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Abstract

The paper introduces a new color filter array (CFA) interpolation method for digital still cameras. The proposed

interpolation scheme is able to (i) overcome the hardware limitations of existing CFA based image acquisition solutions,

and (ii) restore color images with excellent visual quality. The scheme employs an adaptive edge-sensing mechanism which

operates along the vertical, horizontal and diagonal directions to correctly interpolate unavailable color components.

Building on the computed edge-sensing map and a refined color-difference model, a new correlation–correction algorithm

is introduced. In addition to the basic model, adaptively determined correction operations are also discussed and analyzed.

The solutions proposed here, described in a novel vector notation, constitute a unique CFA interpolation framework,

which readily unifies previous, seemingly unrelated, results. Simulation studies indicate that the proposed method is

computationally efficient and yields excellent performance, in terms of subjective and objective image quality measures,

while outperforming state-of-the-art CFA interpolation methods.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Color image processing [1–3] has aroused much
interest and acclaim over the past few years. The
advances in hardware and software platforms have
allowed capturing and reproducing of real scenes in
color as never before. Digital cameras for still
images are among the most popular acquisition
devices, whose commercial proliferation has a
significant impact on the research in this area.
e front matter r 2005 Elsevier B.V. All rights reserved
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Digital color cameras acquire color information
by transmitting the image through Red (R), Green
(G) and Blue (B) color filters having different
spectral transmittances and then sampling the
resulted images using three electronic sensors
(Fig. 1a) [3], usually charge-coupled devices
(CCD) and complementary metal oxide semicon-
ductor (CMOS) sensors. To reduce cost and
complexity, digital camera manufacturers use a
single CCD/CMOS sensor (Fig. 1b) with a color
filter array (CFA) to capture all the three primary
colors (R,G,B) at the same time [4–6]. The Bayer
pattern (Fig. 2) [7], a widely used CFA, provides the
array or mosaic of the RGB colors so that only one
color element is available in each pixel, whereas two
missing colors must be estimated from the adjacent
.

www.elsevier.com/locate/sigpro


ARTICLE IN PRESS

Fig. 1. Image acquisition process using: (a) a three-sensor device, (b) a single-sensor device.

Fig. 2. Bayer CFA pattern.
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pixels. This process is called CFA interpolation, or
demosaicing.

CFA interpolation algorithms are usually classi-
fied into:
�
 Non-adaptive interpolation techniques [8–10],
which attempt image restoration regardless of
the structural contents in the images.

�
 Edge-adaptive interpolation techniques [11–13],
which incorporate some kind of structural
information into the image restoration process.

Although non-adaptive interpolation techniques are
computationally efficient, their performance is
inefficient as the omission of edge information
during the restoration process often results in image
blurring. Although some non-adaptive techniques,
e.g. [9,10] are engineered to achieve excellent results
in terms of objective evaluation of image quality,
they often impair visual image quality near fine
edges and structural details.
Edge-adaptive interpolation methods have been
considered in order to improve the signal-detail
preserving capability of the restoration process. The
inclusion of an edge detection step provides high
accuracy in estimating and restoring edges and high
frequency components in the image. There are at
least three possible ways to utilize edge information
in the interpolation process. The first approach
employs edge detection to guide the interpolation
process [14,15], which makes the method computa-
tionally expensive. Another approach takes advan-
tage of an implicit edge detection, step which is
performed based on user-defined parameters [16].
This parameter setting often decreases the robust-
ness of the methods. Finally, a fully adaptive edge
detection scheme can be incorporated into the
interpolation process [11,13,17]. It should be noted
at this point that the improvement in terms of
performance comes at the expense of the computa-
tional simplicity of the algorithm. It is evident that
the edge detection step slows down the restoration
process increasing the computational complexity of
the solution.

The proposed method here is a fully adaptive,
implicit edge-detection based interpolation scheme.
To improve the color appearance and enhance
perception of the structural contents, the proposed
interpolation scheme employs a correction step. The
introduced correction mechanism operates on the
so-called color-difference model [18] by taking
advantage of the correlation between the RGB
channels of natural images.

It is evident that the employed correction process
is useful in highly correlated images or image areas
with a number of high-frequency transitions. How-
ever, in images with a globally week correlation
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and/or high local variations in correlation amongst
the RGB channels, the correlation–correction step is
simply unnecessary or counter productive. There-
fore, two extensions of our basic idea [4] are
introduced. Both solutions constrain the correction
process depending on the estimated degree of
correlation between the color channels under con-
sideration. In this paper, we will make use of a
global correlation approach, which bypasses/en-
gages the correction process based on information
gathered from the image as a whole. A second
variation of the proposed method utilizes a correla-
tion map or local image statistics to accommodate
the correction process.

The proposed basic concept along with the above-
mentioned modifications constitute a unique CFA
interpolation framework which avoids edge
blurring while improving on the color appearance
obtained from previous interpolation techniques.
This edge-sensing correlation–correction (ESCC)
framework interpolates the missing RGB
components along edge directions and significantly
reduces the level of aliasing artifacts present in the
restored output compared to the prior art. The
incorporated correction process is capable of
improving the color appearance in most natural
images, which results in restored images with
excellent fidelity.

Lastly, it should be noted at this point that a
novel vector notation is used to describe the CFA
interpolation process. The vector notation, com-
monly used in color image processing tasks [1,2] is
tapped here to assist with the development of a
compact CFA framework.

The rest of the paper is organized as follows. In
Section 2, the formulation of the problem is
introduced and main features of the state of the
art in CFA interpolation are presented. The
proposed CFA framework is introduced in
Section 3. Motivation and design characteristics
are discussed in detail and variations of the
proposed methods are provided and analyzed
with respect to their properties and parameters
used. In Section 4, the proposed framework is
tested using a variety of test images. Extended
simulation studies are included in order to demon-
strate the effectiveness of the proposed schemes
and comparisons in terms of performance with the
state of the art are provided. Performance compar-
ison are given in terms of commonly used image
quality measures. Finally, this paper concludes
in Section 5.
2. Problem formulation

The CFA interpolation relates to the problem of
restoration of subsampled color images. Bayer
pattern demosaicing is fundamental to the opera-
tion of most of current single-sensor digital cam-
eras. Since the notation of CFA interpolation
remains relatively unknown, a brief overview to
the problem and the state of the art is included for
completeness.

All CFA interpolation methods developed in the
past few years are based on the notion of a
supporting sliding window. These methods utilize
a variety of estimation operators [19–21], correla-
tion models [18,22,23] and edge-sensing mechanisms
[11–13,17]. Therefore, not surprising that, they have
different computational complexity requirement
and wide variations in performance [24–28].

Let us consider, a K1 � K2 gray-scale image zðlÞ :
Z2! Z representing a two-dimensional matrix of
integer samples. In the Bayer CFA pattern, half of
the pixels zl 2 Z2, for l ¼ 1; 2; . . . ;K1K2, corre-
spond to the G channel, whereas other signals such
as the R,B channels populate the other half. The G
channel contains the most important information
for the color image as perceived by humans.
Assuming that p ¼ 1; 2; . . . ;K1 and q ¼ 1; 2; . . . ;K2

denote the spatial position of the pixels in vertical
(image rows) and horizontal (image columns)
directions shown in Fig. 3, gray-scale pixels zl , for
l ¼ ðp� 1ÞK2 þ q, can be transformed into the RGB
vectors xl ¼ ðxl1;xl2;xl3Þ 2 Z2 as follows:

xl ¼

ðzl ; 0; 0Þ for p odd and q even;

ð0; 0; zlÞ for p even and q odd;

ð0; zl ; 0Þ otherwise:

8><
>:

(1)

This transformation forms a K1 � K2 RGB image
xðlÞ : Z2 ! Z3 representing the two-dimensional
matrix of three-component samples (Fig. 3). Note
that the color vectors xl correspond to one true
component xlk, as it varies from position to
position, whereas the two components of xl are set
to zero.

The objective of the interpolation process is to
estimate the missing color components of xðlÞ and
reconstitute the interpolated RGB image yðlÞ :
Z2! Z3 to be as close as possible to the desired
RGB image oðlÞ : Z2! Z3. As in most image
processing problems, a ‘‘loss function,’’ which
depends on the unavailable full RGB sample and
the interpolation vector, is used to penalize errors
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Fig. 3. Color image restoration process.

Fig. 4. Indexing of the samples inside a 3� 3 sliding supporting

window W .
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during the procedure. It is natural to assume that if
one penalizes interpolation errors through loss
function, then the optimal solution is the function
of the inputs that minimizes the expected average
loss:

minimize Efko� yk2g, (2)

where Ef�g indicates statistical expectation guaran-
teeing the minimum average loss or risk [29].

To estimate the missing color components of xðlÞ,
a supporting window W ¼ fxi 2 Z2; i ¼ 0; 1; . . . ;
N � 1g of finite size N is considered with the sample
x0 placed in the center of the window (Fig. 4). This
window-operator slides over the image to affect
individually all the image pixels and changes the
center x0 by some function of the local neighbor-
hood area fx1;x2; . . . ;xN�1g at a time. The rationale
of this approach is to minimize the local distortion
and ensure the stationarity of the processes gen-
erating the image.
3. Proposed CFA interpolation framework

Many developed CFA methods do not utilize any
edge-sensing support [9,20,30] or operate only in
horizontal/vertical directions [11,16,31]. This leads
to false colors and perceived blurring, since these
methods do not follow complete structural informa-
tion of the image. Therefore, some recently intro-
duced schemes, e.g. [12,13,17] operate in 8 directions
and produce high-quality images. These methods
perform repeated interpolations of the G values
without improving the accuracy of the R,B values.
Introducing the edge-sensing correction mechanism
into the R,B channels could improve the visual
quality of restored images.
3.1. Edge-detection process

To follow the edges in all possible directions, i.e.
diagonal, horizontal and vertical edges, the pro-
posed method employs eight-direction mechanism
of [17]. Calculation of edge information requires a
5� 5 supporting window moving over the image
domain zðlÞ : Z2! Z (Fig. 5). As a result, a
diagonal edge in top-left direction is quantified by
the weight

w1 ¼
1

1þ ðjz0 � z9j þ jz1 � z5jÞ= 2
ffiffiffi
2
p� � , (3)

where z0 is the reference pixel related to the same
color diagonally positioned in z9, whereas z1 and z5
denote another color pair in the same top-left
direction. Others diagonal edges reflect to the
quantities analogously expressed as follows:

w3 ¼
1

1þ ðjz0 � z13j þ jz3 � z7jÞ= 2
ffiffiffi
2
p� � , (4)
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Fig. 5. Association of the edge-sensing weight coefficients.
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w5 ¼
1

1þ ðjz0 � z17j þ jz5 � z1jÞ= 2
ffiffiffi
2
p� � , (5)

w7 ¼
1

1þ ðjz0 � z21j þ jz7 � z3jÞ= 2
ffiffiffi
2
p� � , (6)

where w3, w5 and w7 corresponds to the edges in
top-right, bottom-right and bottom-left directions,
respectively.

Sensing edge information in horizontal and
vertical directions, the corresponding quantities
are given by

w2 ¼
1

1þ ðjz0 � z11j þ jz2 � z6jÞ=2
, (7)

w4 ¼
1

1þ ðjz0 � z15j þ jz4 � z8jÞ=2
, (8)

w6 ¼
1

1þ ðjz0 � z19j þ jz6 � z2jÞ=2
, (9)

w8 ¼
1

1þ ðjz0 � z23j þ jz8 � z4jÞ=2
, (10)

where w2 and w6 correspond to edge information in
vertical top and bottom directions, respectively;
whereas w4 and w8 reflect the edges in horizontal
right and left directions, respectively. Note that the
absolute differences in (3) to (10) are useful in terms
of implementation efficiency [17], however, they can
be replaced with squared differences.

3.2. Interpolation process

In the next step, the weight coefficients
w1;w2; . . . ;wN�1 are utilized in the interpolation of
the G channel. Note that the interpolation process
utilizes a 3� 3 window ðN ¼ 9Þ sliding over the
color image xðlÞ : Z2! Z3. This edge-adaptive
estimation of the G channel is given by

ȳ02 ¼

x02 if z0 ffi x02;

PN�1
i¼1

w0ix
0
i2 otherwise;

8><
>:

(11)

where z0 is the acquired pixel before the transfor-
mation (1) in the same spatial position as the color
(RGB) vector x0, operator ffi denotes a one to one
relationship and i denotes the compass orientation
clockwise (Fig. 5). Normalized weight coefficient
w0i ¼ wi=

PN�1
j¼1 wj measures the importance of the

predicted green neighbor x0i2 based on local edge
information. Similarly, as for edge information, this
calculation differentiate the samples in diagonal and
vertical/horizontal directions [17]. Diagonally posi-
tioned samples have predicted G values obtained as
follows:

x0ð1Þ2 ¼
xð8Þ2 þ xð2Þ2 þ ðz1 � z5Þ= 2

ffiffiffi
2
p� �
þ ðz23 � z0 þ z11 � z0Þ=4

2
,

(12)

x0ð3Þ2 ¼
xð2Þ2 þ xð4Þ2 þ ðz3 � z7Þ= 2

ffiffiffi
2
p� �
þ ðz11 � z0 þ z15 � z0Þ=4

2
,

(13)

x0ð5Þ2 ¼
xð4Þ2 þ xð6Þ2 þ ðz5 � z1Þ= 2

ffiffiffi
2
p� �
þ ðz15 � z0 þ z19 � z0Þ=4

2
,

(14)

x0ð7Þ2 ¼
xð6Þ2 þ xð8Þ2 þ ðz7 � z3Þ= 2

ffiffiffi
2
p� �
þ ðz23 � z0 þ z19 � z0Þ=4

2
,

(15)

whereas vertically/horizontally positioned samples
have the G channel values predicted by

x0ð2Þ2 ¼ xð2Þ2 þ ðz11 � z0 þ z2 � z6Þ=4, (16)

x0ð4Þ2 ¼ xð4Þ2 þ ðz15 � z0 þ z4 � z8Þ=4, (17)

x0ð6Þ2 ¼ xð6Þ2 þ ðz19 � z0 þ z6 � z2Þ=4, (18)

x0ð8Þ2 ¼ xð8Þ2 þ ðz23 � z0 þ z8 � z4Þ=4. (19)

Assuming that the R,B channels are highly
correlated to the G channel, more accurate G
values of (11) can be utilized in the color-difference
model [18]. This increases the estimation
accuracy of the corresponding R,B values. The
procedure (the 3rd and 4th steps in Fig. 6) can be
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Fig. 6. Body of the proposed CFA interpolation framework.
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described as follows:

ȳ0k ¼

x0k if z0 ffi x0k;

ȳ02 þ
PðN�1Þ=2
i¼1

w00i

�ðxð2iÞk � ȳð2iÞ2Þ if z0 ffi x02;

ȳ02 þ
PðN�1Þ=2
i¼1

w000i

�ðxð2i�1Þk � ȳð2i�1Þ2Þ if z0 ffi x0ðk�2Þ;

8>>>>>>>>>>><
>>>>>>>>>>>:

(20)

where k ¼ 1 and k ¼ 3 characterize the R and B
channels, respectively, and w00i ¼ w2i=

PðN�1Þ=2
j¼1 w2j

are the normalized weights corresponding to edges
in north, east, south and west directions, whereas
w000i ¼ wð2i�1Þ=

PðN�1Þ=2
j¼1 wð2j�1Þ are the weights corre-

sponding to the diagonally positioned edges.
3.3. Correction process

It is known that the human visual system is
sensitive to changes in color and edge information,
which provides indication of the shape of objects in
the image [1,2]. False colored and blurred edges
introduced as result of inaccurate interpolation
significantly degrade the quality of the perceived
image. Introducing a correction mechanism into the
interpolation process improves contrast and chro-
minance properties of the initially interpolated G
channel [13,17].
The proposed method utilizes the correlation–-
correction step based on the correlation amongst
the RGB channels and support of initially com-
puted edge information. Since popular saturation
models fails in image areas when the G values are
too small (dividing by zero or very small numbers
shifts the saturation models out of work), we make
use of a simple color difference model. Thus, the
correction process related to the G channel is given
by

y02 ¼
ȳ0k þ

PðN�1Þ=2
i¼1

w00i ðȳð2iÞ2 � ȳð2iÞkÞ if z0 ffi x0k;

ȳ02 otherwise;

8><
>:

(21)

where w00i are the same weights as in (20).
Considering the corrected G values of (21) the

R,B update is completed using the proposed
correlation–correction approach as follows:

y0k ¼

y0k if z0 ffi x0k;

y02 þ
PðN�1Þ=2
i¼1

w00i

�ðȳð2iÞk � yð2iÞ2Þ if z0 ffi x02;

y02 þ
PðN�1Þ=2
i¼1

w000i

�ðȳð2i�1Þk � yð2i�1Þ2Þ if z0 ffi x0ðk�2Þ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(22)

Based on the simplicity of this step, in addition to
the accuracy of the corrected G values, the
correction of the R,B values contributes signifi-
cantly to the restored image fidelity.

Since x0k of (1), ȳ0k of (11) and (20); and y0k of
(21) and (22), for z0 ffi x0k and k ¼ 1; 2; 3, are
equivalent, the proposed ESCC method preserves
all acquired (correct) values of (1) unchanged

yik ¼ xik for zi ffi xik (23)

leading to an efficient and attractive CFA inter-
polation method.

3.4. Proposed modifications

It was claimed in [31] that the color-difference
model [18] is more appropriate for the image
interpolation than the color-ratio model [8]. The
reason is that the color-ratio model is based on the
assumption of hue uniformity within a localized
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image area, and thus it fails near edge transitions
where both the spectral and spatial correlation
characteristics of the image vary significantly [32].
Moreover, the ratio calculations result in the
singularities and outlying values which correspond
to color artifacts in the images restored using the
conventional color-ratio model based interpolators
[32]. To overcome these limitations, the normalized
color-ratio models have been successfully used in
CFA interpolation [23] or demosaicked image
postprocessing [32].

It is not difficult to see that due to the subtraction
base the color-difference model is easier to imple-
ment and thus it is commonly used in numerous
demosaicing solutions, e.g. [4,9–11,18]. However,
there exists possibility that the color-difference
model of (21) and (22) fails due to inadequate shifts
in color caused by differences ðȳð2iÞ2 � ȳð2iÞkÞ,
ðȳð2iÞk � yð2iÞ2Þ and ðȳð2i�1Þk � yð2i�1Þ2Þ. This can occur
due to low correlation between the RGB channels
and in the same time the correction process will
decrease the image quality in terms of subjective and
objective evaluation.

Because there is no reason to assume that low
correlation between the R,G channels auto-
matically denotes a similar relationship between
the G,B channels, two different tests (for the
R,G channels and G,B channels, respectively) are
necessary.

Thus, the algorithm of the proposed edge-sensing
global correlation–correction (GESCC) method
(Fig. 7) can be stated as follows:
Input: K1 � K2 gray-scale image zðlÞ : Z2! Z

Threshold parameter g
Output: K1 � K2 color image yðlÞ : Z2! Z3

Create K1 � K2 RGB image xðlÞ : Z2! Z3 using (1)
Edge-detection process
Count edge-sensing coefficients w1;w2; . . . ;w8

defined by (3) to (10)

Determine normalized weights

w0i ¼ wi=
PN�1

j¼1 wj, for i ¼ 1; 2; . . . ;N � 1
Count assistance values x0ð1Þ2;x
0
ð2Þ2; . . . ;x

0
ð8Þ2 of

(12) to (19)

Interpolation process
Determine the input set W ¼ x0;x1; . . . ;x8 of
N ¼ 9 samples

Let the G value according to (11)

Determine normalized weights

w00i ¼ w2i=
PðN�1Þ=2

j¼1 w2j, for i ¼ 1; 2; . . . ; 4
Determine normalized weights

w000i ¼ wð2i�1Þ=
PðN�1Þ=2

j¼1 wð2j�1Þ, for i ¼ 1; 2; . . . ; 4
Let the R,B values according to (20)

High correlation detection
Perform high-pass filtering of xi1, xi3 and ȳi2
Let correlation coefficients C1 and C3 according
to (24), see Fig. 10
Correction process

If C14g and C34g
Let the G values according to (21)

If C14g
Let the R value according to (22)

If C34g
Let the B value according to (22)

Output K1 � K2 restored RGB image

yðlÞ : Z2! Z3

Comparing the ESCC algorithm and the GESCC
method, a novel part introduces a global
switching mode between the non-correction
of the R,B values and their correction depending
on global parameters, correlation coefficients,
given by

Ck ¼

P
ð ~xik � x̂kÞð ~yi2 � ŷ2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ð ~xik � x̂kÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ð ~yi2 � ŷ2Þ
2

q for zi ffi xik,

(24)

where i characterizes the spatial position of the
samples corresponding to the original position of
R,B values in the Bayer pattern, x̂k denotes the
sample mean related to the kth channel values of
~xðlÞ and ŷ2 is the sample mean related to the G
channel of ȳðlÞ defined as follows:

~xik ¼ f 1;�2;1ðxði�1Þk;xik;xðiþ1ÞkÞ for 8ðzð�Þ ffi xð�ÞkÞ,

(25)

~yi2 ¼ f 1;�2;1ðȳði�1Þ2; ȳi2; ȳðiþ1Þ2Þ for 8ðzð�Þ ffi xð�ÞkÞ,

(26)

where f 1;�2;1ð�Þ denotes a 1-D high pass filtering
(Fig. 8) with the coefficients ð1;�2; 1Þ applied to
horizontal and vertical directions, k characterizes
the R ðk ¼ 1Þ and B ðk ¼ 3Þ channels.

If Ck is larger than a chosen threshold g, then (22)
carries out for the appropriate color channel k.
Otherwise, the corresponding channel is not cor-
rected. If the correction process is completely
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omitted the GESCC solution reduces to the C2D2
method. Thus, in the images with very weak
correlation characteristics, the improvement of the
GESCC method compared to the basic ESCC case
developed within the proposed framework is always
limited to the performance of the C2D2 solution.

However, situations may occur when it is desir-
able to switch between the correction mode and the
interpolation process depending on the local image
statistics. The methods developed in the past were
designed to follow strong correlation between all
Fig. 8. Forming of the difference planes and the high frequency content

(c) R–G and (d) G–B difference plane of the image window; (e–h

corresponding difference planes shown in (a–d).

Fig. 9. Block scheme of the pr

Fig. 7. Block scheme of the pr
color channels and strong correlation between
either R,G or G,B channels. Methods appropriate
for images with a weak correlation have been
developed as well. However, natural images
typically consist of alternating regions of high
and low correlation between the color channels.
Therefore, we introduce another method
which takes into account varied correlation of
image areas.

The proposed edge-sensing local correlation–cor-
rection (LESCC) approach (Fig. 9) performs the
maps: (a) R–G and (b) G–B difference plane of the image Parrots,

) high frequency maps formed by a high pass filtering of the

oposed LESCC method.

oposed GESCC method.



ARTICLE IN PRESS

Fig. 10. Forming of the correlation maps: (a) R–G and (b) G–B local correlation map of the image Parrots, (c) R–G and (d) G–B local

correlation map of the image window; (e–h) correlation maps formed by a thresholding of the corresponding local correlation maps shown

in (a–d).

Fig. 11. Top-left patterns of the results related to the Circular Zone Plate (CZP) image: (a) original image, (b) BI, (c) DCCA, (d) MFI, (e)

BD, (f) AP, (g) C2D2, (h) proposed ESCC scheme.

R. Lukac et al. / Signal Processing 86 (2006) 1559–1579 1567
identical edge-sensing and interpolation steps as the
GESCC method. However, the LESCC method
utilizes correlation maps (Fig. 10) between the
interpolated G channel of ȳðlÞ and the original
R,B channels of xðlÞ, for 8ðzð�Þ ffi xð�ÞkÞ. Note that
these correlation maps are calculated using 3� 3
neighborhoods. Based on the input parameter b,
correction operations are performed for the local
correlation larger than b.
4. Experimental results

To examine the performance of the proposed
framework and facilitate comparisons with the state
of-the-art CFA interpolation schemes reviewed in
this paper, some widely used test images, such as the
Circular Zone Plate (CZP) image of Fig. 11a and
the natural color images of the database shown in
Fig. 12 are utilized. All test images have been
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Fig. 12. Used test image database.
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normalized to a standard size of 512� 512 pixels
with a 8-bit per channel RGB representation.

Methods (i.e. ESCC, GESCC, LESCC) con-
structed within the proposed framework are com-
pared, in terms of performance, with the CFA
interpolation methods listed in Table 1. Following
common practice in the research community,
mosaic versions of the images are created by
discarding color information in a GRGR phased
Bayer CFA filter [6,10,32]. Demosaicked images are
generated using each of the listed methods. To
measure similarity between the original RGB image
oðlÞ and interpolated (restored) image yðlÞ, the mean
square error (MSE) and the peak signal to noise
ratio (PSNR) are used to evaluate objectively the
quality of the restored RGB channels.

The MSE and PSNR criteria are defined as
follows:

MSEk ¼
1

K1K2

XK1K2

l¼1

ðolk � ylkÞ
2, (27)

PSNRk ¼ 20 log10 255=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEk

p� �
, (28)

where ol ¼ ðol1; ol2; ol3Þ is the original pixel, yl ¼

ðyl1; yl2; yl3Þ is the restored pixel, l is the pixel
position in a K1 � K2 color image and k char-
acterizes the color channel.

To quantify the perceptual closeness between the
original and the obtained solution, the normalized
Table 1

Methods taken for comparison with the proposed interpolation

framework (i.e. ESCC, GESCC, LESCC)

Notation Method Ref.

NNI Nearest neighbor interpolation [20,33]

BI Bilinear interpolation [22,21]

BCI Bicubic interpolation [34]

SHT Smooth hue transition approach [8]

VMI Vector median interpolation [19]

SVF Spatial varying filtering [16]

DCCA Discriminated color correlation approach [31]

MFI Median filter interpolation [9]

API Adaptive color plane interpolation [11]

BD Bilinear difference interpolation [10]

TDA Triangulation difference approach [35]

PVM Principle vector method [12]

AP Alternating projection approach [6]

KA Kimmel algorithm [13]

C2D2 Color correlation-directional derivatives [17]

SAIG Saturation based adaptive inverse gradient [27]

EMI Edge map interpolation [28]

LIM Layering interpolation approach [30]
difference criterion (NCD) of [2] is used in this
work. The NCD is given by

NCD

¼

PK1K2

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL�ol
� L�yl

Þ
2
þ ðu�ol

� u�yl
Þ
2
þ ðv�ol

� v�yl
Þ
2

q

PK1K2

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL�ol
Þ
2
þ ðu�ol

Þ
2
þ ðv�ol

Þ
2

q ,

ð29Þ

where L� represents lightness values and ðu�; v�Þ
chrominance values corresponding to original ol

and restored yl samples expressed in CIELUV color
space [3] with the white point D65.

Table 2 summarizes results obtained using the
artificial CZP image [10] shown in Fig. 11a. Note
that the CZP image is a black and white image
commonly used to demonstrate the degree of zipper
effect and aliasing artifacts present in the restored
image [17,10]. Since the frequency of the edges
increases in vertical, horizontal and diagonal direc-
tions, the lack of interpolation accuracy caused by
the nature (or omission) of the edge-sensing mechan-
ism, spectral (color) model, correction step, or a
combination of these can be easily observed and
precisely evaluated. These results and the corre-
sponding restored images depicted in Figs. 11b–h
clearly demonstrate that the proposed framework is
capable of restoring the CZP image with the highest
accuracy comparing to the state of-the-art CFA
interpolation methods reviewed here. It is evident
that edge-sensing methods outperform non-adaptive
interpolation techniques. The performance of the
C2D2 method and the ESCC framework with their
eight-directional edge-sensing mechanism demon-
strate that these methods are capable of preserving
the high frequency image contents in all directions.
Moreover, the edge-sensing correction step intro-
duced by the proposed framework results in the best
performance among the methods compared.

Fig. 13 illustrates the sensitivity of proposed
GESCC and LESCCmethods to the design parameter
g and b, respectively. As it can be observed, values
around g ¼ 0:450 and b ¼ 0:125 deliver excellent
results and the trade-off between the error criteria
(PSNR or MSE vs. NCD). Note that these values are
globally optimal for the image database shown in Fig.
12 and are used in the rest of this paper.

Tables 3–6 summarize results corresponding to
the restoration of some well-known test images
(Lighthouse, Window, Water, Train) shown in
Fig. 12. Using natural test images we are able to
compare performance of the methods in realistic
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Table 2

Comparison of the methods using the CZP test image

Method MSER MSEG MSEB PSNRR PSNRG PSNRB NCD

NNI 9367.72 3300.70 9342.85 8.41 12.94 8.42 1.0062

BI 3804.12 1775.17 3849.09 12.32 15.63 12.27 0.8433

BCI 3119.59 1418.79 3154.91 13.19 16.61 13.14 0.7706

SHT 1872.90 1775.17 1903.99 15.40 15.63 15.33 0.4832

VMI 9542.26 7126.87 9442.66 8.33 9.60 8.38 0.9401

SVF 1506.08 337.51 1496.74 16.35 22.84 16.37 0.5077

DCCA 269.17 180.44 255.54 23.83 25.56 24.05 0.1172

MFI 984.47 135.13 997.33 18.19 26.82 18.14 0.4332

API 910.79 131.66 926.17 18.53 26.93 18.46 0.4891

BD 408.78 180.29 413.30 22.01 25.57 21.96 0.4237

TDA 221.28 114.18 221.08 24.68 27.55 24.68 0.3075

PVM 875.06 1361.68 884.76 18.71 16.79 18.66 0.4173

AP 547.85 646.92 545.48 20.74 20.02 20.76 0.4348

KA 1053.02 937.71 1077.78 17.90 18.41 17.80 0.3609

C2D2 319.33 553.62 326.10 23.08 20.69 22.99 0.3440

SAIG 1377.45 413.74 1403.37 16.74 21.96 16.65 0.5834

EMI 970.77 319.45 916.57 18.26 23.08 18.50 0.3682

LIM 1339.88 669.89 1345.84 16.86 19.87 16.84 0.3640

ESCC 78.06 78.58 78.05 29.20 29.17 29.20 0.2281

GESCC 78.06 78.58 78.05 29.20 29.17 29.20 0.2281

LESCC 78.06 78.58 78.05 29.20 29.17 29.20 0.2281
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applications, since in these images the correlation
between the color channels vary significantly. As the
reported error values indicate, flexible design
characteristics of the proposed method result in
excellent performance.

Figs. 14 and 15 present zoomed parts of the
restored images. These images allow for the
comparison of the state of-the-art CFA interpola-
tion results with those obtained through our
framework in terms of a subjective (user-centered)
evaluation. It is evident that many interpolation
methods (i) fail near edges and (ii) produce color
artifacts. Most methods blur edges and fine details
as a result of the inefficient edge-sensing mechan-
ism. However, the proposed framework is capable
of restoring the color images with a high visual
quality and avoids color shifts and visual artifacts.
Therefore, the proposed framework produces im-
pressive visual quality of the restored images shown
in Fig. 15j, which is also demonstrated by their
superior fidelity in comparison with the original
patterns shown in Fig. 14a.

Figs. 16 and 17 list estimation errors obtained
using the most powerful CFA interpolation techni-
ques. It can be seen that many methods are
characterized by a significant restoration inaccuracy
caused by edge blurring. Some of the methods
increase estimation error introducing color artifacts.
The proposed framework, in addition to color
chrominance preservation capability, maintains
excellent signal-detail preserving characteristics,
resulting in the smallest estimation error depicted
in Fig. 17e.

To demonstrate the robustness of the method,
Table 7 presents results corresponding to the image
database shown in Fig. 12. These numerical values
were achieved applying the CFA methods for all 40
test images and then averaging the aggregated error
criteria. The proposed framework exhibits the best
performance and achieves an excellent improvement
in comparison with previously developed ap-
proaches.

Apart from the actual performance of any
algorithm, its computational complexity is a realis-
tic measure of its practicality and usefulness.
Table 8 lists the average computational time per a
512� 512 input image noticed for the proposed
framework as well as some other sophisticated CFA
interpolation solutions. The execution of the devel-
oped postprocessing tool was performed on a
personal computer with an Intel Pentium IV
2.53GHz CPU, 512MB RAM, Red Hat Linux 9
operating system and Matlab 6.5 programming
environment. As it can be seen, all solutions (ESCC,
GESCC, LESCC) designed within the proposed
framework belong with the C2D2 method to the
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Fig. 13. Performance of the proposed GESCC (a,c,e) and LESCC (b,d,f) methods dependent on the threshold value g and b, respectively.
These results corresponding to the image database shown in Fig. 12 were achieved as aggregated error measures averaged through the

number of the test images: (a,b) MSE criteria, (c,d) PSNR criteria, (e,f) NCD criteria.
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Table 3

Comparison of the methods using the test image Lighthouse

Method MSER MSEG MSEB PSNRR PSNRG PSNRB NCD

NNI 280.97 81.91 265.32 23.64 28.99 23.89 0.0927

BI 138.69 44.32 134.23 26.71 31.66 26.85 0.0653

BCI 138.62 42.95 137.01 26.71 31.80 26.76 0.0679

SHT 57.64 44.32 66.29 30.52 31.66 29.91 0.0501

VMI 214.66 113.91 192.94 24.81 27.56 25.27 0.0753

SVF 131.33 32.90 127.51 26.94 32.95 27.07 0.0631

DCCA 27.74 12.53 19.58 33.69 37.15 35.21 0.0361

MFI 44.28 7.94 40.78 31.66 39.13 32.02 0.0380

API 14.57 9.71 13.19 36.49 38.25 36.92 0.0298

BD 23.24 12.65 21.91 34.46 37.10 34.72 0.0321

TDA 40.15 21.64 46.64 32.09 34.77 31.44 0.0418

PVM 23.92 21.83 23.60 34.34 34.74 34.40 0.0366

AP 9.15 4.74 7.40 38.51 41.36 39.43 0.0237

KA 16.97 16.38 26.35 35.83 35.98 33.92 0.0317

C2D2 16.94 13.16 17.57 35.84 36.93 35.68 0.0301

SAIG 109.40 16.71 107.04 27.74 35.90 27.83 0.0588

EMI 21.83 16.36 29.56 34.74 35.99 33.42 0.0370

LIM 22.70 16.83 24.12 34.57 35.87 34.30 0.0363

ESCC 10.30 5.25 9.95 38.00 40.92 38.15 0.0236

GESCC 10.30 5.25 9.95 38.00 40.92 38.15 0.0236

LESCC 10.30 5.25 9.95 38.00 40.92 38.15 0.0236

Table 4

Comparison of the methods using the test image Window

Method MSER MSEG MSEB PSNRR PSNRG PSNRB NCD

NNI 123.66 41.63 127.62 27.20 31.93 27.07 0.0747

BI 41.48 17.24 41.61 31.95 35.76 31.93 0.0417

BCI 36.44 14.50 36.43 32.51 36.51 32.51 0.0372

SHT 21.25 17.24 20.74 34.85 35.76 34.96 0.0329

VMI 95.82 65.76 100.71 28.31 29.95 28.10 0.0633

SVF 41.23 13.27 41.37 31.97 36.90 31.96 0.0411

DCCA 37.84 19.92 16.71 32.35 35.13 35.90 0.0342

MFI 9.50 2.88 9.78 38.35 43.53 38.22 0.0239

API 7.03 4.53 7.11 39.65 41.56 39.608 0.0209

BD 7.06 4.57 7.92 39.64 41.52 39.14 0.0228

TDA 10.79 6.90 15.92 37.79 39.74 36.11 0.0306

PVM 11.87 11.95 12.53 37.38 37.35 37.15 0.0247

AP 6.16 3.38 6.61 40.23 42.84 39.92 0.0212

KA 11.69 10.10 12.59 37.45 38.08 37.13 0.0256

C2D2 6.19 5.67 6.70 40.21 40.58 39.86 0.0193

SAIG 23.95 7.57 23.50 34.33 39.33 34.41 0.0322

EMI 12.42 9.80 11.33 37.18 38.21 37.58 0.0252

LIM 17.40 6.98 18.10 35.72 39.69 35.55 0.0318

ESCC 4.88 2.27 5.52 41.24 44.55 40.70 0.0181

GESCC 4.88 2.27 5.52 41.24 44.55 40.70 0.0181

LESCC 4.88 2.27 5.52 41.24 44.55 40.70 0.0182
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Table 5

Comparison of the methods using the test image Water

Method MSER MSEG MSEB PSNRR PSNRG PSNRB NCD

NNI 50.01 8.87 45.54 31.14 38.65 31.54 0.0356

BI 13.23 3.56 12.34 36.91 42.60 37.21 0.0194

BCI 10.49 2.90 10.47 37.92 43.50 37.93 0.0184

SHT 9.90 3.56 9.17 38.17 42.60 38.50 0.0194

VMI 39.54 15.45 34.54 32.16 36.24 32.74 0.0312

SVF 14.76 2.98 13.54 36.44 43.38 36.81 0.0205

DCCA 35.08 35.70 97.87 32.68 32.60 28.22 0.0304

MFI 8.31 2.76 7.73 38.93 43.71 39.24 0.0189

API 8.84 2.31 8.79 38.66 44.49 38.68 0.0193

BD 11.38 3.50 13.32 37.56 42.68 36.88 0.0212

TDA 17.71 6.10 20.52 35.64 40.27 35.00 0.0250

PVM 6.60 2.33 7.77 39.93 44.45 39.22 0.0177

AP 15.60 7.80 17.40 36.19 39.20 35.72 0.0255

KA 7.80 2.04 6.70 39.2 45.02 39.86 0.0182

C2D2 6.40 1.63 6.83 40.06 45.99 39.78 0.0177

SAIG 9.33 1.86 9.47 38.43 45.42 38.36 0.0186

EMI 9.53 2.66 7.75 38.33 43.87 39.23 0.0191

LIM 27.18 8.84 28.92 33.78 38.66 33.51 0.0256

ESCC 8.983 3.11 9.48 38.59 43.20 38.35 0.0215

GESCC 6.40 1.63 6.83 40.06 45.99 39.78 0.0177

LESCC 7.19 1.80 7.22 39.55 45.57 39.54 0.0183

Table 6

Comparison of the methods using the test image Train

Method MSER MSEG MSEB PSNRR PSNRG PSNRB NCD

NNI 1119.35 449.15 1345.11 17.64 21.60 16.84 0.2080

BI 517.71 254.59 607.19 20.99 24.07 20.29 0.1450

BCI 522.68 244.53 606.38 20.94 24.24 20.30 0.1513

SHT 220.32 254.59 282.44 24.70 24.07 23.62 0.1063

VMI 911.56 792.60 1052.45 18.53 19.14 17.90 0.1693

SVF 450.91 188.44 531.90 21.59 25.37 20.87 0.1345

DCCA 93.75 62.44 123.54 28.41 30.17 27.21 0.0733

MFI 115.44 46.03 163.34 27.50 31.50 26.00 0.0798

API 109.24 96.62 145.01 27.74 28.28 26.51 0.0776

BD 74.71 65.45 113.47 29.39 29.97 27.58 0.0744

TDA 86.32 69.26 147.30 28.77 29.72 26.44 0.0782

PVM 187.46 220.33 230.24 25.40 24.70 24.50 0.0958

AP 44.43 30.80 78.39 31.65 33.24 29.18 0.0560

KA 71.22 85.68 138.41 29.60 28.80 26.71 0.0641

C2D2 93.30 113.51 128.97 28.43 27.58 27.02 0.0702

SAIG 387.31 162.39 456.27 22.25 26.02 21.53 0.1246

EMI 159.42 152.53 195.69 26.10 26.29 25.21 0.0845

LIM 175.69 66.42 223.59 25.68 29.90 24.63 0.0910

ESCC 40.44 31.24 71.69 32.06 33.18 29.57 0.0503

GESCC 40.44 31.24 71.69 32.06 33.18 29.57 0.0503

LESCC 40.43 31.24 71.65 32.06 33.18 29.57 0.0503
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Fig. 14. Zoomed part of the test images and the corresponding results: (a) original images, (b) NNI, (c) BI, (d) BCI, (e) SHT, (f) VMI, (g)

SVF, (h) DCCA, (i) MFI, (j) API.
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Fig. 15. Zoomed part of the test images and the corresponding results (continued): (a) BD, (b) TDA, (c) PVM, (d) AP, (e) KA, (f) C2D2,

(g) SAI, (h) EMI, (i) LIM, (j) proposed ESCC framework.
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Fig. 16. Estimation errors of interpolation techniques emphasized by a factor of 3: (a) SVF, (b) MFI, (c) API, (d) BD, (e) TDA.
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Fig. 17. Estimation errors of interpolation techniques emphasized by a factor of 3: (a) PVM, (b) AP, (c) C2D2, (d) EMI, (e) proposed

GESCC framework.
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Table 7

Averaged results related to image database shown in Fig. 12

Method MSER MSEG MSEB PSNRR PSNRG PSNRB NCD

NNI 398.92 152.12 475.08 24.36 28.88 24.15 0.1252

BI 199.70 90.43 235.41 28.20 31.73 27.83 0.0898

BCI 201.57 86.50 241.86 28.37 32.12 27.92 0.0923

SHT 302.75 90.43 241.17 27.79 31.73 28.50 0.0866

VMI 348.68 268.20 387.07 25.16 26.49 25.05 0.1082

SVF 168.85 69.33 201.10 28.54 32.82 28.19 0.0854

DCCA 199.53 103.91 132.31 27.94 31.78 30.77 0.0775

MFI 99.32 37.40 122.79 32.09 36.64 31.81 0.0651

API 95.48 49.57 113.23 32.72 35.43 32.64 0.0644

BD 85.55 42.80 104.41 32.89 35.74 32.61 0.0652

TDA 103.50 53.46 126.48 31.61 34.35 30.97 0.0713

PVM 109.06 75.26 134.55 31.62 32.85 31.27 0.0708

AP 89.40 44.11 101.75 33.03 35.87 32.92 0.0636

KA 127.66 66.32 135.39 30.18 33.41 31.14 0.0675

C2D2 76.23 47.63 97.61 33.48 35.21 33.10 0.0594

SAIG 151.96 57.31 182.79 29.66 34.16 29.25 0.0788

EMI 150.49 60.29 135.08 29.34 33.45 30.93 0.0709

LIM 151.41 62.76 183.81 29.57 33.92 29.58 0.0747

ESCC 71.95 32.62 87.12 33.96 37.28 33.76 0.0560

GESCC 71.78 31.24 85.67 34.08 37.50 33.94 0.0562

LESCC 71.66 31.35 85.73 34.09 37.49 33.94 0.0562

Table 8

Comparison of the average computational time

Method KA C2D2 PVM AP SVF EMI ESCC GESCC LESCC

time [s] 18.416 5.009 15.383 17.229 20.947 26.060 11.533 14.384 17.019
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computationally most attractive cases among the
considered solutions.

Summarizing the results presented above, the
following conclusions can be drawn:
�
 The proposed method improves color appear-
ance and avoids edge blurring.

�
 There is no perceptual difference in color
appearance between the original image and the
images restored by the proposed method.

�
 The proposed method outperforms signifi-
cantly the state of-the-art CFA interpolation
methods in terms of both objective (more
than 20%) and subjective image evaluation
criteria.

�
 The proposed method is computationally effi-
cient and compares favorably, in terms of
computational complexity, with the widely ;used
high-powerful CFA interpolation methods.
5. Conclusions

A novel CFA interpolation approach was intro-
duced and analyzed in this work. The method
employed color correlations in edge detection and a
color correction based CFA interpolation step.
Combining their advantages, our method produces
interpolated images that are sharp, naturally co-
lored and pleasurable for viewing. At the same time
yields excellent results in terms of commonly used
objective image quality criteria. Simulation results
and comparisons reported here indicate that our
framework is sufficiently robust and significantly
outperforms previously developed approaches.
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