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Abstract

In realistic face recognition applications, such as surveillance photo identification, supervised learning algorithms

usually fail when only one training sample per subject is available. The lack of training samples and the considerable

image variations due to aging, illumination and pose variations, make recognition a challenging task. This letter pro-

poses a development of the traditional eigenface solution by applying a feature selection process on the extracted eigen-

faces. The proposal calls for the establishment of a feature subspace in which the intrasubject variation is minimized

while the intersubject variation is maximized. Extensive experimentation following the FERET evaluation protocol sug-

gests that in the scenario considered here, the proposed scheme improves significantly the recognition performance of

the eigenface solution and outperforms other state-of-the-art methods.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Face recognition (FR) is one of the most active

research areas in computer vision and pattern rec-

ognition with practical applications that include

forensic identification, access control and human

computer interface. The task of a FR system is to
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compare an input face image against a database

containing a set of face samples with known iden-

tity and identify the subject to which the input

face belongs. However, a straightforward imple-

mentation is difficult since faces exhibit significant

variations in appearance due to acquisition, illumi-

nations, pose and aging variations (Adini et al.,
1997). In applications such as surveillance photo

identification and forensic identification, the sub-

ject of interest, photographed in an uncontrolled

environment, may significantly differ from possible,
ed.
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if any, templates stored in the database, mostly due

to the lighting and pose variations. In addition,

since the timely update of forensic face templates

is almost impossible under realistic conditions,

appearance deviations due to aging is unavoidable,
further complicating the FR tasks. If at the same

time, there is only a limited number of training

samples available, the characterization of the

intrinsic properties of the subject becomes a diffi-

cult task. When only one image per subject is avail-

able, the problem requires particular attention.

In literature, numerous FR algorithms have

been proposed and the state-of-the-art in the area
is reported in a series of recent surveys (Chellappa

et al., 1995; Zhao et al., 2003). Among the various

FR procedures, appearance based solutions, which

treat the 2D face image as a vector in the image

space, seem to be the most successful (Brunelli

and Poggio, 1993). In general, the whole recogni-

tion procedure includes two steps, feature extrac-

tion and classification. During the feature
extraction stage, the original image space is pro-

jected to a much lower dimensional feature sub-

space by using the subspace techniques such as

principle component analysis PCA (eigenface)

(Turk and Pentland, 1991; Perlibakas, 2004; Yang

et al., 2004), independent component analysis

(ICA) (Bartlett et al., 2002; Liu and Wechsler,

1999), linear discriminant analysis LDA (fisher-
face) (Belhumeur et al., 1997; Kim et al., 2003;

Yang and Yang, 2003; Lu et al., 2003) and so

on. PCA is based on Gaussian models which could

separate second order dependencies among two

pixels while ICA, a generalization of PCA, could

separate high-order moments of the input image.

Both PCA and ICA are unsupervised learning

techniques which compress the data without con-
sidering the class label even if they are available.

However, LDA, as a supervised technique, is a

class specific solution and searches for the feature

basis vectors on which the ratio of the between

class and within class scatters is maximized. Upon

the extraction of the proper set of features, a clas-

sifier such as nearest neighbor classifier, Bayesian

classifier (Duda et al., 2000; Jain et al., 2000), neu-
ral network (Jain et al., 2000; Er et al., 2002), sup-

port vector machine (Burges, 1998), is applied to

recognize the face images.
In most of the feature extraction methodolo-

gies, the eigenface (PCA) approach and fisherface

(LDA) approach are two of the most commonly

used subspace techniques. Eigenface, which is

based on the Karhunen–Loeve transform, pro-
duces an expressive subspace for face representa-

tion and recognition while fisherface produces a

discriminating subspace. For the purpose of classi-

fication, LDA is generally believed to be superior

to PCA when enough training samples per subject

are available (Belhumeur et al., 1997; Lu et al.,

2003). However, when the number of available

training samples per subject is small, experimental
analysis indicates that PCA outperforms LDA

(Martez and Kak, 2001; Beveridge et al., 2001).

In particular, when only one training sample per

subject is available, the problem considered in this

letter, LDA can not be readily applied, since the

within class scatter can not be estimated using only

one sample per subject.

In this work, we propose a solution based on the
eigenface approach. It is well known that in the

eigenface approach, the extracted eigenspace max-

imizes not only the intersubject variation but also

the intrasubject variation. This is due to the fact

that the eigenface solution works as an unsuper-

vised technique without considering the class label,

coupling together both the inter and intra subject

variation (Wang and Tang, 2003). However, for
classification purposes, intrasubject variation is

expected to be small compared to intersubject var-

iation. Therefore the variation from one image to

the next is attributed mostly to the subject identity,

simplifying the classification problem (Belhumeur

et al., 1997). To that end and in order to make

the eigenface approach more attractive to classifi-

cation tasks, we propose to enhance the traditional
eigenface solution by applying a feature selection

process on the extracted eigenfaces. The objective

is to select those eigenfaces that form a subspace

in which intersubject variation is maximized and

intrasubject variation is minimized. Thus, the

obtained feature subspace becomes more discrimi-

nant for classification tasks making the recognition

performance significantly improved.
In order to demonstrate the validity of the pro-

posed solution, under the above mentioned sce-

nario, the well known FERET database is used
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in our experimentation (Phillips et al., 2000).

Extensive simulation studies on the FERET data-

base indicate that the proposed feature selection

scheme improves significantly the recognition per-

formance when large intrasubject variation exists
in the probe images, the application scenario most

often encountered in practical FR tasks.

The rest of the paper is organized as follows:

Section 2 formulates the problem and introduces

the proposed framework. In Section 3, the eigen-

face method is briefly reviewed for completeness.

The selection criterion and the procedure devel-

oped are introduced and analyzed in Section 4.
Motivations and design issues are also discussed.

Experimental results obtained using the FERET

database are given in Section 5. Section 6 summa-

rizes the findings of this work.
2. Problem formulation and system framework

For the application considered here, the face

image of the subject of interest is fed to the FR sys-

tem, which is asked to return the stored examples

from the database which match most closely the

input, along with the corresponding identities.

Using FERET terminology, the problem is stated

as follows: Given a set of N images fxigN1 along

with their identities l(xi), each of which is repre-
sented as a vector of length L = Iw · Ih, i.e.,

xi 2 RL, where (Iw · Ih) is the image size, the task
Fig. 1. System f
of the FR system is to determine the identity of

the subject shown in the input image p. Following
the FERET naming convention, the input image p
will be referred as probe image and images with

known identities are named as gallery images. To
simulate a realistic operating environment, it will

be assumed that there is no overlap between the

probe and the gallery. Further to that, it will be as-

sumed that each subject in gallery is represented by

a single frontal image.

To determine the identity of a probe face, the

probe is compared with each gallery image by cal-

culating the corresponding distance in an ‘‘opti-
mal’’ feature subspace, in which the classes are

supposed to be well separated. The gallery images

reporting the smallest distances, in the feature

space, are selected as candidates for subject identi-

fication. The reason for returning more than one

candidate instead of the top one match lies in the

fact that when the FR task is difficult, namely, face

appearance exhibits large variations while only
limit training samples are available, top one recog-

nition rate is far from satisfaction for realistic

applications. The detailed results will be discussed

in the experiment section. The diagrammatic rep-

resentation of the procedure is given in Fig. 1.

In order to find such an optimal subspace, we

propose to employ a feature selection mechanism

based on the eigenface approach. We start by col-
lecting a generic training set, from which a set of

eigenfaces are extracted. Although image samples
ramework.
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for gallery subjects are limited, there are plenty of

face images for other subjects available for train-

ing. Therefore, the generic training set can be col-

lected from any available face databases, as long as

the subjects included do not overlap with those
available in either the gallery or the probe, which

matches the conditions in realistic applications.

Then the selection procedure is applied on the ex-

tracted eigenfaces with the criterion to maximize

the intersubject variation and minimize the intra-

subject variation as well. The diagram of the selec-

tion procedure is illustrated in Fig. 2.
3. Review of eigenface (PCA) method

In the eigenface method, PCA is used to deter-

mine the eigenvectors of sample covariance matrix

C ¼
PN

k¼1ðxk � lÞðxk � lÞT, where l ¼ 1
N

PN
k¼1xk

is the mean of all face samples. In the standard

eigenface approach, the first m eigenvectors ui,
i = 1, . . ., m, corresponding to the m largest eigen-

values are forming the eigenspace U = [u1, . . ., um],
in which the subsequent recognition is performed.

The eigenface approach is an unsupervised lin-

ear technique which provides an optimal, in the

mean square error sense, representation of the
Fig. 2. Trainin
input in a lower dimensional space (Belhumeur

et al., 1997). It produces the most expressive sub-

space for face representation but not necessarily

be the most discriminating one. This is due to

the fact that the sample covariance matrix C in-
cludes all face difference pairs, those belonging to

the same individual and those belonging to diffe-

rent individuals (Wang and Tang, 2003):

C ¼
XN

k¼1

ðxk � lÞðxk � lÞT

¼ 1

2N

XN

i¼1

XN

j¼1

ðxi � xjÞðxi � xjÞT

¼ 1

2N

X

lðxiÞ¼lðxjÞ
ðxi � xjÞðxi � xjÞT

þ 1

2N

X

lðxiÞ6¼lðxjÞ
ðxi � xjÞðxi � xjÞT ð1Þ

The eigenspace computed by maximizing the

scatter matrix C includes two coupled together fac-

tors, intersubject variation and intrasubject varia-

tion. The first m eigenfaces corresponding to the

largest eigenvalues contain not only large intersub-

ject variation (useful for classification purposes),

but also large intrasubject variation. Inclusion of
g session.
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large intrasubject variation, however, is harm to

the classification. Therefore, in the eigenspace, re-

sulted from Karhunen–Loeve transform, the face

classes can not be guaranteed to be well separated

and clustered due to its large intrasubject varia-
tion. At the same time, the discarded eigenvectors

corresponding to small eigenvalues may carry

important discriminant information due to its

small intrasubject variation. As a result, some face

samples may deviate from the corresponding class

centers and be more closer to the centers of other

subjects (Etemad and Chellappa, 1997), which will

create the problem in the classification stage. On
the other hand, if only the eigenfaces correspond-

ing to small eigenvalues are selected, the intrasub-

ject variation will be greatly reduced, however, the

discriminating information of intersubject varia-

tion will be lost (Belhumeur et al., 1997).

Therefore selecting eigenfaces corresponding to

the dominant eigenvalues following the traditional

eigenface paradigm or discarding several principle
components may not be appropriate for recogni-

tion. It is therefore, necessary to develop a method

to systematically select the most discriminant

eigenfaces from the set of eigenfaces created by

the PCA.
4. Select eigenfaces

4.1. Selection criterion

Let G be the gallery set with G face images (one

per subject), gi, i = 1, 2, . . ., G. Let T be the gener-

ic training set of size S · L containing S subjects, L

face images each. ti,j is the jth image of identity i,

j = 1, 2, . . ., L; i = 1, 2, . . ., S. PCA is applied on
the generic training set. Therefore at most

S · L � 1 meaningful eigenvectors with non zero

eigenvalues can be obtained by PCA when the

number of training samples is less than the dimen-

sionality of the image. Other than selecting from

all available eigenfaces, the first M eigenfaces cor-

responding to the largest eigenvalues are kept to

form the eigenface set for selection. Define
A = [a1, . . ., aM] as the complete eigenface set

sorted in descending order of the corresponding

eigenvalues, from which the selection is performed.
The cardinality of A, namely M, is chosen such

that
PM

k¼1kk=
PS�L�1

k¼1 kk is greater than a threshold,

where ki is the ith eigenvalue. The reason for exclu-

sion of trailing eigenfaces is due to the fact that

eigenfaces corresponding to small eigenvalues are
usually unreliable since limited number of samples

are used for training. Therefore the problem is re-

duced to select a subset Am with cardinality m

from the complete eigenface set A which optimizes

a selection criterion J(Æ). In the standard eigenface

method, maximization of the selection criterion

J ¼ ð
Pm

k¼1kkÞ, results in Am = A1:m = [a1, . . ., am].
From a classification point of view, the differ-

ence of two face image vectors is expected to be

only due to subject identities, so that the selected

feature subspace should be the one contains large

intersubject variation and small intrasubject varia-

tion as well. Therefore, we propose a selection cri-

terion which based on the maximization of the

following ratio:

J ¼ VarinterðAmÞ
VarintraðAmÞ

ð2Þ

where Varinter(Am) and Varintra(Am) represent

intersubject and intrasubject variation in the eigen-

space spanned by the eigenfaces in the feature set

Am respectively. Since subjects in the gallery set

are to be identified, both the intra and inter varia-

tions, namely Varintra(Am) and Varinter(Am), should
be preferably estimated using gallery samples.

However, in the scenario under consideration here,

for each gallery subject, there is only one image is

available. Therefore, estimation of intrasubject

variation from gallery samples is impossible. Based

on the assumption that human faces exhibit simi-

lar intraclass variation (Wang and Tang, 2003),

the intrasubject variation of the stored gallery sub-
jects are to be estimated from the collected generic

training samples, denoted as Varintra:train(Am).

As for intersubject variation, it is expected to

characterize the variations for gallery subjects spe-

cifically. Therefore, estimating using only gallery

images is an appropriate choice, i.e., Varinter =

Varinter:gallery. However, due to the limit sample

size for each gallery subject, such estimation relies
heavily on the stored examples, giving rise to high

variance (Duda et al., 2000). On the contrary,

if face images of other subjects are included to
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reduce the estimation variance, the estimated inter-

subject variation includes not only the variations

among gallery subjects but also those of other sub-

jects, making the selected feature subspace bias the

optimal one which aims at the discrimination of
the gallery subjects only. Therefore we propose

to estimate the intersubject variation by using both

generic training (Varinter:train(Am)) and gallery sam-

ples (Varinter:gallery(Am)) with a regularization fac-

tor g to balance the bias and variance of the

estimation, which is:

J ¼ gVarinter:trainðAmÞ þ ð1� gÞVarinter:galleryðAmÞ
Varintra:trainðAmÞ

ð3Þ
If g = 0, only gallery images are used to deter-

mine the inter variation, in which J has zero bias

but exhibits large variance. When g = 1, generic

training image set dominates the selection resulting
in a biased solution.

4.2. Determining parameters

In the following, we discuss the detailed deter-

mination of both inter and intra variation using

generic training and gallery samples. From Eq.

(1), we know that the eigenfaces are computed
by diagonalizing the total scatter C, which is the

covariance matrix for all image difference pairs

{(xi � xj)}. Let us define I as the intrasubject dif-

ference set, i.e., I:{(xi � xj)jl(xi) = l(xi)}, and E as

the intersubject difference set, i.e., E:{(xi � xj)j
l(xi) 5 l(xj)}. Set I and set E are zero-mean, since

for each (xi � xj), there exists a (xj � xi) (Moghad-

dam et al., 2000). Let CI and CE be the corre-
sponding covariance matrices, i.e.,

CI ¼
1

NI

X

lðxiÞ¼lðxjÞ
ðxi � xjÞðxi � xjÞT

CE ¼ 1

NE

X

lðxiÞ6¼lðxjÞ
ðxi � xjÞðxi � xjÞT

ð4Þ

where NI and NE are the number of difference pairs

in set I and set E. Therefore, the intrasubject and

intersubject variation in the direction defined by

the basis ai can be estimated from VarintraðaiÞ ¼
aTi CIai, VarinterðaiÞ ¼ aTi CEai respectively. Since
the classification is performed by calculating the

Euclidean distance in the selected feature sub-

space, which actually sums the squared difference

vector on the eigenbases spanning the feature sub-

space. Thus, only the variations on the selected
eigenbases affect the recognition performance

and variations in the selected subspace Am are

therefore reasonably estimated from the summa-

tion of variances on the included eigenbases,

i.e., Varintra ¼ traceðAT
mCIAmÞ and Varinter ¼ trace

ðAT
mCEAmÞ.
It can be proved that, CI and CE are actually

equivalent to the well known within class scatter
Sw and between class scatter Sb in LDA ap-

proaches (Moghaddam et al., 2000; Wang and

Tang, 2003). Therefore the proposed selection cri-

terion of Eq. (2) is similar to Fisher criterion. The

major differences lie in the two facts (1) Sw(CI) and

Sb(CE) in the proposed criterion are estimated by

using different training sets, generic training set

and gallery according to Eq. (3); (2) other than
maximizing the ratio of Sb and Sw, the proposed

criterion is to maximize the ratio of their traces.

So, for intersubject variation for generic train-

ing samples,

Varinter:trainðAmÞ ¼
Xm

i¼1

KE:trainðiÞ ð5Þ

KE:train ¼ diagfAT
mSb:trainAmg ð6Þ

Sb:train ¼
1

S

XS

k¼1

ð�mk � �mÞð�mk � �mÞT ð7Þ

where �mk ¼ 1
L

PL
i¼1tki is the mean of face subject k

and �m ¼ 1
LS

PS
k¼1

PL
i¼1tki is the mean of all generic

training samples. Similarly, intrasubject variation

for generic training samples can be calculated as
follows:

Varintra:trainðAmÞ ¼
Xm

i¼1

KI:trainðiÞ ð8Þ

KI :train ¼ diagfAT
mSw:trainAmg ð9Þ

Since the PCA is already applied and the eigen-

values are available, within class scatter Sw:train can

be easily calculated by using the well known rela-

tionship of St = Sb + Sw, where St is the total
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scatter, i.e., St ¼ 1
LS C, C is the covariance matrix

defined in Eq. (1) (Jin et al., 2001; Yang and Yang,

2003). Therefore,

KI:train ¼ diagfAT
mSw:trainAmg

¼ K� KE:train ð10Þ

where K is the set of eigenvalues of standard PCA

corresponding to the eigenvector set Am. With re-

spect to the inter variation of gallery subjects, since

each subject only has one face sample, the between

class scatter is reduced to the total scatter, i.e.,

Varinter:galleryðAmÞ ¼
Xm

i¼1

KE:galleryðiÞ ð11Þ

KE:gallery ¼ diagfAT
mSb:galleryAmg ð12Þ

Sb:gallery ¼
1

G

XG

i¼1

ðgi � �gÞðgi � �gÞT ð13Þ

where �g ¼ 1=G
PG

i¼1gi is the mean of all gallery

images.
4.3. Selection strategy

In order to select the optimal m combinations in

A which optimize the criterion J, a proper search-
ing strategy should be defined. In literature, many

selection schemes are available with good perfor-

mance for different applications, such as Sequen-

tial Forward/Backward Selection (SFS/SBS),

‘‘plus l-take away r’’ procedure, Sequential Float-

ing Forward/Backward Selection (SFFS/SFBS),

Branch-and-Bound, and Genetic Algorithms

(GAs) (Kumar, 2000; Jain et al., 2000; Sun et al.,
2004).

In this work, Sequential Forward Selection

(SFS) is chosen as the selection scheme for its sim-

plicity and good performance (Jain and Zongker,

1997). It adds features progressively. At a time,

one feature is included which in combination with

other previously selected features maximizes the

criterion, i.e., Aðk þ 1Þ ¼ AðkÞ � arg maxai2A�AðkÞ
JðAðkÞ � aiÞ, where A(k) is the selected feature

set at time k, A is the set with all available features

from which the selection is performed, ai is the
feature component and the operator � is used to

denote the combination of two components. The

procedure is repeated until the target number of

features are selected.

To retain important discriminant information,
the process starts with the most significant feature

a1, the one corresponding to the largest eigenvalue.

The whole selection procedure is summarized as

follows:
ð1Þ Amð1Þ ¼ ½a1�
ð2Þ For k ¼ 1 to m

Amðk þ 1Þ ¼ AmðkÞ � arg max
ai2A�AmðkÞ

JðAmðkÞ � aiÞ

With the above selection criterion, the obtained

feature subspace Am captures most of the intersub-
ject variations while the intrasubject variations are

greatly reduced, resulting in a more discriminant

subspace for classification task.

Compared to the standard eigenface approach,

the proposed algorithm does not increase the com-

plexity of the FR system. The feature selection

process can be applied off line during training. In

the operation session, identification is performed
by calculating the Euclidean distance between

pairs of probe and gallery images in a feature sub-

space, identical to that obtained via the standard

eigenface approach. The only difference is the fact

that the feature subspace is spanned by the selected

eigenfaces in Am instead of the first m eigenfaces

used in the traditional eigenface approach.
5. Experiments and results

5.1. Experiment setup

Realistic surveillance photo identification appli-

cations with one training sample per subject can be

simulated using the FERET database. The
FERET database includes 14,501 face images of

1209 subjects covering a wide range of variations

in viewpoints, illuminations, facial expressions

and so on. Since the focus of this letter is in recog-

nition and not face detection, all face images are

manually aligned and normalized. Thus, the

coordinate information of the subjects� eyes are
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considered to be available a-priori. In the current

FERET database, only 3817 face images of 1200

subjects are provided with available eye coordi-

nates information. In all experiments reported

here, images are preprocessed following the FER-
ET protocol guidelines. Namely, the following pre-

processing operations are performed: (1) images

are rotated and scaled so that the centers of the

eyes are placed on specific pixels and the image size

is normalized to 150 · 130; (2) a standard mask is

applied to remove nonface portions; (3) histogram

equalization is performed and image intensity val-

ues are normalized to zero mean and unit standard
deviation; (4) each image is finally represented,

after the application of mask, as a vector of dimen-

sionality 17,154.

Among these 1200 subjects, there exist 226 sub-

jects with 3 images per subject. These 678 images

are forming the generic training set. In addition,

there are 1703 images of 256 subjects with at least

4 images/subject. Of these images, 1476 are frontal
images while 227 are non frontal images. These

images are used to form the gallery and probe sets.

We randomly select 256 frontal images (one per

subject) to form the gallery set. The remaining

images are considered to be the probe set. Similar

experimental configuration was also suggested in

(Beveridge et al., 2001). We further partition the

probe set into three subsets. Set P1 contains 914
images of 256 subjects. The camera time difference

between P1 probe images and their corresponding

gallery matches is less than half year (6180 days).

In P1, probe images are very close to their gallery

matches, mostly taken in the same session. This

represents the most ideal scenario, where the oper-

ating assumption is that the input images are taken

in an environment similar to that of the stored
templates. Set P2 consists of 226 images of 75 sub-

jects. The camera time difference between the P2

images and their corresponding gallery matches

is greater than one and half year (P540 days).

Set P3 contains 227 non frontal images of 48 sub-

jects with no particular consideration with respect

to camera time. Set P2 includes the variations due

to aging while images in P3 exhibit considerable
pose variations, a condition often encountered

when pictures are captured in an uncontrolled

environment. It should be noted, that although
set P1 represents an idealized scenario, the experi-

ments based on sets P2 and P3 simulate the most

often encountered scenarios in realistic applica-

tions such as surveillance photo identification.

Applying the PCA solution on the generic train-
ing set results in the creation of a 677-dimensional

space. The cardinality M of the complete eigenface

set A is determined using the 95% energy capturing

rule ðð
PM

k¼1kk=
P677

k¼1kkÞ > 95%Þ, resulting in a

value of M = 270. Therefore, the complete eigen-

face set A consists of the first 270 eigenfaces, from

which a feature subset Am is selected according

to the proposed criterion of Eq. (3) with the cardi-
nality m up to 100.

The maximum cardinality value 100 is deter-

mined by experiment such that no performance

improvement can be observed when additional

features are included. Each gallery and probe

image is then projected to the constructed feature

space. The evaluation is performed by calculating

the Euclidean distance between pairs of probe
and gallery images in feature subspace spanned

by the feature subset Am:d(j) = k(Am)
T(gi � p)k,

where gi, i = 1,2, . . ., G, is the gallery image and p
is the probe. According to the FERET protocol,

a probe is in the top K if the distance to its corre-

sponding gallery match is among the K smallest

distances for the gallery. Thus the recognition rate

at rank K is the number of probe images in the top
K divided by probe size (Phillips et al., 2000).

5.2. Results and analysis

The performance of the proposed algorithm is

compared with that of the traditional eigenface

scheme, Bayesian approach, LDA solution and

the so-called (PC)2A method proposed in (Wu
and Zhou, 2002). For the Bayesian approach, we

built the intrasubject space by using generic train-

ing samples followed by a maximum likelihood

matching as suggested in (Moghaddam et al.,

2000). Since direct application of the LDA method

on the problem under consideration, one training

sample per subject, is impossible, we followed the

suggestions in (Huang et al., 2003) and generated
additional artificial samples by shifting the face

mask by one pixel up, down, left and right. Instead

of separating the face image into several local fea-
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ture blocks, an approach followed (Huang et al.,

2003), we treat the entire face image as a holistic

pattern, greatly reducing the complexity at the ex-

pense of less than 5% reduction in the recognition

rate as reported in (Huang et al., 2003).
Fig. 3 depicts the comparative evaluation of

our proposed algorithm at g = 0.6 using the entire

generic training set against the above mentioned

approaches with different number of feature vec-

tors, namely N = 20, 40, 80. Results depicted in

Fig. 3 indicate that an obvious improvement can

be obtained using the proposed scheme over the

traditional eigenface method when probes P2

and P3 are considered. On the other end, when

set P1 is considered, the selection procedure em-

ployed here do not result in any performance

improvement. In P1, the time difference between

probe and gallery is within half year and most of
Fig. 3. Performance comparison of proposed method (eigenface sele

approach (bayesian), LDA (LDA), and (PC)2A method ((PC)2A); to

features. (a) Probe 1. (b) Probe 2. (c) Probe 3.
them are taken in the same session. Therefore

the intra variation is considerably small compared

to that in P2 and P3. In such a case, the recogni-

tion performance is mainly determined by the to-

tal intersubject variation. Although intra
variation is large in the subspace, since the probe

image and its gallery match are very similar, the

projection of their corresponding difference

D = P � G remains small. Therefore, in this case,

intersubject variation dominates the performance.

As we discussed in Section 3, the larger, in magni-

tude, the corresponding eigenvalue, the more inter

variation is included. Thus, the traditional eigen-
face method performs very well. Since the pro-

posed method retains the first eigenvector, which

is believed to capture most of the intersubject var-

iation, the performance gap between the two

methods is very small.
ction) with g = 0.6 against standard eigenface (PCA), bayesian

p: with 20 features; middle: with 40 features; bottom: with 80
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However, in realistic applications, the probe im-

age significantly differs from its gallery match (D is

large), the intrasubject variation dominates the

performance. In such a case, maximizing the ratio

is the best way to improve recognition perfor-
mance. This is the application scenario simulated

using probe sets P2 and P3. In such a case,

our method results in significant performance

improvement compared to the one obtained using

the standard PCA method.

Furthermore, the proposed method out-

performs the (PC)2A approach, which reported

performance similar to that of the eigenface ap-
proach. The modified LDA solution of (Huang

et al., 2003) outperforms the proposed method in

P2 when a large, in dimensionality space, represen-

tation is used (Fig. 3b, N = 40), however, our

method returns the best results when a lower, cost

effective representation is used (Fig. 3b, N = 20).

Visual inspection of the performance curves de-

picted in Fig. 3 also indicates that our method out-
performs the modified LDA method when P3

probe is considered. This is to be expected as the

knowledge of pose variations was not available
Fig. 4. Recognition rate with 30 features at rank 10 on three pro

Table 1

Rank of images to be extracted to achieve the following recognition

g P1 P2

60 70 80 90 100 60 70 80

0 1 2 5 22 253 24 38 67

0.2 1 2 5 21 253 24 38 69

0.4 1 2 5 21 253 12 17 34

0.6 1 2 5 22 253 11 18 36

0.8 1 2 5 22 253 11 18 36

1 1 2 5 20 255 13 21 39
during the LDA-like training. As for the Bayesian

scheme, the performance improves as the number

of features increases. Therefore, Bayesian ap-

proach outperforms the proposed method when

a large number of features are used as shown in
Fig. 3, N = 80. However, under the condition

when only small number of features are used, the

most commonly encountered application where

storage and processing time is of the essence, the

proposed method outperforms the competition.

Fig. 4 and Tables 1 and 2 helps us to under-

stand the effect that the regularization parameter

g has on the performance of the algorithm when
probe setsP1,P2 andP3 are considered. Fig. 4 de-

picts the recognition rate at rank 10 with various g,
while Tables 1 and 2 list number of stored tem-

plates needed to be retrieved in order to achieve

a specific recognition rate. When g = 0, intersub-

ject variation is estimated only based on gallery

images, which exactly targets at discriminating

the gallery subjects. However, the performance is
worse than that obtained using the generic training

images (g > 0). As shown in the tables, more tem-

plates are needed to achieve a certain level of
be sets with varied g. (a) Probe 1. (b) Probe 2. (c) Probe 3.

rate (%) on P1, P2 and P3 with 20 features

P3

90 100 60 70 80 90 100

143 219 17 32 52 94 221

141 219 17 27 53 88 227

90 227 13 20 34 80 219

94 228 14 21 35 80 218

94 228 13 21 37 79 222

99 227 14 23 41 80 220



Table 2

Rank of images to be extracted to achieve the following recognition rate (%) on P1, P2 and P3 with 80 features

g P1 P2 P3

60 70 80 90 100 60 70 80 90 100 60 70 80 90 100

0 1 1 4 15 254 17 31 64 135 216 14 24 46 94 220

0.2 1 1 4 15 254 17 32 64 136 216 14 24 46 95 220

0.4 1 1 3 14 254 8 17 32 86 226 10 20 30 70 215

0.6 1 1 3 12 254 8 15 31 85 224 10 19 34 72 217

0.8 1 1 3 12 254 8 15 31 83 224 10 19 33 72 216

1 1 1 4 15 254 9 16 30 90 224 12 20 32 73 219

1480 J. Wang et al. / Pattern Recognition Letters 26 (2005) 1470–1482
recognition performance when g = 0 compared to

that when g > 0. Fig. 4(b) suggests that the perfor-

mance with g = 0 may be even worse than that of

the standard eigenface approach. This confirms

our claim that although reliance on the gallery

images results in zero bias, it also leads to high

estimation variance due to the small sample size.

As g increases, with the inclusion of the generic
training images, the variance of the estimation is

reduced at the expense of a greater bias. The

max bias value is obtained when g = 1. Therefore,

as g increases, the performance firstly increases as

the variance dominates the estimation error and

then decreases when bias weights in. It should be
Fig. 5. Performance comparison with different generic training set o

performance improvement comparison. (a) Probe 1. (b) Probe 2. (c)
reported that in the studies performed, recognition

performance with g = 1, corresponding to large

bias errors, is slightly worse than the best one ob-

tained. This indicates that the instability due to

small sample size is a more serious problem com-

pared to the problems due to the bias of target

subjects.

The final set of experiments deal with the quan-
tification of the influence of the generic training set

and its sample size on recognition performance.

From the all generic training samples (226 sub-

jects, 3 face images/subject), we randomly select

113 subjects with 3 face images per subject.

The procedure is repeated 5 times. Therefore,
n three probe sets; top: recognition rate comparison; bottom:

Probe 3.



Fig. 6. Performance improve comparison with different generic training sample size on three probe sets. (a) Probe 1. (b) Probe 2. (c)

Probe 3.
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5 different generic training sets are generated to
determine the influence of training set. Fig. 5 de-

picts the recognition rate at g = 1 (RSelection)

and as well as the performance improvement

(RSelection � RPCA) achieved using the proposed

approach over the traditional eigenface method

when different training sets are used. Please note

that RSelection and RPCA refer to the recognition

rate of the proposed method and eigenface ap-
proach respectively. The performance varies

depending on different generic training sets used,

however, the average performance for probe sets

P2 and P3 is consistently better than the one re-

ported by PCA. To determine the influence of

the generic training sample size, we vary the num-

ber of the subjects as well as the number of images

per subject. A comparative evaluation of perfor-
mances obtained using different sample sizes (226

subjects—3 images/subject, 113 subjects—3

images/subject, 226 subjects—2 images/subject) is

depicted in Fig. 6. As it can be seen, the perfor-

mance improvement is proportional to the generic

training sample size. As training using generic sets

can be performed off line, prior to the actual appli-

cations, it is reasonable to assume that a reason-
ably sized generic training set is always available.
6. Conclusion

In this letter, we introduced a feature selection

mechanism which can be applied to solve the prob-

lem of subject identification when only one face

sample per subject is available. The proposed fea-
ture selector determines a low dimensionality fea-
ture space in which intersubject variation is

maximized while intrasubject variation is mini-

mized. Experimentation following the FERET

protocol indicates that the proposed solution

boosts the recognition performance, outperform-

ing the standard eigenface approach in recognition

tasks of practical importance, such as surveillance

photo identification.
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