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ABSTRACT- Ship motion prediction fs an important practical 
problem in design of many Ocean systems i.e. fire controls, air 
craft landing and take off. As such the problem has received con- 
siderable attention In the past and various attempts for designing 
estimators via the statistical methodology were made in the past. 
In this paper the design of the ship position estimator via neural 
networks is considered. The ship position estimation is viewed as 
an adaptive estimation problem for partially unknown systems. 
New powerful neural estimators based on dynamic recurrent 
neural networks are applied to the solution of the ship position 
problem. The new proposed neural estimators, and the state of 
the art statistical filters, are comparatively evaluated via exten- 
sive simulations. The results show that the neural algorithms 
have excellent performance, achieving significant computational 
savings due to their massively parallel structure. 

I. INTRODUCTION 

The accurate on-line estimation of ship motion is essential 
to many ship related problems such as ship steering [l], 
dynamic positioning [21. marine oil exploration [3], off shore 
platforms, and aircraft landing and take off [4]. Based upon 
predicted ship motion, the necessary control commands for 
the control of highly qualified ships like hovercrafts are calcu- 
lated and generated. Ship motion prediction is also essential 
when accurate conml of position mechanisms for guns or 
missiles is required. Especially when tracking of a maneuver- 
ing target is the objective there is a considerable amount of 
delay in transmitting information regarding the motion to the 
position mechanism. It is obvious that accurate predictions are 
required before an appropriate tracking command can be 
issued [3] ,[SI ,[ 141. 

In the past several studies have been carried out for the 
solution of the ship position problem, most of them utilizing 
the Kalman Filter approach, or other least-squares estimation 
methods [1],[3]. However the design of a statistical estimator 
like the Kalman Filter requires the definition of a linear model 
describing the motion of the ship. More specifically, it 
requires a state-space representation of this motion. In most 
cases, the model equations are derived from the ship motion 
spectral density which corresponds to a particular sea-ship 
condition, the wave excitation input, and a gaussian random 
noise as driving input. In other words the sea-state magnitude, 

the ship speed, the ship heading with respect to the waves, and 
the disturbance pattem of the sea waves are incorporated in 
the model [5]. [6]. The unknown wave excitation input trans- 
forms the problem to an adaptive estimation one reducing the 
effectiveness of the traditional filtering techniques. 

Recently, the emerging technology of neural networks [15] 
has been successfully applied to the solution of the estimation 
problem [ 161-[20]. Given the difficulties the conventional 
estimators encounter, neural solutions constitute a unique and 
novel alternative. The trained multilayer perceptrons with 
their massive parallelism, capability to approximate arbitrary 
continuous functions, and significant ability, appear to offer a 
new promising tool in adaptive filtering research. 
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In this paper the estimation of the ship motion based on a 
linear state space model that includes the wave-excitation 
input is proposed. Specifically, the paper is organized as fol- 
lows. In Section 11, the general formulation of the ship motion 
dynamics is presented. In Section 111, new adaptive neural 
estimators are tested in extensive simulations on the ship 
motion model. Comparisons with conventional statistical 
methods in a variety of simulation experiments are also pro- 
vided. Conclusions are given in Section IV. 

11. SHIP MOTION DYNAMICS 

The motion of the ship can be described by a set of differen- 
tial equations. As it was mentioned above, the model depends 
on the sea-state magnitude, the ship speed and the ship head- 
ing with respect to the waves. For a rigid ship travelling with a 
constant forward speed and in the direction which makes an 
arbitrary angle with regard to sinusoidal waves, its motion can 
be described by a set of second-order linear differential equa- 
tions of the form: 

where, q(t) represent a vector of surge, sway and heave 
motions or variations of roll, pitch and yaw orientations, 5 (I) 
represents the sea-wave excitation, and a,b,c are constants that 
represents the virtual mass, damping and restoring stiffness, 
and are determined by the dimensions and shape of the ship. 



The above linear model can be obtained using the power 
spectral density function under different sea-wave excita- 
tion[5]. The most important part of the equation is the repre- 
sentation of the periodic sea-wave excitation. The wave 
excitation can be approximated by the superposition of sinu- 

z ( M  = [1 03 * x ( M + v ( N  (6) 

where, x(t) is the state vector which represents the ship 
motion. It is a 2 x 1 vector defined as follows: 

soidal waves[6]. 

where, Ai is the amplitude of wave excitation, 63 is the 
frequency, 

In most of the cases, the amplitude and the frequency of the 
waves are considered to be time-invariant. When the ship is 
moving with forward speed, there exist certain relation 
between the actual wave frequencies, and the frequencies 
encountered by the ship[6]. Following this relation, the direct 
influence of the waves on the ship is given as follow 

the phase of each different wave. 

s , ( t )  = ZAi.~in(o,i*f+bi) (3) 

(7) 

ee(t) is the truncated wave excitation input, w(t) is the state 
random noise, z(k) is the measurement vector, v(k) is a ran- 
dom noise which corrupts the measurements. 

The position and velocity of the ship are usually measured 
by on-board sensors. Since all the states are not measurable, 
and the measurements always contain noise, filters are 
employed to estimate the actual position of the ship. The 
objective is to obtain the optimal, in the mean square sense, 
state estimate of the state x(k/k), given the measure- 
ment record, Z(k) = (2(1),2(2),., @)). 

HI. SHIP POSlTION ESTIMATORS 

In the past Kalman Filter based techniques, or other statisti- 
cal filters have been used in connection with state space mod- 
els in order to provide meaningful and accurate estimates of 
the ship motion. If the sea-wave excitation (sea condition) is 
known in advance, and all other dynamic and statistical speci- 

(41 
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fications of the above model meet the assumptions of the Kal- 
man Filter, then this filter is the optimal estimator and 
provides the most accurate estimate. 

where, we. is the transformed wave frequency, v is the for- 
ward speed bf the ship, x is the angle between the ship head- 
ing and the wave direction, and g is the standard gravitational 
acceleration. 

Moreover since the energy of each individual wave compo- 
nent rapidly decreases as the frequency of the wave increases, 
the above expression can be simplified further. Truncating the 
high frequency components the expression takes the following 
form: 

N 

i =  1 
6, ( r )  = A i .  sin (aei. r + bi) (5 )  

It is reported in numerous studies [ll, [51,[61,[71 that a 
value of 3 for N, is sufficient to approximate the wave excita- 
tion input, in the case of small ships. After all  the approxima- 
tions and transformations, the equation for the ship motion in 
the equivalent state space representation can be written as fol- 
lows: 

However, it is highly unlikely to know the actual wave 
excitation input function which directly influences the ship 
motion. Since the states of the ship are determined by the 
actual encountered wave excitation input is of great practical 
importance to derive an estimator that can handle successfully 
this uncertainty. Due to the uncertainty in the wave excitation 
input function as given equations (3)-(5) the ship position esti- 
mation can be viewed as an adaptive estimation problem 
where the unknown parameter vector in the model summa- 
rizes the uncertainty in the amplitude of the wave excitation 
and/or the encounter frequencies. It is difficult to estimate the 
states of the above model using statistical filters when all 
these parameters must be identified simultaneously without 
any constraints. Therefore the current methodology is to treat 
only the corresponding amplitudes as parameters Even in this 
case, when a mismatch occurs between the actual model and 
the model used by the designer, the Kalman filter fails. 

A more robust statistical filter, namely the Adaptive Laini- 
otis Filter [8]-[14], was successfully used in this situation. 
Unlike the Kalman Filter, this new filter, due to its adaptive 
nature, identifies in real time, the actual model and provides 
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the appropriate solutions [8],[14]. 

Motivated by the recent interest on neural networks appli- 
cation to state estimation problem [16]-[20] a dynamic neural 
estimator was used in [20] to provide estimates of the current 
and future ship position. The estimator was an input recurrent 
multilayer recurrent neural network, trained using back-prop- 
agation technique, to provide estimates of the ship position, 
Since in that analysis the comparative evaluation between 
neural and the statistical filters was the main objective, the 
dynamic model of the ship motion was completely known. 

The trained multilayer perceptron as state estimator was 
proved to enjoy certain advantages over the conventional fil- 
ters derived through the statistical methodology [181,[201: 

It can handle any assumption or uncertainty concerning 
the statistics of the actual data generation model. It does 
not depend on any assumption about the stochastic input. 
To the contrary the Gaussian nature of the noises in the 
model, and the independence between the state and the 
noises, are fundamental assumptions behind any feasible 
filter derived using statistical methodologies. 
Due to its massive parallel structure and high speed the 
neural estimator can take full advantage of the new hard- 
ware capabilities. That makes the neural and not the sta- 
tistical estimator the preferable choice for real time 
signal processing, and automatic control applications. 

In this work the wave excitation input is assumed partially 
or completely unknown. Since the actual model is not avail- 
able a different approach is used. Several networks are trained 
independently using different variations of the wave excita- 
tion input in the model. Each one of the networks trained with 
data pairs obtained using different assumptions about the 
amplitudes and the frequencies in eq. (5). Due to this training 
methodology each network converges to a different solution. 
When the training is over, a bank of different neural estima- 
tors is available to be applied to the solution of the ship posi- 
tion estimation. In the actual operation phase a nonlinear 
selection mechanism is used to select at every time instant the 
neural estimator that provides the best estimate.The new esti- 
mator is an extension of the Adaptive Lainiotis Filter to neural 
networks. 

The new adaptive neural estimators are compared with the 
Adaptive Lainiotis Filter (the most advanced statistical filter 
for adaptive estimation) in a variety of different uncertainty 
scenarios. 

The following simulation experiments are performed: 

A. SIMULATION I 

In this first experiment, the adaptive neural estimator is 
compared with the ALF. It is supposed for comparison pur- 
poses that the dynamic model is partially known. The encoun- 
ter frequencies in the wave excitation input are known. The 
only unknown element in this experiment is the actual ampli- 
tude in equation (8). The statistical estimator is matched to the 
actual statistical model of the ship dynamics. The experimen- 
tal set-up is given below: 

1) System Model: 

where: a2i-l= Ai cos (39. a%= Ai sin (39, sampling interval, 
0.4 sec, total measurement time, 60 sec, amplitudes of the 
wave excitation inputs A, = 0.75, constant excitation fre- 
quency mi= Z14, different phases bi= 2ZB; b= ZP: b= Zl6, 
zero mean gaussian plant noise with covariance Q=O.OOl, and 
white gaussian measurement noise with covariance, R=O.1 
The initial state x(0) is assumed Gaussian with mean value 
O.l,and variance 1.0 

In order to estimate the state of the above model the follow- 
ing estimators had been used in this first experiment: 

2) statistical estimator: Adaptive Lainiotis Filter (ALF) 

The ALF filter employs two Kalman filters matched to the 
above dynamic and statistical model. The first KF assumes 
that the amplitude is &=OS, and the second one uses the 
value Ai=1.5. Moreover, the filter starts its recursive cycle 
assuming initial state estimate, f(0lo) = 0.1, and initial covari- 
ance, P(Ol0) = 1. 

3) adaptive neural estimator 
The adaptive neural estimator uses two trained recurrent 

neural networks. The first one was trained with data from eq. 
(8)-(10) assuming that the actual amplitude value was &=OS. 
The second one was trained using data generated under the 
alternative hypothesis about the amplitude, namely A,=1.5. 
The derailed configuration for each one of the recurrent net- 
works are summarized below: 
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4)  input recurrent neural network 

network topology: 
two input nodes: the current and the previous measure- 
ments are used as input signals. 
two output nodes: the estimates of the system states. The 
neural network has so many output nodes, as the states 
of the model. 

two hidden layers with 5-5 hidden nodes respectively 

learning rate: 0.005, momentum: 0.2 
leaming parameters: 

mining procedure: 
backpropagation training algorithm 
the target vector during training is the state vector which 
is generated running the above model for a given value 
of the unknown amplitude. 
the network tries to minimize the square error between 
the current output and the target vector. 
each training set consists of 100 input/output pairs (z(k), 
m ) .  
the test data record consists of a sequence of data points 
produced separately from the training record. 
the training procedure is terminated if the mining error 
tolerance is less than 0.01 or if the number of iterations 
of the training set is more than 5000. 

Observations: 

Since there is no theoretical analysis to justify the perfor- 
mance of the neural estimators Monte Carlo techniques are 
used to verify the results. The figure of merit used to compare 
performance is the mean square error averaged over 100 
Monte Carlo runs.Namely, the following performance index, 
is used 

. mc 

(11) 

From the figures it is obvious that the Adaptive Lainiotis 
Filter as well as the adaptive neural estimator perform very 
well. In Fig.2,3 the performances of the estimators in the esti- 
mation of the ship position and the errors over 100 Monte 
Carlo runs, using the same performance index shown above 
are given. (Fig. 14 )  

B. SIMULATION 11 

In a second experiment, a simple recurrent neural network 
is compared with the Adaptive Lainiotis Filter under a differ- 
ent uncertainty scenario. This time the amplitude is known but 
the encounter frequencies are assumed unknown. The system 
model that generates the test data during the operation phase 
is that of equations (8)-(10). In this simulation study a recur- 

rent neural network is trained without knowing the exact wave 
excitation input. However in the operation phase this network 
is used to provide estimates of the model states. The configu- 
ration of the two estimators used in the experiment are sum- 
marized below: 

I) statistical estimator Adaptive Lainiotis Filter (ALF) 

The AL,F filter employs two Kalman filters matched to the 
statistics of the actual model. The first KF has complete 
knowledge of the actual dynamics. Its knows the exact form 
of the wave excitation input. The second one is simply 
assumed that there is no wave input in the model. Moreover, 
the filter starts its recursive cycle assuming initial state esti- 
mate, m(010) = 0.1, and initial covariance, P(O10) = 1. 

2) input recurrent neural estimator 

network topology: 
two input nodes: the current and the previous measure- 
ments are used as input signals. 
two output nodes: the estimates of the system states. The 
neural network has so many output nodes, as the states 
of the model. 

two hidden layers with 5-5 hidden nodes respectively. 

learning rate: 0.005, momentum: 0.2 
leaming parameters: 

training procedure: 
backpfopagation training algorithm. 
the target vector during training is a state vector which is 
generated running the model of eq. (8)-(10) assuming as 
wave input a random input uniformly distributed over 
the interval [-0.5.0.51. 
the network tries to minimize the square error between 
the current output and the target vector. 
each training set consists of 100 input/output pairs (z(k). 
x(k)). 
the test data record consists of a sequence of data points 
produced separately from the training record using the 
actual wave excitation pattem. 
the training procedure is terminated if the training error 
tolerance is less than 0.01 or if the number of iterations 
of the training set is more than 5OOO. 

Observations: 
As was expected the Adaptive Lainiotis filter identities the 

actual model and uses the matched Kalman filter to estimate 
the state of the model. The neural estimator also successfully 
estimate the ship position despite the minimum information 
used for its training. It must be emphasized that the neural 
estimator does not require any information about the inputs to 
the model statistical or deterministic. The performance of the 
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statistical filter depends on the information about the possible 
variations of the unknown elements. If the actual parameter 
vector is far away from the trajectory values used in the filters 
bank its performance deteriorates. These possibility will be 
explored in a final simulation study (Fig. 5-7). 

C .  SIMULATION 111 

In this final experiment the two adaptive methodologies are 
compared using a more difficult uncertainty scenario. The fil- 
ters must provide state estimates without any knowledge 
about the wave excitation input. This time uncertainty exists 
in both the amplitude and frequencies.The encounter frequen- 
cies are unknown for both the neural and the statistical estima- 
tor.The configuration of the two estimators are summarized 
below: 

1)  statistical estimator: Adaptive Lainiotis Filter (ALF) 

The ALF filter employs two Kalman filters matched to the 
above dynamic and statistical model. The first KF assumes 
that the amplitude is Ai=0.5, and the second one uses the 
value Ai=1.5. However none of the above filters in its bank 
knows the exact form of the wave input. Both the filters are 
assume that only the part of the eq.(lO) associated with the 
cosine input is present. The filter starts its recursive cycle 
assuming initial state estimate, a(O/O) = 0.1, and initial covari- 
ance, P(O/O) = 1. 

2) adaptive neural estimator 

The adaptive neural estimator uses two trained recurrent 
neural networks. The first one was trained with data from eq. 
(8)-(10) assuming that the actual amplitude value was &=OS. 
The network did not know the exact form of the input. The 
network assumed that it was a random input uniformly distrib- 
uted over the interval [-0.5,0.5]. Similar to this the second 
recurrent net was trained using data generated under the alter- 
native hypothesis about the amplitude, namely 4= 1 5During 
its training the wave input was assumed uniformly distributed 
over the interval [-1.5,1.51. The detailed configuration for 
each one of the recurrent networks are summarized below: 

3) input recurrent neural network 

network topology: 
two input nodes: the current and the previous measure- 
ments are used as input signals. 
two output nodes: the estimates of the system states. The 
neural network has so many output nodes, as the states 
of the model. 

two hidden layers with 5-5 hidden nodes respectively. 
learning parameters: 

learning rate: 0.005, momentum: 0.2 

backpropagation training algorithm. 
the target vector during training is a state vector which is 
generated running the state space model for a given form 
of the unknown input. 
the network tries to minimize the square error between 
the current output and the target vector. 
each training set consists of 100 input/output pairs (z(k), 
XQ). 
the test data record consists of a sequence of data points 
produced separately from the training record. The actual 
model as described in simulation I was used to produce 
the test data record. 
the training procedure is terminated if the training error 
tolerance is less than 0.01 or if the number of iterations 
of the training set is more than SOOO. 

training procedure: 

Observations: 
In this final experiment the neural adaptive estimator per- 

forms better than the corresponding statistical one. The state 
estimates and the estimation errors summarized over 100 
Monte Carlo trials are summarized in Fig. 8-11. 

Summarizing the results from the above simulation studies the 
following conclusions can be drawn: 

The neural estimator provides a very reliable solution to 
the estimation problem The proposed adaptive neural 
estimator provides accurate and consistent results 
despite the significantly less information used for its 
training. 

In more realistic situations where the actual model is not 
completely known the neural estimator outperforms the 
conventional estimators. However advanced statistical 
filters like the Adaptive Lainiotis Filter (ALF) can be 
used successfully in some cases. On the other hand the 
adaptive neural estimator was proved the best choice for 
all the different uncertainty scenarios used in this study. 

The ability of the neural network based estimator to pro- 
vide accurate solutions to the ship position problem 
under more realistic assumptions, and its massively par- 
allel structure and high speed, makes it the preferable 
choice for such real time signal processing applications. 

Iv. CONCLUSIONS 

The real time ship motion estimation was considered in this 
paper. The approach taken, was to design a neural network 
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based estimator, that can handle more realistic scenarios about 
the underlying physical model. A comparison with an 
advanced statistical estimator ALF, was provided. Simulation 
experiments were carried out in order to assess the perfor- 
mance of the proposed neural estimator. In the ship motion 
estimation problem the neural network estimator shows excel- 
lent performance, though it was derived using minimal infor- 
mation about the dynamics of the model. 
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