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Single-Sensor Camera Image Processing

RASTISLAV LUKAC and KONSTANTINOS N. PLATANIOTIS

16.1 Introduction

In recent years a massive research and development effort has been witnessed in color imaging technologies

in both the industry and the ordinary life. Color is commonly used in television, computer displays, cinema

motion pictures, print, and photographs. In all these application areas the perception of color is paramount

for the correct understanding and dissemination of the visual information. Recent technological advances

have reduced the complexity and the cost of color devices, such as monitors, printers, scanners, and copiers,

thus allowing their use in the office and home environment. However, it is the extreme and still increasing

popularity of the consumer, single-sensor digital cameras which boosts today the research activities in the

field of digital color image acquisition, processing, and storage. Single-sensor camera image processing

methods are becoming increasingly important due to the development and proliferation of emerging digital

camera-based applications and commercial devices, such as imaging enabled mobile phones and personal

digital assistants, sensor networks, surveillance, and automotive apparatus.

This chapter focuses on single-sensor camera image processing techniques with particular emphasis

on image interpolation based solutions. The chapter surveys in a systematic and comprehensive man-

ner demosaicking, demosaicked image postprocessing and camera image zooming solutions which utilize

data-adaptive and spectral modelling principles to produce camera images with an enhanced visual quality.

The existence of realistic and efficient design procedures and the variety of processing solutions developed

through the presented data-adaptive, spectral model-based processing framework make this family of pro-

cessing methodologies an indispensable tool for single-sensor imaging.
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The chapter begins with Section 16.2 which briefly discusses the digital camera solutions, emphasizing

cost-effective hardware architecture for a consumer-grade camera equipped with a color filter array placed

on the top of a single image sensor. The most common color filter array layouts are also introduced and

commented upon.

The next part of the chapter, Section 16.3, describes the work-flow in the single-sensor cameras. Par-

ticular emphasis is placed on the essential camera image processing of the sensor data. The second part of

this section presents various image processing paradigms which are taxonomized according to their ability

to follow the structural and the spectral characteristics of the acquired image. This section also introduces

the so-called generalized camera image processing solution and lists the spatial, structural, and spectral

constraints imposed on such a solution in practical applications. This part of the chapter also includes

Section 16.4 which focuses on edge-sensing processing mechanism and Section 16.5 which targets the es-

sential spectral model for single-sensor image processing. The omission of either of these elements during

the single-sensor imaging operations results in significant degradation of the visual quality of the full-color

camera image.

The main part of the chapter is devoted to single-sensor imaging solutions developed using the con-

cept of image interpolation. The connection between image interpolation operations and the single-sensor

imaging solutions which use the edge-sensing mechanism and spectral model is highlighted. Examples

and experimental results included in the chapter indicate that the framework is computationally attractive,

yields good performance and produces images of reasonable visual quality. In this part of the chapter, Sec-

tion 16.6 focuses on the demosaicking process or spectral interpolation which is used to generate a color

image from a single-sensor reading and is an integral processing step in a single-sensor camera pipeline.

Since demosaicked images often suffer from reduced sharpness, color shifts and visual artifacts, the use of

demosaicked image postprocessing or full-color image enhancement is often utilized in order to enhance

fine details and produce natural colors. This processing step is extensively analyzed and documented in

Section 16.7. Finally, image spatial resolution expansion is often implemented in digital cameras with lim-

ited optical zooming capabilities. To this end, Section 16.8 focuses on camera image zooming or spatial

interpolation which is to be performed either in the demosaicked image domain or directly on the sensor

data. Although based on the same principle, these zooming approaches produce the different visual quality

and have the different computational complexity.

The chapter concludes with Section 16.9. The section summarizes the main single-sensor camera image

processing ideas.
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16.2 Digital Camera Architectures

Digital color cameras [1], [2], [3] capture color images of real-life scenes electronically using an image sen-

sor, usually a charge-coupled device (CCD) [4], [5] or complementary metal oxide semiconductor (CMOS)

[6], [7] sensor, instead of the film used in the conventional analog cameras. Therefore, captured photos can

be immediately viewed by the user on the digital camera’s display, and immediately stored, processed, or

transmitted. Without any doubt this is one of the most attractive features of digital imaging.

The captured photo can be considered a K1 ×K2 Red-Green-Blue (RGB) digital color image x : Z2 →
Z3 representing a two-dimensional matrix of three-component samples (pixels) x(r,s) = [x(r,s)1, x(r,s)2, x(r,s)3]T ,

where each individual channel of x can be considered a K1 × K2 monochrome image xk : Z2 → Z, for

k = 1, 2, 3. The pixel x(r,s) represents the color vector [8] occupying the spatial location (r, s), with

r = 1, 2, ..., K1 and s = 1, 2, ..., K2 denoting the image row and column, respectively. The value of the

R (k = 1), G (k = 2), and B (k = 3) component x(r,s)k defined in the integer domain Z is equal to an

arbitrary integer value ranged from 0 to 255 in a standard 8-bits per component representation and denotes

the contribution of the k-th primary in the color vector x(r,s). The process of displaying an image creates a

graphical representation of the image matrix where the pixel values represent particular colors in the visible

spectrum (Figure 16.1) [8].1

Due to the monochromatic nature of the image sensor, digital camera manufacturers implement several

solutions to capture the color nature of the true visual scene. The following three are the most popular

designs currently in use.

• Three-sensor device (Figure 16.2) [1], [2], [3]: This architecture acquires color information using a

beam splitter to separate incoming light onto three optical paths. Each path has its own Red, Green

or Blue color filter having different spectral transmittances and sensor for sampling the filtered light.

Since the camera color image is obtained by registering the signals from three sensors, precise me-

chanical and optical alignment is necessary to maintain correspondence among the images obtained

from the different channels [1]. Besides the difficulties of maintaining image registration, the high

cost of the sensor2 and the use of a beam splitter make the three-sensor architecture available only for

some professional digital cameras.

• X3 technology-based device (Figure 16.3) [9], [10], [11]: This architecture uses a layered single

image sensor which directly captures the complete color information at each spatial location in an

image during a single exposure. Color filters are stacked vertically and ordered according to the energy

of the photons absorbed by silicon. Taking advantage of the natural light absorbing characteristics of

1The figures in this chapter can be seen in color at http://www.dsp.utoronto.ca/∼lukacr/CRCcip/CRCchapLukac.pdf
2The sensor is the most expensive component of the digital camera and usually takes from 10% to 25% of the total cost [3].
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silicon, each sensor cell records color channels depth-wise in silicon.3 The drawbacks of the sensor

are its noisy behavior (especially for the layers in the base of the chip) and relatively low sensitivity.

Furthermore, the sensor usually suffers from intensive optical/eletrical cross talk which, however, can

be processed out for natural images by clever signal processing. Specialized X3 technology-based

sensors have been used in various medical, scientific, and industrial applications.

• Single-sensor device (Figure 16.4) [2], [3]: This architecture reduces cost by placing a color filter

array (CFA), which is a mosaic of color filters, on top of the conventional single CCD/CMOS im-

age sensor to capture all three primary (RGB) colors at the same time. Each sensor cell has its own

spectrally selective filter and thus, it stores only a single measurement. Therefore, the CFA image

constitutes a mosaic-like gray-scale image with only one color element available in each pixel loca-

tion. The two missing colors must be determined from the adjacent pixels using a digital processing

solution called the demosaicking process [2], [12], [13]. Such an architecture represents the most cost-

effective method currently in use for color imaging and for this reason is almost universally utilized

in consumer-grade digital cameras.

16.2.1 Consumer-Grade Camera Hardware Architecture

Following the block scheme shown in Figure 16.5, the camera acquires the scene by first focusing and

transmitting light through the CFA. To reduce the various artifacts present in the demosaicked image due to

down-sampling the color information performed by the CFA, a blurring filter is placed in the optical path

[14]. Because of the presence of blurring filters in a blocking system, both sharpness and resolution of the

image captured using consumer-grade camera is usually lower compared with the architectures depicted in

Figures 16.2 and 16.3, [10], [14].

The acquired visual information is sampled using the image sensor and an analog-to-digital (A/D) con-

verter. The DRAM buffer temporally stores the digital data from the A/D converter and then passes them to

the application-specific integrated circuit (ASIC) which together with the microprocessor realize the digital

data processing operations, such as demosaicking and image resizing. The firmware memory holds the set

of instructions for the microprocessor, and along with the ASIC they are most distinctive elements between

the camera manufactures.

After demosaicking has been completed, the digital image is displayed and stored in memory, often

the 16 MB built-in memory or the optional memory supplied by the manufacturers usually in the form of

memory stick cards of various types and storage capacities. The end-user is often offered the option to

3The light directed to the sensor is absorbed first by the Blue layer, then by the Green, and finally by the Red layer placed

deepest in silicon [9].
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re-process stored images by passing them back to the ASIC unit. The interested reader should refer to [14],

[15], [16] for additional information on the camera optical and hardware components.

16.2.2 Color Filter Array (CFA)

Apart from camera firmware, another distinctive element of the consumer-grade digital cameras is the CFA.

The type of a color system and the arrangements of the color filters in the CFA significantly vary depending

on the manufacturer.

The color systems used in the various CFA designs can be divided into [17]: i) tri-stimulus (RGB, YMC)

systems, ii) systems with mixed primary/complementary colors (e.g. MGCY pattern), and iii) four and more

color systems (e.g. those constructed using white and/or colors with shifted spectral sensitivity). Although

the last two variants may produce more accurate hue gamut compared to tri-stimulus systems, they often

limit the useful range of the darker colors [18]. In addition, the utilization of four or more colors in the

CFA layout increases computational complexity of the demosaicking operations. For this reason and due to

the fact that color images are commonly stored in RGB color format the tri-stimulus RGB based CFAs are

widely used by camera manufacturers.

A number of RGB CFAs with the varied arrangement of color filters in the array are used in practice

[17], [18], [19], [20], [21]. Key factors which influence this design issue relate to [17]: i) cost-effective

image reconstruction, ii) immunity to color artifacts and color moiré, iii) reaction of the array to image

sensor imperfections, and iv) immunity to optical/electrical cross talk between neighboring pixels.

The first criterion is essential because of the real-time processing constraints imposed on the digital

camera. Among the various CFAs shown in Figure 16.6, periodic CFAs such as the Bayer and Yamanaka

patterns enjoy a distinct advantage over pseudo-random (or random) CFAs, since the aperiodic nature of the

later makes the demosaicking process more complex [22]. To reduce the array’s sensitivity to color artifacts

in the reconstructed image, each pixel of the CFA image should be surrounded in its neighborhood by all

three primary colors [18], as it can be seen in the arrays shown in Figures 16.6(c)-(e). On the other hand,

images captured using periodic CFAs (e.g. Bayer and Yamanaka patterns) usually suffer from color moiré

effects, which may be reduced by using pseudo-random (or random) CFAs instead [17]. It should be also

mentioned that the wavelength of the G color band is close to the peak of the human luminance frequency

response and thus, some CFAs [Figures 16.6(a), (b) and (e)] use the double number of G color filters than

that of the R and B filters to reduce the amount of spectral artifacts in the outputted, reconstructed image

[23], [24].

CFA designs, such as the diagonal stripe pattern and the diagonal Bayer pattern are considered to be

the best in terms of their robustness against image sensor imperfections since defects are typically observed
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along rows or columns of the sensor cells. With respect to immunity to optical/electrical cross talk between

neighboring pixels,4 CFAs with the fixed number of neighbors corresponding to each of the three primary

colors significantly outperform pseudo-random CFA layouts.

As it can be seen from the above discussion, there is no CFA which satisfies all design constraints.

Therefore, camera manufacturers usually select a CFA layout by taking into consideration cost, compati-

bility with other processing elements, and hardware constraints. Particular attention is devoted to the type

and resolution of the image sensor, camera optical system, and image processing capabilities of the device.

The intended application (e.g. consumer photography, surveillance, astronomy), in which the single-sensor

device will be used, is also an important factor to be considered.

16.3 Camera Image Processing

After acquiring the raw sensor data, the image is preprocessed, processed and postprocessed to produce a

faithful digital representation of the captured scene. Figure 16.7 depicts an example flow of the processing

steps performed in the consumer-grade camera pipeline. Note that the depicted flow may significantly vary

depending on the manufacturer [14], [15].

The preprocessing starts with defective pixel detection and correction of missing pixels by interpolating

using the neighboring data. In this way, impairments caused by the failure of certain photo-elements in the

sensor can be rectified. If the captured data resides in a nonlinear space, often the case due to the electron-

ics involved, then a linearization step is usually implemented. The subsequent dark current compensation

reduces the level of dark current noise introduced into the signal through thermally generated electrons in

the sensor substrate. This processing step is essential in low exposure images where both signal and noise

levels may be comparable. The last preprocessing step is the so-called white balance which is used to correct

the captured image for the scene illuminant by adjusting the image values, thus recovering the true scene

coloration. The interested reader can find an overview of the preprocessing steps in [14], [15], [16].

After preprocessing, the consumer-grade digital camera performs intensive image processing. Apart

from demosaicking which is a mandatory and integral step in the processing pipeline needed in restoring the

color information originally present in the captured image, camera image processing includes some optional

steps. For instance, the visual quality of the restored color image can be improved by postprocessing the

demosaicked image, whereas the spatial resolution of the captured image can be enhanced by zooming the

CFA image and/or (postprocessed) demosaicked image. It will be shown in this chapter that these four

camera image processing steps are fundamentally different, although they employ similar, if not identical,

digital signal processing concepts.

4Diagonally located neighbors have a lower crosstalk contribution than the vertically/horizontally located neighbors [18].
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Once the restoration of the full-color information is completed, the captured image enters the postpro-

cessing stage in order to enhance its coloration and transform it to an output color encoding, appropriate

for displaying and printing purposes [14]. Since the spectral sensitivities of the camera are not identical

to the human color matching function [16], the color correction process adjusts the values of color pixels

from those corresponding to accurate scene reproduction to those corresponding to visually pleasing scene

reproduction. The subsequent tone scale rendering process transforms the color image from the unrendered

spaces where a 12-16 bit representation was used for calculations to a rendered (mostly sRGB [25]) space

with 8-bit representation, as it is required by most output media. The obtained image is then enhanced by

sharpening/denoising in order to reduce the low-frequency content in the image and remove insignificant,

noise-like details. An overview of the postprocessing steps can be found in [14], [15], [16].

The consumer-grade cameras (Figure 16.7) commonly store the rendered/enhanced color image in a

compressed format using the Joint Photographic Experts Group (JPEG) standard [14]. However in recent

years, the Exchangeable Image File (EXIF) format [26], [27] has been popularized due to its convenient

implementation and the possibility to store additional (metadata) information regarding the camera and

the environment. High-end single-sensor digital cameras (Figure 16.8) apply image compression onto the

preprocessed image, and then the compressed image data are formatted and stored in a Tagged Image File

Format for Electronic Photography (TIFF-EP) [14], [16]. In this format, the image is stored along with

additional information, such as the details about camera setting, spectral sensitivities, and illuminant used.

Additional information about the methods used for compression and storage of camera images can be found

in [28], [29], [30], [31], [32], [33].

As it can be seen in Figures 16.7 and 16.8, the camera image processing can be implemented in i) a

conventional digital camera which stores the demosaicked (RGB) output, or in ii) a companion personal

computer (PC) which interfaces with the digital camera which stores the images in the CFA-like format.

Both above processing pipelines can use the same processing solution. However, the approach depicted in

Figure 16.8 allows for the utilization of sophisticated solutions which cannot, due to their complexity, be

embedded in the conventional camera image processing pipeline (Figure 16.7) which has to operate under

real-time constraints. In addition, due to the utilization of the companion PC in the pipeline the end-user

can select different settings of the processing solutions and re-process the image until certain quality criteria

are met. Finally, it should be mentioned that Figures 16.7 and 16.8 depict the basic camera work-flow. Both

pipelines are flexible enough to accommodate various image, video and multimedia processing operations,

such as video demosaicking [34], CFA video compression [35], and digital rights management (e.g. image

indexing by embedding the metadata information into the camera image to allow for securing, and easy

organization/retrieval of the captured images in the personal or public databases) [36], [37].
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16.3.1 CFA Data Imaging

For the sake of clarity in the terminology used in the rest of the chapter it should be emphasized here that the

image outputted by the preprocessing module in Figures 16.7 and 16.8 is called hereafter the CFA image,

which is a K1 × K2 gray-scale mosaic-like image z : Z2 → Z with the CFA (scalar) data z(r,s). Since

information about the arrangements of color filters in the actual CFA is readily available either from the

camera manufacturer (Figure 16.7) or obtained from the TIFF-EP format (Figure 16.8), the CFA image z

shown in Figure 16.9(a) can be transformed to a K1 ×K2 three-channel (color) image x : Z2 → Z3 shown

in Figure 16.9(b) with the RGB pixels x(r,s) = [x(r,s)1, x(r,s)2, x(r,s)3]T .

The correspondence between the z(r,s) values and the R (k = 1), G (k = 2), or B (k = 3) color filters

at the (r, s) CFA locations can be indicated using spatial location flags [22]. Following the dimensions of

the CFA image z, a K1 × K2 vectorial field d : Z2 → Z3 of the corresponding location flags d(r,s)k is

initialized using the default value d(r,s)k = 1 to indicate the presence of a CFA value z(r,s) in the color

vector x(r,s) for the proper value of k. For example, if (r, s) corresponds to a G CFA location in the image

z, then x(r,s) = [0, z(r,s), 0]T and d(r,s)k = 1 for k = 2 should be used. If (r, s) corresponds to a R (or B)

CFA location, then x(r,s) = [z(r,s), 0, 0]T (or x(r,s) = [0, 0, z(r,s)]T ) and d(r,s)k = 1 for k = 1 (or k = 3)

should be utilized. In all other cases, the flags are set to d(r,s)k = 0 indicating the two missing components

in x(r,s) are set equal to zero to denote their portion to the coloration of the image x shown in Figure 16.9(b).

Note that the presented approach is independent from the CFA structure and thus suitable for an arbitrary

CFA shown in Figure 16.6, [22].

16.3.2 Structural Information-Based Image Processing

Operating on the CFA image z or its colored variant x, processing solutions included in the camera image

processing module in Figures 16.7 and 16.8 can be classified considering the image content (structure)

into the two basic paradigms shown in Figure 16.10: (a) non-adaptive processing, and (b) data-adaptive

processing .

The former paradigm [see Figure 16.10(a)] uses no data-adaptive control to follow the structural content

of the captured image [38], [39], [40], [41], [42], thus often reducing to a linear processing cycle which

is easy to implement. However, it is well-known that most image processing tasks cannot be efficiently

accomplished by linear techniques. Image signals are nonlinear in nature due to the presence of edges and

thus, most of the linear and non-adaptive techniques tend to blur structural elements such as fine image

details [43]. It should also be mentioned that images are perceived through the human visual system, which

has strong nonlinear characteristics [44].

The latter paradigm (see Figure 16.10(b)] uses the so-called edge-sensing weights to follow structural
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content of the image [45], [46], [47]. Such a processing solution, often called nonlinear processing, usually

results in enhanced performance. Nonlinear, data-adaptive methods are able to preserve important color

structural elements and produce sharply looking images.

16.3.3 Spectral Information-Based Image Processing

With respect to spectral characteristics, camera image processing can be divided into (Figure 16.11): (a)

component-wise processing, (b) spectral model-based processing, and (c) vector processing.

Component-wise methods [Figure 16.11(a)], directly adopted from the gray-scale imaging, process each

channel of the color image separately [38], [39], [48]. By omitting the essential spectral information and

thus introducing a certain inaccuracy in the component-wise estimates, the projection of the outputted color

components into the restored RGB image often produces color artifacts (a new color quite different from

the neighbors) [8]. On the other hand, component-wise processing methods are usually fast and easy to

implement.

Spectral model-based processing methods [Figure 16.11(b)] use the essential spectral information from

the input camera image to eliminate color shifts and artifacts in the image to be outputted [2], [49], [50],

[51]. This processing paradigm assumes vector (multi-channel) samples as the input and generates a single-

channel output. Therefore, the procedure has to be repeated for each color channel in order to generate

the full-color output. Due to its computational simplicity, the spectral model-based solutions are the most

widely used in camera image processing among the paradigms shown in Figure 16.11.

Similarly to the spectral model-based paradigm, vector processing methods [Figure 16.11(c)] utilize the

inherent correlation amongst the color channels and process the color image pixels as vectors [8], [43]. In

this way, color artifacts in the output image are greatly reduced [8]. However, since vector processing meth-

ods generate the output color image in a single pass, they are usually computationally expensive compared

with the solutions depicted in Figures 16.11(a) and (b). Therefore, the use of vector processing in camera

image processing is rather limited at the moment.

16.3.4 Generalized Camera Image Processing Solution

From the discussion in Sections 16.3.2-16.3.3 is evident that an ideal processing solution should be able

to follow both the structural content of the image and the spectral characteristics of its color content. To

produce visually pleasing output images, it is essential to overcome both [52]: i) the CFA limitations and ii)

the spatial, structural and spectral constraints imposed on the processing solution.

Figure 16.12 depicts the block diagram of the so-called generalized processing solution [2], [24], [36].

The characteristics of such a solution are essentially determined by the edge-sensing mechanism (ESM) and
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the spectral model (SM) which are implemented through the operators Λ and Ψ, respectively. The ESM

operator Λ uses both the structural and the spatial characteristics to preserve the sharpness and structural

information of the captured image. The SM operator Ψ uses both the spectral and the spatial characteristics

of the neighboring color pixels to eliminate spectral artifacts in the outputted signal. Thus, both the ESM

and SM are based on the local neighborhood area which is determined by parameter ζ.

Spatial constraints imposed on the processing solution relate to the size of an area of support and the

form of the shape-mask utilized in processing. By denoting (r, s) as the location under consideration, due

to the strong spatial correlation among the neighboring image samples of the natural image it is commonly

expected that the utilization of the closest 3×3 neighborhood {(r±u, s±v); u, v ∈ {−1, 0, 1}} ensures the

faithful reconstruction of the color vector x(r,s). Since the CFA image has a mosaic-like structure and not

all of the neighboring locations correspond to a color channel being reconstructed, operating on the image

x obtained using the well-known Bayer CFA [see Figure 16.13(a)] the local neighborhood described by ζ is

most commonly limited to the shape-masks shown in Figures 16.13(b)-(e), [45], [47], [53].

To quantify the contributions of the adjacent color vectors x(i,j) = [x(i,j)1, x(i,j)2, x(i,j)3]T to the vector

x(r,s) under consideration, the so-called data-adaptive concept is used as follows [2], [51], [52]:

x(r,s) =
∑

(i,j)∈ζ

{w′
(i,j)Ψ(x(i,j),x(r,s))} (16.1)

where (i, j) ∈ ζ denotes the spatial location arrangements on the image lattice, e.g. ζ = {(r − 1, s), (r, s −
1), (r, s+1), (r+1, s)} shown in Figures 16.13(b),(d),(e) and ζ = {(r−1, s−1), (r−1, s+1), (r+1, s−
1), (r + 1, s + 1)} shown in Figure 16.13(c). Each of the available color vectors x(i,j) inside ζ is associated

with the normalized weighting coefficient w′
(i,j) defined as:

w′
(i,j) = w(i,j)/

∑
(i,j)∈ζ

w(i,j) (16.2)

where w(i,j) are the so-called edge-sensing weights. By emphasizing inputs which are not positioned across

an edge and directing the processing along the natural edges in the true image, the use of the edge infor-

mation in the data-adaptive formula in (16.1) preserves the structural image contents, and thus ensures a

sharply formed output image.

16.4 Edge-Sensing Mechanism (ESM)

Structural constraints of (16.1) relate to the form of the ESM operator Λ used to generate the weights in

(16.2) as {w(i,j); (i, j) ∈ ζ} = Λ(x, ζ). If the w(i,j) values are not obtained through the function Λ(·) of

the color components available in the image x, i.e. the fixed setting {w(i,j) = ξ; (i, j) ∈ ζ} to a non-zero

constant ξ is used, the data-adaptive solution in (16.1) reduces to non-adaptive schemes, such as those listed

in [38], [40], [42], [49].
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However, such an omission of the structural information in (16.1) leads to the significant degrada-

tion of the visual quality [2], [47]. Therefore, most of the available designs employ the data-dependent

ESM operator Λ(x, ζ) which uses some form of inverse gradient of the samples in the image x. Large

image gradients usually indicate that the corresponding vectors x(i,j) are located across edges. Weights

{w(i,j); (i, j) ∈ ζ} = Λ(x, ζ) are inversely proportional to gradient values, thus penalizing the correspond-

ing inputs x(i,j) in (16.1). Since the original CFA components are readably available in the color image

x as explained in Section 16.3.1, in order to increase the accuracy of the adaptive design in (16.1) it is

common to restrict Λ(·) only on the acquired CFA data z(·,·), i.e. edge-sensing weights are obtained as

{w(i,j); (i, j) ∈ ζ} = Λ(z, ζ).

16.4.1 Aggregation Concept-Based ESM

Cost considerations and real-time constraints in digital apparatus necessitate the utilization of a simple and

easy to implement ESM Λ(z, ζ), such as the one defined as follows [2], [54]:

w(i,j) = 1/
∑

(g,h)∈ζ
|z(i,j) − z(g,h)| (16.3)

where
∑

(g,h)∈ζ |z(i,j) − z(g,h)| is the aggregated absolute difference (Figure 16.14) between the CFA com-

ponents z(·,·) inside the neighborhood ζ. This approach significantly reduces memory requirements since

both the ESM operator Λ and the data-adaptive estimator (16.1) use the same inputs occupying the spatial

locations (i, j) ∈ ζ. This also makes the ESM implementation in (16.3) independent from the CFA structure

and thus flexible for the use in the imaging pipeline equipped with the CFA other than the Bayer CFA [22].

Thinking in these dimensions, different forms of the ESM Λ(z, ζ) have been proposed in [2].

The framework allows for obtaining the edge-sensing weights in an automated manner (Figure 16.7),

with the example of the ESM formulated in (16.3). In addition to this design, the weights can be controlled

by the end-user, as shown in Figure 16.8 [2]. One of the possible solutions is the utilization of the well-

known sigmoidal function. As empirical evidence suggests that the relationship between perception and

distances measured in physical units is exponential in nature [55], the weights calculated using

w(i,j) = β(i,j)(1 + exp{
∑

(g,h)∈ζ
|z(i,j) − z(g,h)|})−r (16.4)

can lead to some performance improvements in terms of the visual quality [2]. In the definition above,

r is a parameter adjusting the weighting effect of the membership function and β(i,j) is a normalizing

constant. Within the framework, numerous solutions may be constructed by changing the way the weights

are calculated as well as the way the available color components from different color channels are treated.

The choice of these parameters determines the characteristics and influences the efficiency of the processing

solution.
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16.4.2 Neighborhood Expansion-Based ESM

On the other hand, the constraint imposed on the size of ζ in Λ(z, ζ) may reduce the edge-sensing capability

of the solution. To overcome the limitation, unfortunately at the expense of an increased implementation

complexity and memory requirements, the ESM operator Λ(z, ζ) is modified to Λ(z, ζ ′) by considering a

larger, typically 5 × 5 or 7 × 7 neighborhood ζ ′ = {(r ± u, s ± v); u, v ∈ {−2, 0, 2}} or ζ ′ = {(r ± u, s ±
v); u, v ∈ {−3, 0, 3}}, respectively. In this case, the weights {w(i,j); (i, j) ∈ ζ} = Λ(z, ζ ′), for ζ ⊂ ζ ′, are

calculated using the components z(·,·) in ζ ′. The described concept has been employed in various processing

solutions, for example in [12], [45], [47], [46], [56], [57]. It should be mentioned that these ESMs may not

be directly applicable to non-Bayer CFAs [22] as they implicitly differentiate amongst the color components

corresponding to different color channels inside ζ ′.

To demonstrate the concept, the ESMs used in [52], [57] is described below. Employing a diamond-

shape mask ζ = {(r − 1, s), (r, s − 1), (p, q + 1), (p + 1, q)} in (16.1), the weights w(i,j) for (i, j) ∈ ζ are

calculated using the original CFA components z(i′,j′) for (i′, j′) ∈ ζ ′ as follows [see Figure 16.15(a)]:

w(r−1,s) = 1/(1 + |z(r−2,s) − z(r,s)| + |z(r−1,s) − z(r+1,s)|)
w(r,s−1) = 1/(1 + |z(r,s−2) − z(r,s)| + |z(r,s−1) − z(r,s+1)|)
w(r,s+1) = 1/(1 + |z(r,s+2) − z(r,s)| + |z(r,s+1) − z(r,s−1)|)
w(r+1,s) = 1/(1 + |z(r+2,s) − z(r,s)| + |z(r+1,s) − z(r−1,s)|)

(16.5)

Otherwise, a square-shape mask ζ = {(r−1, s−1), (r−1, s+1), (r+1, s−1), (r+1, s+1)} is considered

denoting the weights are obtained as [see Figure 16.15(b)]:

w(r−1,s−1) = 1/(1 + |z(r−2,s−2) − z(r,s)| + |z(r−1,s−1) − z(r+1,s+1)|)
w(r−1,s+1) = 1/(1 + |z(r−2,s+2) − z(r,s)| + |z(r−1,s+1) − z(r+1,s−1)|)
w(r+1,s−1) = 1/(1 + |z(r+2,s−2) − z(r,s)| + |z(r+1,s−1) − z(r−1,s+1)|)
w(r+1,s+1) = 1/(1 + |z(r+2,s+2) − z(r,s)| + |z(r+1,s+1) − z(r−1,s−1)|)

(16.6)

At this point it should be mentioned that although a significant research effort has been devoted to the

development of various ESMs, the latest advances in camera image processing clearly indicate that high-

quality camera images are obtained only if the edge-sensing camera image processing solution employs a

proper SM [2], [53].

16.5 Spectral Model (SM)

In the camera image processing environment, spectral constraints relate to the utilization of the essential

spectral characteristics of the captured image during the image interpolation process [52]. Based on the

assumption that a typical natural image exhibits significant spectral correlation among its RGB color planes
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and spatial correlation among the neighboring pixels, a SM is used to support any interpolation operations

performed in the single-sensor imaging pipeline.

Following the data-adaptive formula (16.1), the spectral characteristics of the two neighboring vectors

x(i,j) and x(r,s) are incorporated into the interpolation process through the SM operator Ψ(x(i,j),x(r,s)).

If no spectral information is considered during processing, the spectral estimator in (16.1) reduces to

component-wise processing:

x(r,s)k =
∑

(i,j)∈ζ
{w′

(i,j)x(i,j)k} (16.7)

where x(·,·)k denotes the k-th components of the color vector x(·,·). By omitting the essential spectral

information, the component-wise solutions in [38], [39], [48] produce various color shifts and spectral

artifacts.

16.5.1 Modelling Assumption

The rationale behind the SM construction can be easily explained using the basic characteristics of the color

vectors. According to the tristimulus theory of color representation, the three-dimensional RGB vector

x(r,s) = [x(r,s)1, x(r,s)2, x(r,s)3]T is uniquely defined [8] by its length (magnitude) Mx(r,s)
=

∥∥x(r,s)

∥∥ =√
x2

(r,s)1 + x2
(r,s)2 + x2

(r,s)3 and orientation (direction) Dx(r,s)
= x(r,s)/

∥∥x(r,s)

∥∥ = x(r,s)/Mx(r,s)
, where

‖Dx(r,s)
‖ = 1 denotes the unit sphere defined in the vector space. Thus, any color image can be considered

a vector field where each vector’s direction and length are related to the pixel’s color characteristics and

influence significantly its perception by the human observer [8].

It is well-known that natural images consist of small regions which exhibit similar, if not identical,

color-chromaticity properties [58], [59]. Since color-chromaticity relates to the color vectors’ directional

characteristics determined using Dx(·,·) , it is reasonable to assume that two color vectors x(r,s) and x(i,j)

occupying spatially neighboring locations (r, s) and (i, j) have the same chromaticity characteristics if

they are collinear in the RGB color space [52]. Based on the definition of dot product x(r,s).x(i,j) =

‖x(r,s)‖‖x(i,j)‖ cos
(〈x(r,s),x(i,j)〉

)
, where ‖x(·,·)‖ denotes the length of x(·,·) and 〈x(r,s),x(i,j)〉 denotes

the angle between three-component color vectors x(r,s) and x(i,j), the enforcement of orientation constraints

via the SM operator Ψ(x(i,j),x(r,s)) in (16.1) implies that the following condition holds [52]:

〈
x(r,s),x(i,j)

〉
= 0 ⇔

∑3
k=1 x(r,s)kx(i,j)k√∑3

k=1 x2
(r,s)k

√∑3
k=1 x2

(i,j)k

= 1 (16.8)

Since both the magnitude and directional characteristics of the color vectors are essential for the human

perception, the above concept should be extended by incorporating the magnitude information Mx(·,·) into

the modelling assumption. Using color vectors x(i,j) and x(r,s) as inputs to the so-called generalized vector

SM [52], the underlying modelling principle of identical color chromaticity enforces that their linearly
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shifted variants [x(r,s) + γI] and [x(i,j) + γI] are collinear vectors:

〈
x(r,s) + γI,x(i,j) + γI

〉
= 0 ⇔

∑3
k=1 (x(r,s)k + γ)(x(i,j)k + γ)√∑3

k=1 (x(r,s)k + γ)2
√∑3

k=1 (x(i,j)k + γ)2
= 1 (16.9)

where I is a unity vector of proper dimensions and x(·,·)k + γ is the k-th component of the linearly-shifted

vector [x(·,·) + γI] = [x(·,·)1 + γ, x(·,·)2 + γ, x(·,·)3 + γ]T .

16.5.2 Advanced Design and Performance Characteristics

Through the parameter γ, the model controls the influence of both the directional and the magnitude char-

acteristics of the neighboring vectors in the camera image processing. The scale shift introduced by the

parameter γ prevents color shifts in flat areas as well as near edge transitions. A number of processing

solutions, with different design characteristics and performance, can be thus obtained by modifying the γ

parameter. The interested reader can find extensive analysis and experimentation, as well as detailed guide-

lines for the use of the vector SMs in the single-sensor imaging pipeline in [52].

It is also proven in the same work [52] that the vector model defined over the two-dimensional vectors

generalizes the previous SMs. Namely, for the parameter γ = 0 the vector SM reduces to

x(r,s)k

x(i,j)k
=

x(r,s)2

x(i,j)2
(16.10)

which implements the basic modelling assumption behind the color-ratio model [49]. Using the ratio values

in (16.10), the model enforces hue uniformity in localized image areas.

If γ → ∞ is considered, the vector SM generalizes the color-difference model which implies uniform

image intensity in localized image areas [50]. In this case, the modelling assumption of uniform image inten-

sity is enforced by constraining the component-wise magnitude differences between spatially neighboring

color vectors as follows [52]:

x(p,q)k − x(i,j)k = x(p,q)2 − x(i,j)2 (16.11)

Finally, through the simple vectors’ dimensionality reduction the vector generalizes the normalized

color-ratio model [51] defined as follows:

x(r,s)k + γ

x(i,j)k + γ
=

x(r,s)2 + γ

x(i,j)2 + γ
(16.12)

The model above enforces the basic modelling assumption of constant hue both near edge transitions and flat

image areas, thus leading to the enhanced performance. For example, Figure 16.16 shows that the significant

improvements of the visual quality are obtained when the color-ratio model is replaced in the well-known

Kimmel demosaicking algorithm with the normalized color-ratio model [51]. Similar conclusions have been

drawn in [2] where various SMs have been tested using the different data-adaptive demosaicking solutions.
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16.6 Demosaicking

As it was mentioned in Section 16.5, demosaicking is an integral and probably the most common processing

step used in single-sensor digital cameras [2], [12]. The objective of the demosaicking process is to estimate

the missing color components of the vectorial pixels x(r,s) obtained using the intermediate step described in

Section 16.3.1 and produce the demosaicked full-color image. Demosaicking performs spectral interpolation

x = fϕ(z) which transforms a K1×K2 gray-scale image z : Z2 → Z shown in Figure 16.9(a) to a K1×K2

three-channel, full color image x : Z2 → Z3 depicted in Figure 16.17(a), [24], [60].

It is well-known that [8], [43]: i) natural images are non-stationary due to the edges and fine details, ii)

a typical natural image exhibits significant (spectral) correlation among its RGB color planes, and iii) the

spatially neighboring pixels are usually highly correlated. Thus, by operating in small localized image areas,

each of which can be treated as stationary, a camera image processing solution can minimize local distortion

in the outputted image by utilizing the spatial, structural and spectral characteristics during processing.

Re-formulating the spectral interpolation function fϕ(z) as fϕ(Λ, Ψ, ζ, z) with z denoting the acquired

CFA image and ζ determining the local neighborhood area [Figures 16.13(b)-(e)], the performance of fϕ(·)
critically depends on the choice of the ESM and SM operators Λ and Ψ, respectively [2], [52]. As shown in

Figure 16.18, the omission of any of the operators Λ and Ψ during demosaicking results in excessive blur,

color shifts and visible aliasing effects [53].

16.6.1 Bayer CFA-Based Demosaicking Procedure

Because of the double number of G elements in the Bayer CFA [Figure 16.13(a)], the conventional practice

is to start the demosaicking process by estimating the missing G components in the pixel array [2], [12], [47],

[42]. Following the discussion in Section 16.3.1, the (r, s) location to be demosaicked are readily indicated

by the corresponding location flags d(r,s)k = 0, with k = 2 for the G components. In all such locations,

the demosaicking solution updates the color vector x(r,s) using the component-wise data-adaptive formula

(16.7) with k = 2 denoting the G plane and ζ = {(r − 1, s), (r, s − 1), (r, s + 1), (r + 1, s)} indicating the

available neighboring locations [Figure 16.13(b)]. In the same time, the solution also updates the location

flag for k = 2 to d(r,s)k = 2 differentiating thus between the original CFA locations (d(r,s)k = 1), the

demosaicked locations (d(r,s)k = 2), and the locations to be demosaicked (d(r,s)k = 0). The procedure is

repeated until a fully populated G plane is obtained, i.e. until all the location flags are set to d(·,·)2 
= 0.

Since the above processing step makes the G components available at the R and B CFA locations, the

missing R and B components can be demosaicked using the spectral model based formula (16.1). For

example, by adopting the color difference model (16.11), the generalized spectral interpolator in (16.1) is

modified to demosaick the R (k = 1) or B (k = 3) component x(r,s)k occupying the location (r, s) with
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d(r,s)k = 0 as follows:

x(r,s)k = x(r,s)2 +
∑

(i,j)∈ζ
{w′

(i,j)(x(i,j)k − x(i,j)2)} (16.13)

where ζ = {(r − 1, s − 1), (r − 1, s + 1), (r + 1, s − 1), (r + 1, s + 1)} denotes the available locations as

shown in Figure 16.13(c). The procedure successively updates the flags to d(r,s)k = 2 for k = 1 and k = 3

at each location (r, s) which is being demosaicked via (16.13). In the sequence, (16.13) should be re-applied

with ζ = {(r − 1, s), (r, s − 1), (r, s + 1), (r + 1, s)} shown in Figures 16.13(d) and (e) to fully populate

both the R and B channels. After demosaicking all available locations and updating all the corresponding

flags for k = 1 and k = 3 to d(·,·)k 
= 0 the demosaicking step produces a reconstructed color image, such

as the one shown in Figure 16.17(a).

If the higher visual quality is required [Figure 16.17(b)], then both the sharpness and coloration of the

demosaicked image can be enhanced by employing a postprocessor in the processing pipeline [60], [61].

Since the postprocessing step can be viewed as a stand-alone solution, as it is demonstrated in Fig. 16.7,

the demosaicked image postprocessing (full-color image enhancement) related issues are discussed in Sec-

tion 16.7.

16.6.2 Universal Demosaicking

By taking advantage of the CFA structure when the demosaicking solution is constructed, the solution

becomes too dependent on the particular CFA used, such as the Bayer CFA [Figure 16.6(a)] in the procedure

described above. The dependency mostly relates to the shape masks [Figures 16.13(b)-(e)] and the form of

the ESM used during the processing, and it significantly reduces, if not removes altogether, the flexibility

of the solution to be employed in the pipeline equipped with a non-Bayer CFA. For instance, the traditional

forms of the ESM listed in [12] or the one described in Section 16.4.2 cannot be used in conjunction with the

CFAs shown in Figures 16.6(c)-(h) since each subtraction operation in the gradient calculations requires the

presence of the two components from the same color channel. To eliminate these drawbacks, a processing

solution must be independent from the arrangement of the color filters in the CFA. This constraint has been

addressed in the framework first introduced and analyzed in [22].

The framework employs a 3×3 sliding window instead of the specialized shape masks [Figures 16.13(b)-

(e)] known from the Bayer CFA-based demosaicking procedures. In addition, demosaicking the k-th channel

of the color image x, the framework uses the control mechanism over the demosaicking steps in (16.7) and

(16.13) to prevent from operating in areas which lack adequate input information [22]. Note that the number

of color components corresponding to particular color channels and their locations in the processing window

vary not only between the CFAs, but often inside the CFA itself (e.g. for pseudo-random CFAs). Therefore,

the framework tracks the structural image characteristics using the aggregation concept-based ESM in (16.3)
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which obviously constitutes a flexible ESM. The interested reader can find the detailed description of the

universal demosaicking framework in [22].

Figure 16.19 demonstrates that the choice of the CFA may be one of the most important factors in

designing the single-sensor imaging pipeline. Although the same processing solution has been employed to

process the CFA image, results corresponding to the different CFAs differ significantly in terms of aliasing

artifacts present in the demosaicked image.

16.7 Demosaicked Image Postprocessing

As it was mentioned in Section 16.6.1 and demonstrated in Figure 16.17, both the color appearance and the

sharpness of the demosaicked image can be further improved by employing a postprocessor in the pipeline

to localize and eliminate false colors and other impairments created during demosaicking [60], [61]. Post-

processing the demosaicked image is an optional step, implemented mainly in software and activated by

the end-user. It performs full color image enhancement fη(Λ, Ψ, ζ,x), since the input of the solution is a

fully restored RGB color image x and the output is an enhanced RGB color image. Unlike demosaicking,

postprocessing can be applied iteratively until certain quality criteria are met.

Since there is no method to objectively determine whether or not a color component is inaccurate, the

postprocessing framework should utilize the differences between the color components generated by a de-

mosaicking solution and the original CFA components included in the restored color vector x(r,s) of the

demosaicked image x, [60], [61]. If the demosaicked image postprocessing directly follows the demosaick-

ing step in the imaging pipeline, then the location flag values updated during demosaicking to d(r,s)k = 2

are restored to d(r,s)k = 0, for r = 1, 2, ..., K1, s = 1, 2, ..., K2, and k = 1, 2, 3, to guide the demosaicked

image postprocessing step. If the camera stores the demosaicked image and the demosaicked image postpro-

cessing is to be performed independently from the demosaicking step, then the proper location flags d(r,s)k

can be obtained from the metadata information stored in the EXIF format. Finally, it should be mentioned

that only the components obtained using the demosaicking process are enhanced by the postprocessing

process, i.e. original CFA components are kept unchanged.

Following the Bayer CFA-based demosaicking procedure in Section 16.6.1, postprocessing of the G

color plane in all locations (r, s) with the constraints d(r,s)2 = 0 can be realized using R or B components

as follows [60]:

x(r,s)2 = x(r,s)k +
∑

(i,j)∈ζ
{w′

(i,j)(x(i,j)2 − x(i,j)k)} (16.14)

where ζ = {(r − 1, s), (r, s − 1), (r, s + 1), (r + 1, s)} denotes the available G CFA locations [Fig-

ure 16.13(b)]. If (r, s) corresponds to the R CFA location (d(r,s)1 = 1), then the parameter k = 1 should

be used in (16.14). Otherwise, (16.14) is used for the B CFA location (d(r,s)3 = 1) and the pertinent pa-
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rameter is k = 3. The weights w′
(i,j) can be obtained in (16.2) using an arbitrary ESM listed in [12] or in

Sections 16.4.1 and 16.4.2.

After the G plane is enhanced, the postprocessing step is completed by enhancing the demosaicked R

(k = 1) and B (k = 3) components using (16.13), first with ζ = {(r − 1, s − 1), (r − 1, s + 1), (r + 1, s −
1), (r + 1, s + 1)} shown in Figure 16.13(c) and then with ζ = {(r − 1, s), (r, s− 1), (r, s + 1), (r + 1, s)}
shown in Figures 16.13(d) and (e). This step is performed for R (or B) components only in locations

corresponding to G and B (or G and R) CFA values, i.e. d(r,s)1 = 0 (or d(r,s)3 = 0). The postprocessing

process can lead to some significant improvements of the visual quality for most, if not all, demosaicking

solutions (Figure 16.20) [60], [61]. The Bayer CFA-based postprocessing concepts can be easily extended

using the control mechanisms described in Section 16.6.2 to complete the demosaicking process for an

arbitrary CFA. Such a universal postprocessing solution has been introduced in [22].

16.8 Camera Image Zooming

Cost-effectiveness considerations in imaging-enabled mobile phones, surveillance, and automotive appara-

tus often lead to image outputs which do not have the sufficient spatial resolution for subsequent image

analysis tasks, such as object recognition and scene interpretation [62]. Therefore, digital image zooming

is required. In addition, along with the demosaicking, image zooming is the most commonly performed

processing operation in single-sensor digital cameras. Image zooming or spatial interpolation of a digital

image is the process of increasing the number of pixels representing the natural scene [8], [63]. Unlike

spectral interpolation (demosaicking) fϕ(·), spatial interpolation fφ(·) preserves the spectral representation

of the input. Operating on the spatial domain of a digital image, spatial interpolation transforms [24]: i) a

color image x to an enlarged color image x′ = fφ(x), or ii) a gray-scale image z to an enlarged gray-scale

image z′ = fφ(z).

As it is shown in Figure 16.7, the spatial resolution of captured camera images can be increased by

performing the spatial interpolation fφ(·) using: i) the demosaicked image x [see Figure 16.21(a)], or ii) the

acquired, grayscale CFA image z [see Figure 16.21(b)]. The different order of demosaicking and zooming

operations employed in the process significantly influences both the performance (Figure 16.22) and the cost

of the processing pipeline [24], [62], although from the camera-user’s perspective both cascades f τ
φ (fϕ(z))

and fϕ(f τ
φ (z)) transform a K1 × K2 CFA image z : Z2 → Z to an enlarged τK1 × τK2 demosaicked

image x′ : Z2 → Z3, where τ ∈ Z is an integer zooming factor. Other differences result from the capability

of a zooming solution to follow the structural content of the captured image and the way how the essential

spectral information is treated during the processing.
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16.8.1 Spatial Interpolation of Demosaicked Images

Since the consumer-grade cameras conventionally store the image in the demosaicked full-color format, the

spatial resolution of the captured image is most often increased using a color image zooming technique

operating on the demosaicked RGB color vectors. For example, assuming the zooming factor τ = 2, the

zooming procedure maps the demosaicked color vectors x(·,·) into the enlarged image x′ with the pixels

x′
(·,·) using x′

(2r−1,2s−1) = x(r,s), with r and s denoting the spatial coordinates in the demosaicked image

[64]. Thus, the pixels x′
(2r,2s) denote the new rows and columns (e.g. of zeros) added to the demosaicked

image data x(r,s), for r = 1, 2, ..., K1 and s = 1, 2, ..., K2.

The procedure produces the three pixel configurations shown in Figures 16.23(a)-(c) [8], [64], however

configurations depicted in Figures 16.23(b) and (c) lack the available components needed for faithful recon-

struction of the enlarged image x′ with the pixels x′
(r,s), for r = 1, 2, ..., 2K1 and s = 1, 2, ..., 2K2. There-

fore, the procedure first interpolates the vector x′
(r,s) located in the center of the four available neighboring

vectors {x′
(i,j), for (i, j) ∈ ζ} with ζ = {(r−1, s−1), (r−1, s+1), (r+1, s−1), (r+1, s+1)}, as shown in

Figure 16.23(a). Then, all configurations become similar to the one depicted in Figure 16.23(d), and the pro-

cedure interpolates the vector x′
(r,s) situated in the center of the four neighboring vectors {x′

(i,j), for (i, j) ∈
ζ} with ζ = {(r−1, s), (r, s−1), (r, s+1), (r+1, s)}. The process results in the fully-populated, enlarged

color image x′.

To the date, the known color image spatial interpolation methods can be categorized into two classes

[24]: i) component-wise solutions [Figure 16.11(a)], and ii) vector solutions [Figure 16.11(c)]. As shown

in Figure 16.24, the same signal processing concept employed in the both component-wise and vector pro-

cessing paradigms can lead to different visual quality of the enlarged images, especially in terms of color

artifacts and zipper effects.

The component-wise zooming solutions, such as those presented in [65], [66], [67], process each color

channel of the enlarged image x′ separately as follows :

x′
(r,s)k = f

(∑
(i,j)∈ζ

{w′
(i,j)x

′
(i,j)k}

)
(16.15)

where x′
(·,·)k denotes the k-th components (i.e. k = 1 for R, k = 2 for G, and k = 3 for B) of the color vector

x′
(·,·) and f(·) is a nonlinear function that operates over the weighted average of the input components. The

weights w′
(i,j) calculated in (16.2) can be obtained using the approaches described in [68], [69], [70], [71].

Due to the component-wise nature of a zooming solution, the enlarged images obtained using (16.15) often

suffer form color shifts and artifacts [64]. Moreover, the lack of edge-sensing combined with the omission

of the spectral information during the processing often results in aliasing, edge burring, jagged lines or

blockiness [63].
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Vector techniques process the available color pixels x′
(i,j) as set of vectors :

x′
(r,s) = f

(∑
(i,j)∈ζ

{w′
(i,j)x

′
(i,j)}

)
(16.16)

preserving thus the spectral correlation of the enlarged image’s color channels, reducing the presence of

most color artifacts, and eliminating shifted color edges [64]. The most popular vector approaches are based

on theory of robust order-statistics [8], [63], [64], and data-adaptive concepts [8], [64].

16.8.2 Spatial Interpolation of CFA Images

CFA image zooming solutions [24], [62], [72] constitute a novel way of spatial interpolation in single-

sensor cameras. By using the zooming solution prior to the demosaicking solution (see Figure 16.7), the

zooming approach prevents from amplifying the imperfections and visual impairments introduced in the

demosaicking step [24]. Moreover, since the zooming operations are performed on the gray-scale CFA

image instead of the demosaicked full-color image, the CFA zooming approach is obviously computationally

simple and attractive to be embedded in cost-effective devices, such as imaging-enabled mobile phones and

pocket-size digital cameras.

The CFA zooming procedure first maps the CFA pixels z(·,·) into the enlarged gray-scale image z′ with

the pixels z′(·,·) and then interpolates the empty positions using the available values. From the first view the

procedure is quite similar to the one used in demosaicked image zooming. However, it is shown in [24], [62]

that the common mapping step z′(2r−1,2s−1) = z(r,s) used in zooming the demosaicked image with a factor

τ = 2 discards the essential mosaic-like structure of the enlarged Bayer CFA image and prohibits the correct

use of the demosaicking step. Therefore, zooming the CFA image requires the special, CFA-based approach

which maps the CFA values z(r,s) with r and s denoting the spatial coordinates in the CFA image z to

z′(2r−1,2s) = z(r,s) for r odd and s even, to z′(2r,2s−1) = z(r,s) for r even and s odd, and z′(2p−1,2q−1) = z(r,s)

otherwise [62]. The remaining positions in the enlarged image z′ are filled-in by zeros.

After the mapping step is completed [Figure 16.25(a)], the procedure continues by interpolating the

pixels corresponding to G CFA locations using z′(r,s) =
∑

(i,j)∈ζ {w′
(i,j)z

′
(i,j)} in the two steps due to the

lack of spatial information. Thus, z′(r,s) is the center of the four neighboring values z′(i,j) described first by

ζ = {(r − 2, s), (r, s − 2), (r, s + 2), (r + 2, s)} depicted in Figure 16.25(a), and then by ζ = {(r − 1, s −
1), (r − 1, s + 1), (r + 1, s − 1), (r + 1, s + 1)} in the updated image [Figure 16.25(b)].

By populating all G locations in the enlarged image z′, the obtained information along with the original

CFA values can be used as the basis for the spectral-model based interpolation operations used to populate

R and B locations in the image z′. If the color-difference model in (16.11) is employed, then the values
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corresponding to R locations in the image z′ can be obtained as follows:

z(r,s) = z(r,s−1) +
∑

(i,j)∈ζ
{w′

(i,j)(z
′
(i,j) − z′(i,j−1))} (16.17)

whereas the values corresponding to B locations are obtained using

z(r,s) = z(r−1,s) +
∑

(i,j)∈ζ
{w′

(i,j)(z
′
(i,j) − z′(i−1,j))} (16.18)

In both above equations, the values z′(i,j−1) and z′(i−1,j) represent the spatially shifted neighboring locations

used to overcome the lack of spectral information in the locations (i, j). Additional information about these

spatial interpolation steps can be found in [24], [62]. The weights w′
(i,j) in (16.2) can be calculated using

the concepts listed in Section 16.4.1. An overview of the other ESM solutions suitable for CFA zooming

can be found in [24].

By populating R and B CFA locations using (16.17) and (16.18), respectively, the procedure interpolates

the center of the four z′(i,j) values described by ζ = {(r−2, s−2), (r−2, s+2), (r+2, s−2), (r+2, s+2)}
shown in Figure 16.25(c) and then by ζ = {(r− 2, s), (r, s− 2), (r, s + 2), (r + 2, s)} in the updated image

shown in Figure 16.25(d). The process results in the enlarged, mosaic-like image z′ [see Fig.16.25(e)],

which is a gray-scale image similarly to the one shown in Figure 16.21(b).

16.9 Conclusion

The digital image processing operations which support digital cameras equipped with a color filter array

placed on top of a single image sensor were the main focus of this chapter. These consumer-grade cameras

capture the natural scene first by producing the gray-scale, mosaic-like image and then by using extensive

calculations based on the concept of image interpolation to output the full-color, visually pleasing image.

Taking into the consideration the way the structural content and the spectral characteristics of the captured

image are treated during the processing, as well as the nature of the interpolation operations, the chapter

provided a taxonomy of single-sensor camera image processing solutions.

Since the edges and fine details (i.e. structural content) are essential for image understanding and color

(i.e. spectral information) plays a significant role in the perception of edges or boundaries between two

surfaces, data-adaptive spectral model-based solutions were the main focus of the chapter. Building on the

refined edge-sensing and spectral modelling principles, these solutions constitute a rich and expanding class

of tools for demosaicking, demosaicked image postprocessing and camera image zooming. By utilizing

both the structural and spectral characteristics of the samples within the localized image area in cascaded

sophisticated processing steps, the presented framework can: i) overcome the spatial, structural and spectral

constraints imposed on the solution, ii) produce sharply-looking, naturally colored camera images, and iii)

mimic the human perception of the visual environment.
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As shown in this work, image interpolation operators based on the edge-sensing and spectral modelling

principles constitute a basis for demosaicking which is the mandatory processing step in single-sensor imag-

ing to obtain the full-color image. The same processing tools can be used to enhance the visual quality of

the demosaicked image and to increase the spatial resolution of the captured images. Therefore, it is not

difficult to see that single-sensor camera image processing techniques have an extremely valuable position

in digital color imaging and will be also essential for new-generation imaging-enabled consumer electronics

as well as novel multimedia applications.
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Figure 16.1: Color image representation in the RGB color domain.

Figure 16.2: Three-sensor device.

Figure 16.3: X3 technology based device.

Figure 16.4: Single-sensor device.
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Figure 16.5: Consumer camera hardware architecture.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16.6: Examples of RGB CFAs: (a) Bayer pattern, (b) Yamanaka pattern, (c) diagonal stripe pattern, (d) vertical

stripe pattern, (e) diagonal Bayer pattern, (f,g) pseudo-random patterns, (h) HVS-based pattern.
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Figure 16.7: Example image processing flow in a consumer-grade camera.

Figure 16.8: Example image processing flow in a camera interfacing with a companion personal computer.

(a) (b)

Figure 16.9: CFA image obtained using a well-known Bayer CFA with the GRGR phase in the first row: (a) acquired

gray-scale CFA image, (b) CFA image re-arranged as a color image.
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(a) (b)

Figure 16.10: Image processing paradigms divided considering the structural characteristics: (a) non-adaptive pro-

cessing, (b) data-adaptive processing.

(a) (b)

(c)

Figure 16.11: Image processing paradigms divided considering the spectral characteristics: (a) component-wise pro-

cessing, (b) spectral model-based processing, (c) vector processing.

Figure 16.12: Generalized camera image processing solution suitable for demosaicking, demosaicked image postpro-

cessing and camera image zooming.
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(a) (b) (c) (d) (e)

Figure 16.13: Shape-masks used in restoring the color information in the Bayer CFA image: (a) Bayer CFA with the

GRGR phase in the first row, (b) G channel restoration, (c-e) R and B channel restoration.

(a) (b)

Figure 16.14: Aggregation concept depicted for the shape masks: (a) the shape mask ζ = {(r−1, s), (r, s−1), (r, s+

1), (r + 1, s)} [see Figures 16.13(b),(d),(e)], and (b) ζ = {(r− 1, s− 1), (r− 1, s + 1), (r + 1, s− 1), (r + 1, s + 1)}
[see Figure 16.13(c)].

(a) (b)

Figure 16.15: Neighborhood expansion concept depicted for the shape-masks: (a) ζ = {(r − 1, s), (r, s − 1), (r, s +

1), (r + 1, s)} [see Figures 16.13(b),(d),(e)], and (b) ζ = {(r− 1, s− 1), (r− 1, s + 1), (r + 1, s− 1), (r + 1, s + 1)}
[see Figure 16.13(c)].
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(a)

(b)

(c)

Figure 16.16: Performance improvements obtained by changing the SM: (a) original image, (b) Kimmel algorithm

based on the color-ratio model [45], (c) Kimmel algorithm based on the normalized color-ratio model [51].

(a) (b)

Figure 16.17: Demosaicking process: (a) restoration of the image shown in Figure 16.9(a) using the demosaicking

solution, (b) image shown in Figure 16.17(a) enhanced using the demosaicked image postprocessor.
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(a) (b)

(c) (d)

Figure 16.18: Influence of the ESM and SM on the quality of the demosaicked image: (a) used both ESM and SM,

(b) omitted ESM, (c) omitted SM, (d) omitted both ESM and SM.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16.19: Influence of the CFA on the quality of the demosaicked image demonstrated using the same processing

solution: (a-h) demosaicked image respectively corresponding to the RGB CFAs shown in Figures 16.6(a)-(h); (i)

original image.
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 16.20: Demosaicked image postprocessing: (a,f) original images, (left) images demosaicked using the solu-

tions presented in (b) [38], (c) [45], (d) [73], (e) [42], (g) [56], (h) [74], (i) [38], (j) [75]; (right) the corresponding

enhanced images obtained by the postprocessing method presented in [60].
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(a) (b)

Figure 16.21: Spatial interpolation: (a) demosaicked image zooming using the image shown in Figure 16.17(b); (b)

CFA image zooming using the image shown in Figure 16.9(a).

(a)

(b)

(c)

Figure 16.22: Camera image zooming: (a) original images, (b) demosaicking followed by demosaicked image zoom-

ing, (c) CFA image zooming followed by demosaicking.

(a) (b) (c) (d)

Figure 16.23: Demosaicked image zooming with a zooming factor τ = 2. Spatial arrangements obtained by: (a-c)

mapping the demosaicked image x into the enlarged image x′, (d) completing the spatial interpolation of x′ using the

pattern shown in (a).
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(a) (b) (c)

(a) (b) (c)

Figure 16.24: Median filtering based spatial interpolation [64]: (a) original (small) images, and (b,c) up-sampled

images obtained using (b) component-wise processing, (c) vector processing.

(a) (b) (c) (d) (e)

Figure 16.25: CFA image zooming: (a) mapping step using the CFA image z shown in Figure 16.13(a); (b-d)

interpolation steps; (e) enlarged CFA image z′.


