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Abstract

Bayesian symbol-by-symbol detection using a finite sequence observation space has been the subject of renewed research

interest. The Bayesian transverse equalizer (BTE) and Bayesian decision feedback equalizer (BDFE) are two common

Bayesian detectors. It is often difficult to evaluate the bit-error rate (BER) performance of these Bayesian detectors since

the BER cannot be analytically evaluated and the high complexity of these detectors makes simulation techniques

computationally prohibitive, especially at low BERs. We propose a framework to evaluate the BER for the BTE and a

lower bound on the BER for the BDFE. This framework is based on finding an approximation of the conditional error

probability for each of the noiseless channel states in the observation space. The optimal Bayesian decision boundary is

approximated by a set of hyperplanes, and each hyperplane is rotated some minimal angle to make them mutually

orthogonal/parallel. The conditional probability of error can be readily evaluated on the topology of orthogonal/parallel

rotated hyperplanes. Our BER evaluation is accurate and does not require simulations. A reduced complexity approach to

evaluate the BER is also developed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Equalization and detection play an integral role
in combating distortion and interference in high-
speed communication links [1,2] and high-density
data storage systems [3,4]. For a class of equalizers
based on finite channel observation symbol-by-
symbol detection (SBSD), the maximum a poster-
e front matter r 2005 Elsevier B.V. All rights reserved
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iori equalizer or Bayesian transverse equalizer
(BTE) provides optimal performance [5–7]. For
another class of finite channel observation SBSDs
with decision feedback, the maximum a posteriori
Bayesian decision feedback equalizer (BDFE) pro-
vides optimal performance [5,6]. In the case of either
the BTE or BDFE, there does not exist a closed
form expression for the bit-error rate (BER).

In many communication and data storage sys-
tems, it is important to evaluate the BER of the
equalization process. In the absence of an analytical
formulation, there are several approaches that can
be used to evaluate the BER. Using an analytical
approximation, an approximate lower bound of the
BER for the BTE is presented in [7] and this method
.

www.elsevier.com/locate/sigpro


ARTICLE IN PRESS
A. Elkhazin et al. / Signal Processing 86 (2006) 1992–2000 1993
can be easily applied to the BDFE. Simulated
results presented in this paper however show that
this method does not produce an accurate BER. A
direct method to evaluate the BER is through
conventional Monte Carlo simulations. Unfortu-
nately, Monte Carlo simulations become computa-
tion infeasible at low BERs. This is especially true
for channels with long impulse responses since the
complexity of either the BTE or BDFE increases
exponentially with channel impulse response length.
Simulation techniques that employ importance
sampling (IS) have been proposed [8,9] to evaluate
the BER with fewer simulated bits than conven-
tional Monte Carlo simulations.

In this paper, we develop a method to evaluate
the BER for the BTE and BDFE, without simula-
tion. In the case of the BDFE, we make the
assumption of correct previous decisions, thus the
evaluated BER is a lower bound on the true BER.
For both BTE and BDFE, the Bayesian decision
boundary is determined by the set of possible
noiseless channel outputs or channel states and
BER is the average probability of error ðPeÞ over all
channel states. The Pe for a given channel state
cannot in general be evaluated analytically. We
introduce the orthogonalized decision boundary
(ODB) as a means to approximately evaluate the
Pe for a given channel state. At asymptotically high
SNR, the decision boundary consists of a set planar
regions [9,10]. The ODB is formed by rotating the
planar regions asymptotic boundary to be orthogo-
nal and/or parallel, forming a hyperprism topology.
The Pe can be readily evaluated using Gaussian
error functions for the hyperprism topology.

The remainder of this paper is organized as
follows. The signal space is defined for both the
BTE and BDFE in Section 2 and the asymptotic
boundary is described in Section 3. In Section 4, the
ODB is developed as a means to evaluate the BER
and a reduced complexity ODB (RCODB) is
developed in Section 5. The BER performance and
computational complexity of the ODB and RCODB
methods is compared to other methods in Section 6.
2. Signal space definition

We will assume a real-valued channel with
received samples generated by

rðkÞ ¼
Xnc�1

i¼1

cisðk � iÞ þ nðkÞ, (1)
where rðkÞ is the observed sample, sðkÞ is a
transmitted symbol, fcig represent the overall
channel response and nðkÞ is the additive noise
taken from a identically independently distributed
Gaussian source of variance s2N . The transmitted
symbol sðkÞ can take on values s1 ¼ A, s1 ¼ �A for
some constant A.

The definition of the channel output vector is
slightly different for the BTE and BDFE. Accord-
ingly, we use the following two subsections to
define parameters relating to the channel output
vector.
2.1. BTE definition

For the BTE [5], a channel observation vector
rðkÞ ¼ ½rðk þ dÞ; . . . ; rðk þ d �mþ 1Þ�T is used to
make the kth symbol decision, where d is the
decision delay and m is the feedforward order. With
no loss of generality, we choose m ¼ nc, d ¼ nc � 1
and express rðkÞ in vector form as

rðkÞ ¼ CsðkÞ þ nðkÞ, (2)

where sðkÞ ¼ ½sðk þ dÞ; . . . ; sðk � dÞ�T is the trans-
mitted sequence of symbols that influences rðkÞ,
nðkÞ ¼ ½nðk þ dÞ; . . . ; nðkÞ�T is a vector of Gaussian
noise samples and C is a ðmÞ � ðm� nc � 1Þ

C ¼

c0 c1 � � � cnc�1 0 � � � 0

0 c0
. .
.

cnc�2 cnc�1
. .
. ..

.

..

. . .
. . .

. . .
. . .

. . .
.

0

0 � � � 0 c0 c1 � � � cnc�1

2
6666664

3
7777775
.

(3)

The vector sðkÞ can take on ns ¼ 2ncþm�1 possible
values. Let S denote the set of all possible sðkÞ

vectors and consider partitioning S into two classes
according to the value of sðkÞ

S ¼
[

1plp2

SðlÞ, (4)

where

SðlÞ9fsðkÞjsðkÞ ¼ slg. (5)

Let s
ðlÞ
j , j 2 ½1 � � � 22m�2� be the jth element in SðlÞ

for any ordering of SðlÞ and let RðlÞ denote the
corresponding set of noiseless channel states
given by

RðlÞ ¼ fr
ðlÞ
j jCs

ðlÞ
j ; s

ðlÞ
j 2 SðlÞg. (6)
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2.2. BDFE definition

The BDFE [5] uses a channel observation vector
rðkÞ ¼ ½rðk þ dÞ; . . . ; rðk þ d �mþ 1Þ�T and set of
previous decisions ŝðkÞ ¼ ½ŝðk � 1Þ; . . . ; ŝðk � nb þ

2Þ� to make the kth symbol decision, where d, m,
and nb are the decision delay, feedforward and
feedback orders, respectively. The choice of
d ¼ nc � 1, m ¼ nc, nb ¼ nc � 1 will be used since
this choice is sufficient to guarantee linear separ-
ability for different signal classes [5]. With this
choice, the channel observation vector can be
expressed as

rðkÞ ¼ C1sf ðkÞ þ C2sbðkÞ þ nðkÞ, (7)

where sf ðkÞ¼½sðkþdÞ; . . . ; sðkÞ�T, sbðkÞ¼½sðk � 1Þ;
. . . ; sðk � dÞ�T, nðkÞ ¼ ½nðk þ dÞ; . . . ; nðkÞ�T and

C1 ¼

c0 c1 � � � cnc�1

0 c0
. .
. ..

.

..

. . .
. . .

.
c1

0 � � � 0 c0

2
666664

3
777775,

C2 ¼

0 0 � � � 0

cnc�1 0 . .
. ..

.

cnc�2 cnc�1
. .
.

0

..

. . .
. . .

.
0

c1 � � � cnc�2 cnc�1

2
6666666664

3
7777777775

(8)

are ðmÞ � ðd þ 1Þ and ðmÞ � nb channel matrices,
respectively. Assuming previous decisions are cor-
rect, sbðkÞ can be replaced by an equivalent vector
ŝbðkÞ of previous decisions. Thus, the original
channel observation space rðkÞ can be translated
to a new observation space r0ðkÞ by the following
relationship:

r0ðkÞ9rðkÞ � C2ŝðkÞ ¼ C1sf ðkÞ þ nðkÞ. (9)

In the translated channel observation space (9), the
BDFE operates like the BTE in (7) with rðkÞ, sðkÞ
being replaced by r0ðkÞ, sf ðkÞ. There are only ns ¼ 2m

possible noiseless channel states in translated BDFE
observation space since sf ðkÞ can take on 2m

possible values. Let S denote the set of all possible
sf ðkÞ vectors and consider partitioning S into two
classes according to the value of sðkÞ

S ¼
[

1plp2

SðlÞ, (10)

where

SðlÞ9fsf ðkÞjsðkÞ ¼ slg. (11)

Let s
ðlÞ
j , j 2 ½1 � � � 2m� be the jth element in SðlÞ for any

ordering of SðlÞ and let RðlÞ denote the correspond-
ing set of noiseless channel states given by

RðlÞ ¼ fr
ðlÞ
j jC1s

ðlÞ
j ; s

ðlÞ
j 2 SðlÞg. (12)

The signal space definitions for that BDFE in the
translated observation space are essentially the same
as those for the BTE except that r0ðkÞ, sf ðkÞ are used
to represent the channel observation vector and
transmitted sequence. For simplicity, the notation
developed for the BTE will be used in this paper, as
the application to the BDFE is straightforward.

3. Asymptotic decision boundary

At asymptotically high SNR, it has been shown in
[9] that the decision boundary that separates Rð1Þ

and Rð2Þ is formed by a piecewise linear set of
hyperplanes. Let Dasym denote the decision bound-
ary at an asymptotically high SNR. A necessary
condition for a point rB 2 Dasym to be in the
asymptotic boundary is

rB ¼
rð1Þ þ rð2Þ

2
þ

rð1Þ � rð2Þ

2

� �?
, (13)

where rð1Þ 2 Rð1Þ, rð2Þ 2 Rð2Þ and ½x�? denotes an
arbitrary subspace orthogonal to ½x�. The sufficient
conditions for rB 2 Dasym are

krB � rð1Þk2okrB � r
ð1Þ
j k

2 8r
ð1Þ
j 2 Rð1Þ; r

ð1Þ
j arð1Þ,

krB � rð2Þk2okrB � r
ð2Þ
j k

2 8r
ð2Þ
j 2 Rð2Þ; r

ð2Þ
j arð2Þ,

krB � rð1Þk2 ¼ krB � rð2Þk2. ð14Þ

If there exist an rB satisfying (13), (14), then channel
state pair ðrð1Þ; rð2ÞÞ forms a dominant pair. To test if
a pair ðrð1Þ; rð2ÞÞ is dominant, the linear constraints in
(14) can be posed as a linear program [10]. Let Rasym

denote the set of dominant pairs known as the
dominant set and let NDS denote the number of
pairs in Rasym. For the ith dominant pair in any
ordering of the dominant set, let Gi denote the
region rB 2 Dasym for which (13), (14) hold. A region
Gi is a bounded subspace of a hyperplane that is
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Fig. 1. Asymptotic decision boundary for cðzÞ ¼ 1þ 0:4z�1.

Decision boundary near r exactly represented by hyperplanes

H1; H2.
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orthogonal to the line segment joining the ith
dominant pair.

4. Orthogonalized decision boundary

The formation of the ODB for an arbitrary
channel state can be summarized as follows. The
first step is to represent each planar region in the
asymptotic boundary with a point of local minimum
distance (LMD) to the given channel state. For each
LMD point, we define an LMD vector as a vector
from the channel state to the LMD point and an
LMD hyperplane as a hyperplane orthogonal to the
LMD vector that includes the LMD point. Each
planar region in the asymptotic boundary is
approximated by an LMD hyperplane. This ap-
proximation is typically exact for planar regions
that are at a small Euclidean distance to the given
channel state. The set of LMD hyperplanes are
rotated about the given channel state some mini-
mum angle so that they are mutually orthogonal
and/or parallel. After rotation, there may be several
parallel hyperplanes in a particular direction from
the given channel state. All but the closest parallel
hyperplane in particular direction is omitted, and
the remaining set of rotated hyperplanes form the
ODB.

For a particular channel state r, let pi 2 Gi be the
point in Gi that is of minimum Euclidean distant to
r. For notational simplicity, we have omitted the
subscripts and superscripts in r

ðlÞ
j . The set of points

fpi : i 2 ½1; . . . ;NDS�g are the LMD points in Dasym

to a channel state r. Each channel state has a
different set of LMD points. Associated with an
LMD point pi is an LMD vector vi ¼ pi � r that is
the displacement from the channel state r to the
LMD point pi. The LMD points and vectors may be
non-unique since it is possible that an LMD point
may be at the boundary of two planar regions of the
asymptotic decision boundary. The LMD point for
a region Gi that is determined by a dominant pair
ðrð1Þ; rð2ÞÞ can be found by solving the following
quadratic program (QP):

argmin
x

kr� xk2 (15)

constrained by

ðrð1Þ � rð2ÞÞTx ¼ ðrð1Þ � rð2ÞÞT
rð1Þ þ rð2Þ

2

� �T

,

ðr
ð1Þ
j � rð1ÞÞTxp

kr
ð1Þ
j k

2 � krð1Þk2

2
,

ðr
ð2Þ
j � rð2ÞÞTxp

kr
ð2Þ
j k

2 � krð2Þk2

2
. (16)

The constraints in (16) come directly from the
necessary (13) and sufficient (14) conditions for a
pair ðrð1Þ; rð2ÞÞ to be dominant. For each planar
region Gi, let Hi be an LMD hyperplane that
includes the point pi and is orthogonal to the LMD
vector vi. The hyperplane Hi approximates the
region Gi about the corresponding LMD point. If
one member of the ith dominant pair is the channel
state r, then the hyperplane exactly represents the
planar region Gi in the locality of pi since Gi will be
a subset of Hi. This can be seen for the dominant
channel state r in Fig. 1 for the channel
cðzÞ ¼ 1þ 0:4z�1. The LMD hyperplanes H1; H2

exactly represent G1; G2 in the region over which
G1; G2 exist. The hyperplane H3 approximately
represents the region G3 about the LMD point p3,
although this hyperplane is superfluous since the
other two LMD hyperplanes H1; H2 already
capture the part of the asymptotic boundary that
is close to r. After the rotation process, superfluous
hyperplanes will be omitted, as they will become
parallel to some other rotated hyperplane that is
closer to r.

To form the ODB for a channel state r, the LMD
hyperplanes must be rotated about r so that they are
mutually orthogonal/parallel. This is equivalent to
rotating the LMD vectors to make them orthogonal
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or collinear. Let N̂ be a set of normal vector given
by

N̂ ¼ fn̂1; . . . ; n̂ng : npm; n̂i � n̂k ¼
1; i ¼ k

0; iak

(( )

(17)

that form a basis for the rotated LMD vectors. Let
v0i be a rotation of vi by some minimal angle so that
v0i is collinear with one of the normal vector. A
rotated LMD vector v0i is given by

v0i ¼ dkvikn̂l : dvi � n̂l ¼ argmax
a;k
favi � n̂g

( )
, (18)

where fa; dg 2 fþ1;�1g accounts for the fact that
each normal vector can define a hyperplane with
positive and negative displacements from r. For a
rotated LMD vector v0i, let H 0i be the corresponding
rotated LMD hyperplane that is orthogonal to v0i
and includes the point ðrþ v0iÞ. In a direction dn̂n

from the channel state r, there may be one or more
rotated hyperplanes, but only the closest of these
hyperplane is used in the orthogonalized boundary.
If there exist a rotated LMD vector such dv0i � n̂n40,
then the ODB will include a hyperplane given by

hk;d ¼ rþ dk;dn̂k þ ½n̂k�
?; ddk;d40, (19)

where dk;d is the magnitude of the smallest rotated
vector in the direction dn̂k that is given by

dk;d ¼ argmax
v0

i

kv0ik; dv0i � n̂k ¼ kv
0
ik. (20)

If there is no v0i such that dv0i � n̂k40, then the ODB
will not have a boundary in the direction dn̂k and we
set dk;d ¼ 1. Since there will usually be one or more
directions that have no boundary, the ODB is in
general an unbounded hyperprism. With the ODB,
the probability of error for a channel state r can be
approximately evaluated as

PðerrorjrÞ

� 1�
Yn

i¼1

1�Q
di;þ1

sN

� �
�Q

�di;�1

sN

� �� �
, ð21Þ

where QðxÞ is defined by

QðxÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
x

exp
�x2

2

� �
. (22)
The BER is the average Pe over all the channel
states in a class RðlÞ that is given by

BER ¼
1

ns=2

Xns=2
j¼1

Pðerrorjr
ðlÞ
j Þ, (23)

where ns=2 is the number of channel states in a class
RðlÞ. There is no difference between using Rð1Þ or Rð2Þ

to evaluate (23) since the channel states in Rð1Þ and
Rð2Þ are symmetric about the decision boundary [11].
The choice of the normal vectors N̂ can affect the
accuracy of the evaluated probability of error in (21).
Since the probability of error is largely determined by
the Gi regions close to r, it is advantageous to
minimize the rotation angle for those LMD vectors
with a small magnitude. This can be done by ordering
the LMD vectors in increasing magnitude of kvik and
applying the following greedy algorithm to define N̂:
1 n
^1 ¼ v1=kv1k;

2 n
 ¼ 1;

3 f
or i ¼ 1 to NDS; ffiffiffip

4
 if vi �

Pn
k¼1ðvi � n̂kÞn̂k4kvik

2= 2
5
 n̂nþ1 ¼ ðvi �
Pn

k¼1ðvi � n̂kÞn̂kÞ=kvi �
Pn

k¼1ðvi � n̂kÞn̂kk;

6
 n ¼ nþ 1;

7
 N̂ �n̂n;

8
 end if
9 e
nd for

The preceding algorithm incrementally defines the
set of normal vectors by considering LMD vectors
in increasing order of kvik. For the ith LMD vector,
if the angle between vi and the subspace defined by
N̂ is less than p=2, then (13) maps vi to a normal
vector already defined in N̂. If this angle is greater
than p=2 then the condition expression on line 4 will
be valid and a new normal vector is defined on line
6. This new normal vector makes a smaller angle
with vi than any existing normal vectors.

The ODB can be thought of as a geometric tool
whose purpose is to choose the dk;d offsets that are
needed for the Pe calculation in (21). Accordingly,
the exact orientation of the normal vector is not of
critical importance as long as LMD vectors that are
separated by a large angular distance are aligned
with different normal vectors. Provided that each
LMD vector is rotated to the angular direction of
the closest normal vector, the magnitude of the
angular rotation has a small effect on the accuracy
of the probability of error calculation. This can be
seen in Fig. 2 for the LMD hyperplanes H1;H2.
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Since the vectors v1; v2 have a large angular
separation, after rotation, they are aligned with
different normal vectors. For the purposes of
evaluating the probability of error, the decision
boundary formed by the rotated hyperplanes H 01;H

0
2

approximately represents the boundary formed by
H1;H2. The volume under a circular Gaussian pdf
centered at r is the same in the two dark shaded
regions. The estimation error incurred in using the
rotated hyperplane boundary is shown in the light
shaded region. Since the light shaded region is far
from r, the volume of the Gaussian pdf in this region
is small. As a result, the angle f that the hyperplane
H2 is rotated does not produce a significant error in
estimating the probability of error.

5. Reduced complexity orthogonal decision boundary

The ODB method described in the previous
section is rather computationally intensive. The
bulk of the computational load lies in finding the
asymptotic decision boundary and in finding the set
of LMD points for each channel state. A channel
observation space has ns noiseless channel state,
where ns ¼ 22m�1 for the BTE and ns ¼ 2m for the
BDFE. To find the asymptotic boundary, one has to
solve a total of ðns=2Þ

2 linear programs, one for each
possible pair of opposite class channel states [10].
Finding the set of LMD points for a particular
channel state requires one to solve the QP defined
by (15), (16) once for each of the ns=2 LMD points.
Since the BER is evaluated as the average prob-
ability of error over ns=2 channel states, a total of
ðns=2Þ

2 quadratic programs must be solved. To
avoid solving ðns=2Þ

2 linear and quadratic programs,
we develop a reduce complexity orthogonalized
decision boundary (RCODB) method to evaluate
the BER. This RCODB method forms an approx-
imate asymptotic decision boundary without sol-
ving any linear programs. In addition, the RCODB
uses a set of LMD points that are common to all the
channel states and these points are found without
solving quadratic programs.

To reduce the complexity of the finding of the
orthogonal decision boundary, we first define an
approximate asymptotic decision boundary. The
asymptotic boundary is formed by the set of dominant
channels states. For a pair ðrð1Þ; rð2ÞÞ to be dominant,
there must exist a point rB ¼ ðr

ð1Þ þ rð2ÞÞ=2þ ½ðrð1Þ �
rð2ÞÞ=2�? that is closer to rð1Þ or rð2Þ than to any other
channel states. This does not imply that the midpoint
m ¼ ðrð1Þ þ rð2ÞÞ=2 of the line segment between rð1Þ

and rð2Þ is part of asymptotic decision boundary. If m
is not part of the asymptotic boundary then there is
one or more other channel states that determine the
asymptotic decision in the region that is local to
the line segment between rð1Þ and rð2Þ. Conversely, the
region of the asymptotic boundary determined by
ðrð1Þ; rð2ÞÞ must a relatively large distance from
ðrð1Þ; rð2ÞÞ and any other channel states. The regions
of the asymptotic boundary that have a large
Euclidean distance to every channel state will not
significantly affect the accuracy of the evaluated BER
since it is unlikely that a channel observation will fall
into one of these regions. Accordingly, a reduced
dominant set (RDS), denoted R̂asym is defined as all
pairs ðrð1Þ; rð2ÞÞ where m is the point is closer to rð1Þ or
rð2Þ than any other channel states. The RDS can be
found using the following algorithm [11]:
1 N
RDS ¼ 0;

2 f
or r

ð1Þ
i 2 Rð1Þ;
3
 for r
ð2Þ
j 2 Rð2Þ;
4
 x ¼ ðr
ð1Þ
i þ r

ð2Þ
j Þ=2; a ¼ kr

ð1Þ
i � xk2;
5
 if ðkr
ð1Þ
k � xk24a;8rð1Þk 2 Rð1Þ; kaiÞ and
ðkr
ð2Þ
k � xk24a;8rð2Þk 2 Rð2Þ; kajÞ;
6
 NRDS ¼ NRDS þ 1;

7
 R̂asm �ðr

ð1Þ
i ; r

ð2Þ
j Þ;
8
 end if
9
 end for
10 e
nd for
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A set of approximate LMD points can be found
directly from the RDS. For a planar region G 2

Dasym that is determined by a dominant pair
ðrð1Þ; rð2ÞÞ, let p be the LMD point in G with respect
to a channel state r and consider substituting p with
an approximate LMD point

p̂ ¼ ðrð1Þ þ rð2ÞÞ=2. (24)

The set of approximate LMD points defined in (24)
are the same as the set of asymptotically efficient
bias vectors used in [8,9]. It is not surprising that the
approximate LMD points in (24) can be used to
adequately represent asymptotic boundary. The
implications of using p̂ to approximate p can be
understood by considering the following four cases:
4 6 8 10 12 14 16
SNR
(1)
 kr� pkokrð1Þ � p̂k,
Fig. 3. Comparison of BER evaluation methods for BTE applied
(2)
 kr� pk ¼ krð1Þ � p̂k,

to channel cðzÞ ¼ 1þ 0:4z�1.
(3)
 kr� pk4krð1Þ � p̂k,
(4)
 kr� pkbkrð1Þ � p̂k.
With no loss of generality, assume r 2 Rð1Þ and that
the magnitude difference in case 3 is small. In case 1,
ðrð1Þ; rð2ÞÞ does not belong to the RDS and so p must
be a large distance from r and all other channel
states. In this case, p can be omitted since it will not
significantly affect the probability of error calcula-
tion. In case 2, p ¼ p̂ since p̂ is the closest point in G

to rð1Þ and krð1Þ � xkpkr� xk; x 2 G. In case 3, we
note that the vector p� p̂ is orthogonal to rð1Þ � p̂

which leads to

kp� p̂k2 ¼ krð1Þ � pk2 þ krð1Þ � p̂k2 ð25Þ

pkr� pk2 þ krð1Þ � p̂k2. ð26Þ

As long as krð1Þ � p̂k is only slightly large than
krð1Þ � pk, we have p � p̂. In case 4, the error kp�
p̂k in estimating the LMD point p with p̂ may be
large, but this error does not significantly affect the
BER since the distance between G and r is large.
6. Performance comparison

Monte Carlo simulations were performed with
three sample channels to evaluate the BER estima-
tion accuracy of the ODB and RCODB methods.
The ODB and RCODB methods were also com-
pared to the BER estimation method in [7] and the
importance sampling method in [8] both in terms of
accuracy and computational complexity. Monte
Carlo simulations were performed until at least
200 errors occurred and 105 bits were used in the IS
simulations.

In the first example, the BTE is applied to a
channel with an impulse response specified by

cðzÞ ¼ 1þ 0:4z�1. (27)

The BTE decision delay and channel observation
length were set to d ¼ 1 and m ¼ 2. The Estimated
BERs for the ODB method, RCODB method, IS
methods and method in [7] are compared to the
BER obtained through simulations in Fig. 3. The
method in [7] produced a BER curve that deviated
from the simulated BER with increasing SNR. The
ODB, RCODB, and IS methods all produced
relatively accurate BER curves for moderate-to-
high SNR values.

For the second example, the BDFE is applied to
channel taken from [5] with channel impulse
response given by

cðzÞ ¼ � 0:2052� 0:5131z�1 þ 0:7183z�2

þ 0:3695z�3 þ 0:2052z�4. ð28Þ

The decision delay and channel observation length
were set to d ¼ 4 and m ¼ 5. The BER curve for the
ODB method, RCODB method, IS and the method
in [7] is compared to the simulated BER in Fig. 4.
The ODB, RCODB and IS methods produced a
tight lower bound on the BER. The method in [7]
produced a close BER estimate at lower SNR
values, but diverged for larger SNR values.
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applied to channel cðzÞ ¼ �0:2052� 0:5131z�1 þ 0:7183z�2þ

0:3695z�3 þ 0:2052z�4.
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Fig. 5. Comparison of BER evaluation methods for BDFE

applied to channel cðzÞ ¼ 0:35þ 0:8z�1 þ z�2 þ 0:8z�3.
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The channel used in the second example was
moderately frequency selective. In the third exam-
ple, we apply the BDFE to a highly frequency
selective channel taken from [10,11] with an impulse
response specified by

cðzÞ ¼ 0:35þ 0:8z�1 þ z�2 þ 0:8z�3. (29)

The decision delay and channel observation length
were set to d ¼ 3 and m ¼ 4. The BER curve for the
ODB method, RCODB method, IS and the method
in [7] is compared to the simulated BER in Fig. 5.
Also shown in Fig. 5 is the simulated BER curve for
the BDFE with correct decision feedback. The BER
curves for the ODB, RCODB and IS methods
closely follow the BER curve for the BDFE with
correct decision feedback, while the curve for the
method in [7] diverged. There is a significant
performance gap between the BER curve for the
BDFE with and without correct decision at low
SNRs. This gap is the result of error propagate that
tends to have a lesser effect at higher SNRs. In
comparison to the second example, error propaga-
tion has a larger effect on BER performance for
highly frequency selective channels.

The computational load of the ODB and
RCODB methods is summarized in Table 1, along
with the complexity of the IS method and the
method in [7]. The number of channel states is ns ¼

22m�1 for the BTE and ns ¼ 2m for the BDFE. Since
the majority of elementary operations in all four
methods are performed on vectors of length m, the
number of additions, subtractions and multiplica-
tions is specified in vector quantities. The overall
complexity of the IS method is comprised of a fixed
complexity involved in finding the bias vectors and a
variable complexity associated with simulating each
transmitted bits. The ODB method has the highest
complexity since ðns=2Þ

2 linear and quadratic
programs that must be solved, where each LP and
QP has m variables and has ns � 1 linear con-
straints. The RCODB method has a significantly
lower computational load that is dominated by the
ðns=2Þ � ns vector multiplications required to find
the LMD points. The fixed complexity of the IS
method is slightly less than the complexity of the
RCODB. Finally, the method in [7] has the least
computational load since the number of elementary
vector operations increases with n2

s .
7. Conclusions

An orthogonalized decision boundary has been
proposed as a tool to evaluate the BER for the BTE
and a lower bound on the BER for the BDFE.
Simulated results have shown that the ODB method
produces an accurate BER curve, as accurate as the
importance sampling method. A reduced complex-
ity ODB method has also been developed that has
complexity that is comparable to the fixed complex-
ity of the IS method. The BER produced by
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Table 1

Computational complexity comparison

Orthogonalized decision boundary

Form Rasym

LPs ¼ ðns=2Þ
2

Find LMD points

QPs ¼ ðns=2Þ
2

Find normal vectors (ns=2 chan. states)

Vect:add:=sub:pðns=2Þ � ðNDS �mþmðmþ 1Þ=2Þ
Vect:multiplicationspðns=2Þ � ðNDS � ðmþ 1Þ þmÞ

Rotate LMD vector

Vect:multiplicationspðns=2Þ �NDS �m

Evaluate BER

Qð�Þ functionspðns=2Þ � ð2mÞ

Reduced complexity orthogonalized decision boundary

Find LMD points

Vect:add:=sub: ¼ ðns=2Þ
2
� 2þNRDS

Vect:multiplications ¼ ðns=2Þ
2
� ns þNRDS

Find normal vectors (Ns=2 chan. states)

Vect:add:=sub:pðns=2Þ � ðNDS �mþmðmþ 1Þ=2Þ
Vect:multiplicationspðns=2Þ � ðNRDS � ðmþ 1Þ þmÞ

Rotate LMD vectors

Vect:multiplicationspðns=2Þ �NRDS �m

Evaluate BER

Qð�Þ functionspðns=2Þ � ð2mÞ

Importance sampling method overhead

Find bias vectors

Vect:add:=sub: ¼ ðns=2Þ
2
� 2þNRDS

Vect:multiplications ¼ ðns=2Þ
2
� ns þNRDS

Method in [7]

Evaluate BER

Vect:add:=sub: ¼ ðns=2Þ � ðns þ 1Þ

Vect:multiplications ¼ ðns=2Þ � ð2nsÞ

expð�Þ0s ¼ ðns=2Þ � ns
lnð�Þ0s ¼ ns=2
Qð�Þ functions ¼ ns=2
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RCODB method is essentially the same as that of
the ODB method for moderate-to-high SNRs.
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