feature selection for face representation is one of central issues to face recognition (FR)

systems. Among various solutions to the problem (see [1], [2] for a survey), the most

successful seems to be those appearance-based approaches, which generally operate directly

on images or appearances of face objects and process the images as 2D holistic patterns,

to avoid difficulties associated with 3D modeling, and shape or landmark detection [2].

Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two

powerful tools used for data reduction and feature extraction in the appearance-based

approaches. Two state-of-the-art FR methods, Eigenfaces [3] and Fisherfaces [4], built on

the two techniques respectively, have been proved to be very successful.

It is generally believed that, when it comes to solving problems of pattern classification,

LDA based algorithms outperform PCA based ones, since the former optimizes the low-

dimensional representation of the objects with focus on the most discriminant feature

extraction while the latter achieves simply object reconstruction [4], [5], [6]. However,

the classification performance of traditional LDA is often degraded by the fact that their

separability criteria are not directly related to their classification accuracy in the output

space [7]. A solution to the problem is to introduce weighting functions into LDA. Object

classes that are closer together in the output space, and thus can potentially result in

mis-classification, should be more heavily weighted in the input space. This idea has been

further extended in [7] with the introduction of the fractional-step linear discriminant

analysis algorithm (F-LDA), where the dimensionality reduction is implemented in a few

small fractional steps allowing for the relevant distances to be more accurately weighted.

Although the method has been successfully tested on low dimensional patterns whose

dimensionality is D≤5, it cannot be directly applied to high-dimensional patterns, such as

those face images used in this short paper (It should be noted at this point that a typical

image pattern of size (112 × 92) (Fig.2) results to a vector of dimension D = 10304.),

due to two factors: (1) the computational difficulty of the eigen-decomposition of matrices

in the high-dimensional image space; (2) the degenerated scatter matrices caused by the

so-called “small sample size” (SSS) problem, which widely exists in the FR tasks where

the number of training samples is smaller than the dimensionality of the samples [4], [5],
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[6].

The traditional solution to the SSS problem requires the incorporation of a PCA step

into the LDA framework. In this approach, PCA is used as a pre-processing step for

dimensionality reduction so as to discard the null space of the within-class scatter matrix

of the training data set. Then LDA is performed in the lower dimensional PCA subspace

[4]. However, it has been shown that the discarded null space may contain significant

discriminatory information [5], [6]. To prevent this from happening, solutions without a

separate PCA step, called direct LDA (D-LDA) methods have been presented recently [5],

[6]. In the D-LDA framework, data are processed directly in the original high-dimensional

input space avoiding the loss of significant discriminatory information due to the PCA

pre-processing step.

In this short paper, we introduce a new feature representation method for FR tasks.

The method combines the strengths of the D-LDA and F-LDA approaches while at the

same time overcomes their shortcomings and limitations. In the proposed framework,

hereafter DF-LDA, we firstly lower the dimensionality of the original input space by in-

troducing a new variant of D-LDA that results in a low-dimensional SSS-free subspace

where the most discriminatory features are preserved. The variant of D-LDA developed

here utilizes a modified Fisher’s criterion to avoid a problem resulting from the wage of

the zero eigenvalues of the within-class scatter matrix as possible divisors in [6]. Also, a

weighting function is introduced into the proposed variant of D-LDA, so that a subsequent

F-LDA step can be applied to carefully re-orient the SSS-free subspace resulting in a set

of optimal discriminant features for face representation.

II. The Direct Fractional-Step LDA (DF-LDA)

The problem of low-dimensional feature representation in FR systems can be stated as

follows: Given a set of L training face images {zi}L
i=1, each of which is represented as a

vector of length N(= Iw × Ih), i.e. zi ∈ R
N belonging to one of C classes {Zi}C

i=1, where

(Iw × Ih) is the image size and R
N denotes a N -dimensional real space, the objective is to

find a transformation ϕ, based on optimization of certain separability criteria, to produce

a representation yi = ϕ(zi), where yi ∈ R
M with M � N . The representation yi should

enhance the separability of the different face objects under consideration.
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A. Where are the optimal discriminant features?

Let SBTW and SWTH denote the between- and within-class scatter matrices of the train-

ing image set respectively. LDA-like approaches such as the Fisherface method [4] find a

set of basis vectors, denoted by Ψ that maximizes the ratio between SBTW and SWTH:

Ψ = arg max
Ψ

∣∣(ΨTSBTW Ψ)
∣∣

|(ΨTSWTHΨ)| (1)

Assuming that SWTH is non-singular, the basis vectors Ψ correspond to the first M

eigenvectors with the largest eigenvalues of (S−1
WTHSBTW ). The M-dimensional represen-

tation is then obtained by projecting the original face images onto the subspace spanned

by the M eigenvectors. However, a degenerated SWTH in (1) may be generated due to the

SSS problem widely existing in most FR tasks. It was noted in the introduction that a

possible solution is to apply a PCA step in order to remove the null space of SWTH prior

to the maximization in (1). Nevertheless, it recently has been shown that the null space of

SWTH may contain significant discriminatory information [5], [6]. As a consequence, some

of significant discriminatory information may be lost due to this pre-processing PCA step.

The basic premise of the D-LDA methods that attempt to solve the SSS problem without

a PCA step is, that the null space of SWTH contains significant discriminant information

if the projection of SBTW is not zero in that direction, and that no significant information

will be lost if the null space of SBTW is discarded. Assuming that A and B represent

the null space of SBTW and SWTH , while A′ = R
N − A and B′ = R

N − B are the

complement spaces of A and B respectively, the optimal discriminant subspace sought by

D-LDA is the intersection space (A′ ∩ B). The method in [6] first diagonalizes SBTW to

find A′ when seek the solution of (1), while [5] diagonalizes SWTH to find B. Although

it appears that the two methods are not significantly different, it may be intractable to

calculate B when the size of SWTH is large, which is the case in most FR applications.

For example, a typical face pattern of (112 × 92) results to SWTH and SBTW matrices

with dimensionality (10304 × 10304). Fortunately, the rank of SBTW is determined by

rank(SBTW ) = min(N, C − 1), with C the number of image classes, which is usually

a small value in most of FR tasks, e.g. C = 40 in the ORL database, resulting in

rank(SBTW ) = 39. A′ can be easily found by solving eigenvectors of a (39 × 39) matrix
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rather than the original (10304 × 10304) matrix through an algebraic transformation [3],

[6]. Then (A′ ∩ B) can be obtained by solving the null space of projection of SWTH into

A′, while the projection is a small matrix of size (39 × 39).

Based on the analysis given above, it can be known that the most significant discriminant

information exist in the intersection subspace (A′ ∩ B), which is usually low-dimensional

so that it becomes possible to further apply some sophisticated techniques, such as the

rotation strategy of the LDA subspace used in F-LDA, to derive the optimal discriminant

features from the intersection subspace.

B. A Variant of D-LDA

The maximization process in (1) is not directly linked to the classification error which

is the criterion of performance used to measure the success of the FR procedure. Modified

versions of the method, such as the F-LDA approach, use a weighting function in the input

space, to penalize those classes that are close and can potentially lead to mis-classifications

in the output space. Thus, the weighted between-class scatter matrix can be expressed as:

ŜBTW =
C∑

i=1

φiφ
T
i (2)

where φi = (Li/L)1/2
∑C

j=1 (w(dij))
1/2(z̄i − z̄j), z̄i is the mean of class Zi, Li is the number

of elements in Zi, and dij =‖ z̄i− z̄j ‖ is the Euclidean distance between the means of class

i and class j. The weighting function w(dij) is a monotonically decreasing function of the

distance dij. The only constraint is that the weight should drop faster than the Euclidean

distance between the means of class i and class j with the authors in [7] recommending

weighting functions of the form w(dij) = (dij)
−2p with p = 2, 3, ....

Most LDA based algorithms including Fisherfaces [4] and D-LDA [6] utilize the con-

ventional Fisher’s criterion denoted by (1). In this work we propose the utilization of a

variant of the conventional metric. The proposed metric can be expressed as follows:

Ψ = arg max
Ψ

∣∣∣(ΨT ŜBTW Ψ)
∣∣∣

|(ΨTSTOTΨ)| (3)

where STOT = SWTH + ŜBTW , and ŜBTW is the weighted between-class scatter matrix

defined in (2). This modified Fisher’s criterion can be proven to be equivalent to the
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conventional one by introducing the analysis of [11] where it was shown that in R
N ∀x ∈

R
N , if f(x) ≥ 0, g(x) > 0 and f(x) + g(x) > 0, and h1(x) = f(x)/g(x), h2(x) =

f(x)/(f(x) + g(x)), the function h1(x) has the maximum (including positive infinity) at

point x0 ∈ R
N iff h2(x) has the maximum at point x0.

For the reasons explained in section II-A, we start by solving the eigenvalue problem

of ŜBTW . It is intractable to directly compute eigenvectors of ŜBTW which is a large size

(N ×N) matrix. Fortunately, the first m (≤ C−1) most significant eigenvectors of ŜBTW ,

which correspond to non-zero eigenvalues, can be indirectly derived from the eigenvectors

of the matrix (ΦT
b Φb) with size (C×C), where Φb = [φ1 . . . φc] [3]. Let λi and ei be the i-th

eigenvalue and its corresponding eigenvector of (ΦT
b Φb), i = 1 · · ·C, sorted in decreasing

eigenvalue order. Since (ΦbΦ
T
b )(Φbei) = λi(Φbei), vi = Φbei is the eigenvector of ŜBTW .

To remove the null space of ŜBTW , the first m (≤ C−1) eigenvectors: V = [v1 · · · vm] =

ΦbEm, whose corresponding eigenvalues are greater than 0, are used, where Em = [e1 . . . em].

It is not difficult to see that VT ŜBTWV = Λb, with Λb = diag[λ2
1 · · · λ2

m], a (m × m)

diagonal matrix. Let U = VΛ
−1/2
b . Projecting ŜBTW and STOT into the subspace spanned

by U, we have UT ŜBTWU = I and UT STOTU. Then, we diagonalize UTSTOTU which

is a tractable matrix with size (m × m). Let pi be the i-th eigenvector of UTSTOTU,

where i = 1 · · ·m, sorted in increasing order according to corresponding eigenvalues λ′
i.

In the set of ordered eigenvectors, those that correspond to the smallest eigenvalues max-

imize the ratio in (1) and they should be considered as the most discriminatory features.

We can discard the eigenvectors with the largest eigenvalues, and denote the M ′(≤ m)

selected eigenvectors as P = [p1 · · · pM ′ ]. Defining a matrix Q = UP, we can obtain

QTSTOTQ = Λw, with Λw = diag[λ′
1 · · · λ′

M ′ ], a (M ′ × M ′) diagonal matrix.

Based on the derivation presented above, a set of optimal discriminant feature basis

vectors can be derived through Γ = QΛ
−1/2
w . To facilitate comparison, it should be men-

tioned at this point that the D-LDA method of [6] uses the conventional Fisher’s criterion

of (1) with STOT replaced by SWTH. However, since the subspace spanned by Γ contains

the intersection space (A′ ∩ B), it is possible that there exist zero eigenvalues in Λw. To

prevent this from happening, a heuristic threshold was introduced in [6]. A small threshold

value ε was set and any value below ε was adjusted to ε. Obviously, performance heavily
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depends on the proper choice of the value for the artificial threshold ε, which is done in a

heuristic manner [6]. Unlike the method in [6], due to the modified Fisher’s criterion of

(3), the non-singularity of Λw = QT STOTQ can be guaranteed by the following lemma.

Lemma 1: Suppose B is a real matrix of size (N ×N). Furthermore, let us assume that

it can be represented as B = ΦΦT where Φ is a real matrix of size (N × M). Then, the

matrix (I+ B) is positive definite, i.e. I+B > 0, where I is the (N ×N) identity matrix.

Proof: Since BT = B, I +B is a real symmetric matrix. Let x be any N ×1 non-zero real

vector, we have xT (I + B)x = xT x + xT Bx = xT x + (ΦT x)T (ΦT x) > 0. According to [12],

the matrix I + B that satisfies the above condition is positive definite, i.e. I + B > 0.

Similar to ŜBTW , SWTH can be expressed as SWTH = ΦwΦT
w, and then UTSWTHU =

(UT Φw)(UT Φw)T . Since UT ŜBTW U = I and (UTSWTHU) is real symmetric it can be

easily seen that (UTSTOTU) is positive definite, and thus Λw = QT STOTQ is non-singular.

C. Rotation and re-orientation of the D-LDA subspace

Through the enhanced D-LDA step discussed above, a low-dimensional SSS-free sub-

space spanned by Γ has been derived without losing the most important, for discrimination

purposes, information. In this subspace, STOT is non-singular and has been whitened due

to ΓTSTOT Γ = I. Thus, an F-LDA step can be safely applied to further reduce the

dimensionality from M ′ to the required M now.

To this end, we firstly project the original face images into the M ′-dimensional subspace,

obtaining a representation xi = ΓTzi where i = 1, 2, . . . , L. Let Sb be the between-class

scatter matrix of {xi}L
i=1, and γM ′ be the M ′-th eigenvector of Sb which corresponds to

the smallest eigenvalue of Sb. This eigenvector will be discarded when dimensionality is

reduced from M ′ to (M ′ − 1). A problem may be encountered during the dimensionality

reduction procedure. If classes Zi and Zj are well-separated in the M ′-dimensional input

space, this will produce a very small w(dij). As a result, the two classes may heavily

overlap in the (M ′−1)-dimensional output space which is orthogonal to γM ′. To avoid the

problem, a kind of “automatic gain control” is introduced to the weighting procedure in

F-LDA [7], where dimensionality is reduced from M ′ to (M ′ − 1) at r ≥ 1 fractional steps

instead of one step directly. In each step, Sb and its eigenvectors are recomputed based

on the changes of w(dij) in the output space, so that the (M ′ − 1)-dimensional subspace
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is re-oriented and severe overlap between classes in the output space is avoided. γM ′ will

not be discarded until r iterations are done.

It should be noted at this point that the approach of [7] has only been applied in small

dimensionality pattern spaces. To the best of the author’s knowledge the work reported

here constitutes the first attempt to introduce fractional re-orientation in a realistic appli-

cation involving large dimensionality spaces. This becomes possible due to the integrated

structure of the DF-LDA algorithm, the pseudo-code implementation of which can be

found in Figure 1.

The effect of the above rotation strategy of the D-LDA subspace is illustrated in Fig.3,

where the first two most significant features of each image extracted by PCA, D-LDA (the

variant proposed in section II-B) and DF-LDA respectively, are visualized. The PCA-based

representation shown in Fig.3-left is optimal in terms of image reconstruction, thereby

provides some insight on the original structure of image distribution, which is highly

complex and non-separable. Although the separability of subjects is greatly improved in

the D-LDA-based subspace, some classes still overlap as shown in Fig.3-middle. It can be

seen from Fig.3-right that the separability is further enhanced, and different classes tend

to be equally spaced after a few fractional (re-orientation) steps.

III. Experimental Results

Two popular face databases, the ORL [8] and the UMIST [13], are used to demonstrate

the effectiveness of the proposed DF-LDA framework. The ORL database contains 40 dis-

tinct persons with 10 images per person. The images are taken at different time instances,

with varying lighting conditions, facial expressions and facial details (glasses/no-glasses).

All persons are in the up-right, frontal position, with tolerance for some side movement.

The UMIST repository is a multi-view database, consisting of 575 images of 20 people,

each covering a wide range of poses from profile to frontal views. Fig.2 depicts some sam-

ples contained in the two databases, where each image is scaled into (112× 92), resulting

in an input dimensionality of N = 10304.

To start the FR experiments, each one of the two databases is randomly partitioned

into a training set and a test set with no overlap between the two. The partition of the

ORL database is done following the recommendation of [14], [15] which call for 5 images
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per person randomly chosen for training, and the other 5 for testing. Thus, a training

set of 200 images and a test set with 200 images are created. For the UMIST database,

8 images per person are randomly chosen to produce a training set of 160 images. The

remaining 415 images are used to form the test set. In the following experiments, the

figures of merit are error rates averaged over 5 runs (4 runs in [14] and 3 runs in [15]),

each run being performed on such random partitions in the two databases. It is worthy to

mention here that both experimental setups introduce SSS conditions since the number

of training samples are in both cases much smaller than the dimensionality of the input

space. Also, we do have observed some partition cases, where zero eigenvalues occured in

Λw as discussed in section II-B. In these cases, in contrast with the failure of D-LDA [6],

DF-LDA was still able to perform well.

In addition to D-LDA [6], DF-LDA is compared against two popular feature selection

methods, namely: Eigenfaces [3] and Fisherfaces [4]. For each of the four methods, the

FR procedure consists of: (i) a feature extraction step where four kinds of feature rep-

resentation of each training or test sample are extracted by projecting the sample onto

the four feature spaces generalized by Eigenface, Fisherface, D-LDA and DF-LDA respec-

tively, (ii) a classification step in which each feature representation obtained in the first

step is fed into a simple nearest neighbor classifier. It should be noted at this point that,

since the focus in this short paper is on feature extraction, a very simple classifier, namely

nearest neighbor, is used in step (ii). We anticipate that the classification accuracy of all

four methods compared here will improve if a more sophisticated classifier is used instead

of the nearest neighbor. However, such an experiment is beyond the scope of this short

paper.

The error rate curves obtained for the four methods are shown in Fig.4 as functions

of the number of feature vectors. The number of fractional steps used in DF-LDA is

r = 20 and the weighted function utilized is w(d) = d−8. From Fig.4, it can be seen

that the performance of DF-LDA is overall superior to that of the other three methods

on both databases. Let αi and βi be the error rates of the DF-LDA and one of the other

three methods respectively, where i is the number of feature vectors. We can obtain

the average percentage of the error rate of DF-LDA over that of the other methods by
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Eorl =
∑25

i=5 (αi/βi) for the ORL and Eumist =
∑12

i=3 (αi/βi) for the UMIST database. The

results summarized in Table I indicate that the average error rate of DF-LDA is approxi-

mately 50.5%, 43% and 80% of that of Eigenface, Fisherface and D-LDA respectively. It

is of interest to observe the performance of Eigenfaces vs that of Fisherfaces. Not surpris-

ingly, Eigenfaces outperform Fisherfaces in the ORL database, because Fisherfaces may

lost significant discriminant information due to the intermediate PCA step. The similar

observation has also been found in [10], [16].

The weighting function w(dij) influences the performance of the DF-LDA method. For

different feature extraction tasks, appropriate values for the weighting function exponent

should be determined through experimentation using the available training set. However,

it appears that there is a set of values for which good results can be obtained for a wide

range of applications. Following the recommendation in [7] we examine the performance

of the DF-LDA method for w(dij)∈{d−4, d−8, d−12, d−16}. Results obtained through the

utilization of these weighting functions are depicted in Fig.5 where error rates are plotted

against the feature vectors selected (output space dimensionality). The lowest error rate

on the ORL database is approximately 4.0% and it is obtained using a weighting function

of w(d) = d−16 and a set of M = 22 feature basis vectors, a result comparable to the best

results reported previously in the literatures [14], [15].

IV. Conclusions

In this short paper a new feature extraction method for face recognition tasks has

been proposed. The method introduced here utilizes the well known framework of linear

discriminant analysis and it can be considered as a generalization of a number of techniques

which are commonly in use. The new method utilizes a new variant of D-LDA to safely

remove the null space of the between-class scatter matrix and applies a fractional step

LDA scheme to enhance the discriminatory power of the obtained D-LDA feature space.

The effectiveness of the proposed method has been demonstrated through experimentation

using two popular face databases.

The DF-LDA method presented here is a linear pattern recognition method. Compared

with nonlinear models, a linear model is rather robust against noises and most likely will

not overfit. Although it has been shown that distribution of face patterns is highly non
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convex and complex in most cases, linear methods are still able to provide cost effective

solutions to the FR tasks through integration with other strategies, such as the principle of

“divide and conquer” in which a large and nonlinear problem is divided into a few smaller

and local linear sub-problems. The development of mixtures of localized DF-LDA to be

used in the problem of large size face recognition as well as the development of a non-linear

DF-LDA through the utilization of kernel machine techniques are research topics under

current investigation.
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TABLE I

Average percentage of error rates of DF-LDA over that of others

Methods Eigenfaces Fisherfaces D-LDA

Eorl 74.18% 38.51% 80.03%

Eumist 26.75% 47.68% 79.6%

(Eorl + Eumist)/2 50.47% 43.1% 79.82%
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Input: A set of training face images {zi}L
i=1, each of which is represented as a

N -dimensional vector.

Output: A low-dimensional representation y of z with enhanced

discriminatory power, after a transformation y = ϕ(z).

Algorithm:

Step 1. Calculate those eigenvectors of ΦT
b Φb with non-zero eigenvalues:

Em = [e1 . . . em], where m ≤ C − 1 and Φb is from ŜBTW = ΦbΦ
T
b .

Step 2. Calculate the first m most significant eigenvectors and their

corresponding eigenvalues of ŜBTW by V = ΦbEm and Λb = VT ŜBTW V.

Step 3. Let U = VΛ
−1/2
b . Calculate eigenvectors of UTSTOTU, P.

Step 4. Optionally discard those eigenvectors in P with the largest eigenvalues.

Let PM ′ and Λw be the M ′(≤ m) selected eigenvectors and their corresponding

eigenvalues.

Step 5. Map all face images {zi}L
i=1 to the M ′-dimensional subspace spanned by

Γ = UPM ′Λ
−1/2
w , and have {xi}L

i=1, where xi = ΓTzi.

Step 6. Further reduce the dimensionality of xi from M ′ to M by performing a

F-LDA on {xi}L
i=1, and let W (size M ′ × M) be the bases of the output space.

Step 7. The optimal discriminant feature representation of z can be obtained

by y = ϕ(z) = (ΓW )Tz.

Fig. 1. Pseudo-code for the computation of the DF-LDA algorithm
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Fig. 2. Some sample images of 3 persons randomly chosen from the two databases, left: the ORL, right:

the UMIST.
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Fig. 3. Distribution of 170 face images of 5 subjects (classes) randomly selected from the UMIST database

in left: PCA-based subspace, middle: D-LDA-based subspace and right: DF-LDA-based subspace.
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Fig. 4. Comparison of error rates obtained by the four FR methods as functions of the number of feature

vectors, where w(d) = d−12 is used in DF-LDA for the ORL, w(d) = d−8 for the UMIST, and r = 20 for

both.
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Fig. 5. Error rates of DF-LDA as functions of the number of feature vectors with r = 20 and different

weighting functions.
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