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Superimposed Asymmetric Modulation in
Narrowband Fading Channels using Orthogonal Codes
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Abstract— The asymmetric signal constellation (ASC) method
to break isometry is analyzed in a superimposed symbol frame-
work with a Kalman filter estimator (KF) / maximum-likelihood
(ML) detector as the receiver. Direct application of the ASC
method led to a bit error floor, which motivates the proposal of
combining orthogonal spreading codes with ASC to solve this
problem. The proposed scheme generalizes previously proposed
ASC and pilot-assisted solutions in a systematic way and results
in coherent detection schemes without set bit error floors and
better performance.

Index Terms— Asymmetric modulation, Superimposed, Or-
thogonal codes, Pilot symbols, Coherent, Kalman filter, Gauss-
Markov, Maximum likelihood detection.

I. INTRODUCTION

THE main objective of a communications receiver is to
detect data sent from the transmitter with minimal error

probability. Data detection can be performed coherently or
non-coherently. Coherent detection requires channel estima-
tion, but it results in better probability of error performance
than non-coherent detection. This letter focuses on coherent
detection of phase-shift keying (PSK) signals in a narrowband
flat fading channel. In such a scenario, the transmitted signal
is distorted by additive white Gaussian noise (AWGN) and
multiplicative fading [1]–[3]. Joint channel estimation / data
detection (CE/DD) systems suffer from irreducible error floors
as a result of the combined effects of erroneous data detection
and large estimation errors [1]. It was shown in [4] that
the cause is isometry, which can be defined as ambiguity in
detecting the correct data symbol that arises from multiplica-
tive channel fading effects and rotational invariance of PSK
constellations. One solution to this problem is time-division-
multiplexed (TDM) pilot-assisted transmission (PAT) in which
detection ambiguity is eliminated at the receiver. The term PAT
refers to general transmission schemes that use pilot symbols
to aid the process of channel estimation [5]. It is different from
pilot symbol-assisted modulation (PSAM) [6] in that PSAM
specifically refers to PAT with regular periodic placement of
cluster size 1 (RPP-1) [5].

An alternative to TDM PAT is superimposed PAT, where
part of the power in each data symbol is allocated to a parallel
pilot channel to transmit known symbols. Fig. 1A shows the
symbol structure of superimposed PAT. The pilot channel
provides a continuous stream of pilot symbols to enable the
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Fig. 1. (A) Symbol structure of the superimposed PAT. (B) Symbol structure
of the NS-ASC.

estimator to update its channel estimate while user data is
transmitted in a separate parallel data channel. Superimposed
PAT is considered in this letter because it outperforms the
optimal TDM PAT scheme, the RPP-1 TDM PAT, in bit error
rate (BER) and minimum mean square error (MMSE) for the
majority of fading rates of practical importance [5].

At the receiver, the continuous-time received signal is
matched filtered (MF) and sampled at symbol rate to obtain
the sufficient statistics. The first column of Table I shows
equations and statistics for the discrete-time received signal
in the kth symbol interval and the receiver that is used for
this scheme. In the table, ρ2

t and ρ2
d are the powers allocated

to pilot and data symbols respectively, {tk} and {dk} are the
pilot and data sequences respectively, hk is the fading channel
coefficient, and wk is AWGN. A first-order Gauss-Markov
process expressed in state space form is used to model the dy-
namics of the channel state hk due to its reasonable complexity
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TABLE I

RECEIVER MODEL COMPARISON OF THE THREE SUPERIMPOSED SCHEMES

Superimposed PAT NS-ASC OS-ASC

Rx Signal yk = ρttkhk + ρddkhk + wk yk = ρttkhk + ρddkhk + wk rk = SAkbk + wk

Received hk ∼ CN (0, σ2
h) hk ∼ CN (0, σ2

h) S = [st sd], SHS = R = I

Signal wk
i.i.d∼ CN (0, σ2

w) wk
i.i.d∼ CN (0, σ2

w) Ak = hk I , bk = [ρttk ρddk]T

Statistics E[tk] = E[dk] = 0 E[tk] = E[dk] = 0 E[w(k)] = 0

E[ | tk | 2] = E[ | dk | 2] = 1 E[ | tk| 2] = E[ | dk| 2] = 1 E[wkw
∗
k+m

] = σ2
wIδ(m)

{tk}, {dk} are iid PSK symbols {tk}, {dk} are iid PSK symbols {tk}, {dk} are iid PSK symbols

Correlator Not Applicable Not Applicable yk = SHrk = Akbk + qk

Output and yk = [ytk ydk]T

Statistics qk = SHwk , E[q(k)] = 0

E[qkq
∗
k+m] = σ2

wIδ(m)

Channel hk = ahk−1 + uk hk = ahk−1 + uk hk = ahk−1 + uk

Hypermodel uk
i.i.d∼ CN (0, (1 − a2)σ2

h) uk
i.i.d∼ CN (0, (1 − a2)σ2

h) uk
i.i.d∼ CN (0, (1 − a2)σ2

h)

Pilot KF to obtain ĥk|k Coupled KF/ML CE/DD Coupled KF/ML CE/DD

Channel {tk} known, detection unnecessary to obtain ĥk|k and t̂k to obtain ĥk|k and t̂k

Receiver (TDM ASC method) [4] (TDM ASC method) [4]

Data Rxer ML detector to obtain d̂k ML detector to obtain d̂k ML detector to obtain d̂k

Meas. Eqn. yk = ρttkhk + vk yk = ρttkhk + vk ytk = ρttkhk + sH
t wk

Meas. vk = ρddkhk + wk vk = ρddkhk + wk E[sH
t wk] = 0

Equation E[viv∗j ] = σ2
vδij , E[hiv∗j ] = 0 E[viv∗j ] = σ2

vδij , E[hiv∗j ] = 0 E[(sH
t wk)(sH

t wk)H ] = σ2
w

Statistics σ2
v = (ρ2

d
σ2

h
+ σ2

w) σ2
v = (ρ2

d
σ2

h
+ σ2

w)

KF ĥk|k−1 = aĥk−1|k−1, ĥ0|0 = 0 ĥk|k−1 = aĥk−1|k−1, ĥ0|0 = 0 ĥk|k−1 = aĥk−1|k−1, ĥ0|0 = 0

Recursive Pk|k−1 = a2Pk−1|k−1+(1−a2)σ2
h, Pk|k−1 = a2Pk−1|k−1+(1−a2)σ2

h, Pk|k−1 = a2Pk−1|k−1+(1−a2)σ2
h,

Equations P0|0 = 1 P0|0 = 1 P0|0 = 1

zk|k−1 = yk − ρttkĥk|k−1 zk|k−1 = yk − ρttkĥk|k−1 zk|k−1 = ytk − ρttkĥk|k−1

Pz k|k−1 = ρ2
t Pk|k−1+(ρ2

d
σ2

h
+σ2

w) Pz k|k−1 = ρ2
t Pk|k−1+(ρ2

d
σ2

h
+σ2

w) Pz k|k−1 = ρ2
t Pk|k−1 + σ2

w

Kk = Pk|k−1 (ρttk)HP−1
z k|k−1

Kk = Pk|k−1 (ρttk)HP−1
z k|k−1

Kk = Pk|k−1 (ρttk)HP−1
z k|k−1

ĥk|k = ĥk|k−1 + Kkzk|k−1 ĥk|k = ĥk = ĥk|k−1 + Kkzk|k−1 ĥk|k = ĥk = ĥk|k−1 + Kkzk|k−1

Pk|k = [1 − Kk(ρttk)]Pk|k−1 Pk|k = [1 − Kk(ρttk)]Pk|k−1 Pk|k = [1 − Kk(ρttk)]Pk|k−1

Pilot and tk known, no detection required t̂k = arg min
tk∈Tk

| yk − ρttkĥk|k−1| 2 t̂k = arg min
tk∈Tk

| ytk − ρttkĥk|k−1| 2
Data Chan. d̂k = arg min

dk∈Dk
d̂k = arg min

dk∈Dk
d̂k = arg min

dk∈Dk

Detectors | (yk − ρttkĥk|k) − ρddkĥk|k| 2 [5] | (yk − ρt t̂kĥk|k) − ρddkĥk|k| 2 [5] | ydk − ρddkĥk|k| 2
Dat. Chan. y′

k
= yk − ρttkĥk|k y′

k
= yk − ρttkĥk|k y′

k
= ydk = ρddkhk + sH

d
wk

Observation E[sH
d

wk] = 0

and Stats E[(sH
d

wk)(sH
d

wk)H ] = σ2
w

and good performance in approximating a Rayleigh fading
power spectral density (PSD) [2]. When no prior information
is available about the dynamics of hk, a ∈ [0.9 − 0.99] is
often a reasonable and robust choice for this hypermodel [2].
A small a represents fast fading while a large a represents
slow fading. The standard conditions in [5] assume that tk,
dk, hk, and wk are jointly independent.

A joint CE/DD receiver consisting of a Kalman filter (KF)
and a maximum-likelihood (ML) detector was proposed in
[5] for the superimposed PAT. The KF operates in the pilot
channel and it considers the term ρddkhk in yk in the first
column of Table I as noise-like interference that is grouped
with the AWGN wk to create the term vk in the measure-
ment equation. As KF is a recursive estimator, the channel

initial conditions need to be known. In the absence of prior
information, the channel estimate ĥ0|0 = 0 and the estimation
covariance P0|0 = 1 are used to match the statistical conditions
of a Rayleigh fading channel [2], [4]. The ML detector selects
the data sequence {dk} based on the criterion in Table I and
derived in Appendix I.

The disadvantages of both TDM and superimposed PAT are
that they reduce effective data transmission rate and consume
extra transmission power. Recently, a method that involves the
periodic TDM of asymmetric signal constellations (ASC) was
proposed in [4] to break isometry using a decision-directed
KF/ML joint CE/DD. Under this receiver model, TDM ASC
achieves similar mean square error (MSE) and bit error rate
(BER) performance as TDM PAT [4]. Hence, this method has
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the potential to replace TDM PAT because it does not use
any pilot symbols. Note that the KF for TDM PAT in [5]
relies solely on the first-order Gauss-Markov hypermodel to
update ĥk|k and Pk|k at non-pilot points (Hypermodel TDM
PAT). This is different from the KF in [4] where it operates
in decision-directed mode for every symbol in the frame
(Decision-directed TDM PAT). Nonetheless, a Hypermodel
TDM ASC scheme could similarly be set up by replacing
the pilot symbol time slots in Hypermodel TDM PAT with
ASCs and by using the receiver model in [5]. It was shown in
[5] that superimposed PAT outperforms the Hypermodel TDM
PAT. Thus, let us device and analyze a superimposed ASC
scheme that could be used to similarly replace superimposed
PAT.

The main contribution of this letter is to present a general-
ized framework for the cost effective solution to the problem
of joint CE/DD in narrowband channels. This includes: (i) the
discussion and analysis of a naı̈ve superimposed ASC scheme
based on the application of the techniques in [4], (ii) the
discovery of an error floor in this scheme due to a bounded
signal-to-interference plus noise ratio (SINR), (iii) the pro-
posal of an orthogonal code superimposed ASC scheme that
removes the error floor, and provides better BER performance
than superimposed PAT.

II. THE NAÏVE SUPERIMPOSED ASC (NS-ASC) SCHEME

The NS-ASC scheme is a direct application of the TDM
ASC method in [4] to the superimposed PAT framework
in [5]. The second column in Table I shows the equations
for the received signal and the NS-ASC receiver. Since the
superimposed PAT framework is used, columns one and two
in table I are very similar. The difference is that tk needs to be
detected as all pilot symbols in the pilot channel are replaced
by unknown data symbols. The joint ignorance of both hk
and tk in the pilot channel results in isometry. Isometry
can be illustrated as follows: Suppose the tk constellation
Tk = ej

2πm
M tk, m = 0, 1, · · · ,M − 1 is regular M -PSK.

Based on the initial condition ĥ0|0 = 0, all M points in
T1 minimize the detection criterion for tk in Table I, hence
the term isometry. Assuming that t1 is transmitted and v1 is
negligible in the measurement equation, an incorrect choice
of t̂1 = ej

2πm
M t1, m �= 0 would result in an incorrect

channel estimate ĥ1|1 = e−j
2πm

M h1. It was shown in [4] that
the coupled KF/ML CE/DD system for the NS-ASC scheme
propagates rotational invariance. Therefore, for k = 2, 3, · · ·,
ĥk|k = e−j

2πm
M hk instead of hk. The decision rule for tk

would select t̂k = ej
2πm

M tk over tk, which leads to more
estimation and detection errors in subsequent symbols. The
probability of selecting an erroneous first symbol is (1− 1

M ),
which shows that isometry leads to an irreducible error floor.

Fig. 1B shows the symbol structure of the NS-ASC. Since
the joint CE/DD structure in the pilot channel is identical to
that in [4], the TDM ASC CE/DD method using parallel KF’s
in [4] can be used here to find a unique sequence of {tk}
and {ĥk|k}. Symbols are differentially encoded and decoded
(DED) to remove phase ambiguity between adjacent symbols.
The differential encoding rule is tk = tk−1 ck, where ck
is the uncoded symbol and t0 = 1, and the decoding rule

ytk

Differential
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dk

R egular
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Fig. 2. Block diagram of the OS-ASC transceiver.

is ck = tk t
∗
k−1. ASCs are inserted periodically in between

data symbols in the pilot channel to break isometry [4]. The
reader is referred to [4] for further details on the mechanics
of this method. The ML detection rule for tk is derived in
Appendix I while the detection rule for dk is the same as that
in superimposed PAT.

III. THE ORTHOGONAL SUPERIMPOSED ASC (OS-ASC)
SCHEME

It will be shown in the next section that an error floor
severely degrades the BER performance of NS-ASC and the
source of this problem is the interference ρddkhk seen by the
pilot channel during the detection of tk, which is not required
in superimposed PAT. In order for NS-ASC’s performance to
approach that of superimposed PAT, the error floor must be
removed by forcing ρddkhk → 0. The solution proposed here
is to spread dk and tk by different orthogonal codes sd and st
of length N such that the pilot channel becomes orthogonal to
the data channel. Fig. 2 shows a block diagram of the OS-ASC
transceiver structure proposed in this letter. The continuous-
time signal is now a superposition of chip pulses instead of
symbol pulses. Thus, the MF is matched to the chip pulse
shape and sampled at the chip rate to obtain the sufficient
statistics in this case. The equations for the discrete-time signal
and the receiver in Fig. 2 is given in column three of Table I.
rk is the N x 1 received signal, S is the N x 2 spreading code
matrix, Ak is a 2 x 2 channel matrix, wk is a N x 1 AWGN
vector, R is the spreading code correlation matrix, and qk is
a 2 x 1 additive noise vector.

Before rk is input into the joint KF/ML CE/DD, it is
correlated with S to completely remove the interference be-
tween the pilot and data channels. The interference could be
completely removed because both dk and tk in the 2 x 1 data
vector b undergo the same channel perturbation. As a result,
st and sd remain orthogonal at the receiver. Furthermore, it is
important to note that sd and st are both known at the receiver
because all the codes belong to the same user.

The symbol structure of OS-ASC remains unchanged from
NS-ASC and it can be described by Fig. 1B. According to Fig.
2, ytk is passed to a joint KF/ML CE/DD in the pilot channel
while ydk is passed to the ML detector in the data channel.
The TDM ASC method in [4] is used in the pilot channel to
obtain the sequences {ĥk|k} and {t̂k}. d̂k is obtained symbol-
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by-symbol using the decision rule given in column three of
Table I. This rule is derived in Appendix I.

The tradeoff of using OS-ASC as opposed to superimposed
PAT or NS-ASC is that the spreading codes enlarge the
original signal’s bandwidth by N times. Fortunately, orthog-
onal codes are able to completely remove interference with a
very small N For a superimposed framework with only two
channels, the smallest N that achieves this purpose is N = 2.
Any larger N would reduce the spectral efficiency (measured
in bits/s/Hz) without providing further gain in performance. If
the original signal is narrowband, rk can still be considered
as a narrowband signal with N = 2.

IV. PROBABILITY OF ERROR ANALYSIS FOR THE

SUPERIMPOSED SCHEMES

A. The Naı̈ve Superimposed ASC Scheme

The total error probability is given by Pe(k) = 1
2Pe, t(k)+

1
2Pe, d(k), where Pe, t(k) and Pe, d(k) are the error probabil-
ities for tk and dk respectively. A closed-form expression of
Pe, t(k) is derived in Appendix II based on the tk detection
criterion given in column two of Table I. In order to check how
high Pe, t(k) gets, a lower bound analysis can be performed
by setting the prediction covariance Pk|k−1 = 0 in (4). Under
such an assumption,

Pe, t,LB(k) ≈ K
2

⎡
⎢⎣1 −

√√√√ 1
4

d2
min

(
1
β

)
+ 1

⎤
⎥⎦ (1)

where β is the SINR from the KF’s viewpoint, defined by

β
�
=
E[| ρttkhk| 2]
E[| vk| 2] =

σ2
hρ

2
t

σ2
hρ

2
d + σ2

w

=
σ2
hρ

2
t

σ2
v

. (2)

The power is split up equally between the data and pilot
channels in [5] such that ρ2

t = ρ2
d = P/2. To simplify

matters more, let σ2
h = 1 for a Rayleigh fading channel

and let P = 1. By substituting these into (2), β simplifies

to β = 1
1+ 2

SNR

where SNR
�
= σ2

hP
σ2

w
. According to this β

expression, β goes from 0 (−∞ dB) to 1 (0 dB) as SNR
goes from 0 to ∞. This means there is a BER floor according
to (1). In order to see where this BER floor resides, let us
examine a scenario where tk is a BPSK signal. For BPSK,
K = 1 and dmin = 2. Therefore, the lower bound of Pe, t(k) is

Pe, t,LB,BPSK(k) = 1
2

[
1 −

√
1

1+ 1
β

]
. By substituting β = 1

for minimum BER, Pe, t,LB,BPSK(k) = 0.146. For other PSK
constellations where dmin < 2 and K > 1, Pe, t,LB(k) ≥
0.146.

In joint CE/DD receivers, MSE and BER are coupled to-
gether. A high BER floor in tk would also result in inaccurate
ĥk|k and a large Pk|k from the KF. Since Table I shows that the
data channel uses ĥk|k to form the detection criterion for dk,
a high MSE in ĥk|k would create a high Pe,d(k). Therefore,
Pe,d(k) should be similar to Pe,t(k), which would render NS-
ASC unusable for reliable transmission.

Although superimposed PAT also sees the same SINR in the
pilot channel, it does not have a BER floor because tk does
not need to be detected. According to the Pe expression (29)
in [5], Pe(k) = Pe, d(k) → 0 as β → 1 [5]. The analysis in

this subsection indicates that an error floor exists for NS-ASC
and the source behind this is the interference term ρddkhk.

B. The Orthogonal Superimposed ASC Scheme

With sd and st removing the interference in the pilot

channel, σ2
v = σ2

w and β = ρ2tσ
2
h

σ2
w

�
= SNRt. Since ρ2

t ∝ P ,
SNRt ∝ SNR. The detection rule for tk in this scenario is
the same as NS-ASC. Thus, the probability of error is given
by

Pe, t(k) ≈ K
2

⎡
⎢⎣1 −

√√√√√ 1−Pk|k−1
σ2

h(
4

d2
min

−1

)
Pk|k−1

σ2
h

+ 4
d2

min

( 1
SNRt

)+1

⎤
⎥⎦

(Appendix II).

Notice that the 1
β term in (4) is changed to 1

SNRt
here and

SNRt → ∞ as SNR → ∞. Thus, Pe, t(k) → 0 and it is no
longer limited by a BER floor.

In the OS-ASC scheme, the similarity between the detection
criterion of dk and tk implies that Pe, d(k) can also be written
as the Pe, t(k) expression above. Pk|k−1 is replaced by Pk|k
since ĥk|k is passed onto the data channel, not ĥk|k−1. Also,

SNRt is replaced by SNRd
�
= ρ2dσ

2
h

σ2
w

, which is the data
channel SNR.

Except for the error floor removal, OS-ASC provides better

channel tracking ability. Let P sup
�
= lim

k→∞Pk|k be defined
as the steady-state channel estimation MMSE. If the KF
converges correctly, Pk|k ≈ Pk−1|k−1 as k → ∞. By
substituting the expression of Kk in the Kalman gain equation
into the Riccatti equation and solving for Pk|k as k → ∞,
P sup is given by [5]

P supOS−ASC =
σ2
h

γ +
√
γ2 + a2

1−a2SNRt

. (3)

where γ = 1
2 (1 + SNRt). For superimposed PAT and NS-

ASC, P sup is given by the same expression except all the
SNRt’s are replaced by β [5]. As SNR → ∞, P sup is
lower bounded by β = 1 for superimposed PAT and NS-ASC,
but P supOS−ASC → 0. Therefore, OS-ASC could provide better
tracking ability over the other two superimposed schemes
since P supOS−ASC is unbounded.

V. SIMULATION RESULTS

In this section, simulation results are used to access the
applicability of the various CE/DD schemes. The simulation
parameters are given by the following: center frequency fc =
1.8 x 109 Hz (High-tier IS-136) [4], symbol period T = 4.12
x 10−5s, symbol/chip pulse = square root raised cosine with
0.35 roll-off, OS-ASC temporal frame length = 162 symbols,
P = 1, η = 0.1, σ2

h = 1, and N = 2. It is assumed that
the power distribution is equal for all symbols, meaning that
ρ2
t = ρ2

d. The channel coefficients are generated by the method
in [7] and 1000 Monte Carlo runs are performed per simulation
point.

In order to ensure fair comparisons between the various
schemes, two assumptions are made in the simulations. Firstly,
all schemes have the same amount of available bandwidth.
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Fig. 3. Average BER versus SNR for a = 0.95 and η = 0.1. For a frame
length of 162 symbols, η = 0.1 means that 10% = 16 symbols are pilots
/ ASC symbols. For a TDM RPP-1 scheme, this translates to 1 pilot / ASC
symbol being inserted for every �162/16� = 10 data symbols.

Other schemes that use only half the bandwidth of OS-ASC
enjoy the benefit of being able to use the extra bandwidth to
transmit at twice the symbol rate of OS-ASC. For example,
if each OS-ASC channel has 162 symbols per frame, then
TDM schemes would have 324 symbols per frame, and
Superimposed PAT and NS-ASC would also have 324 symbols
in each channel. The frame’s time duration is common for all
schemes. This is to ensure that OS-ASC does not have any
data rate gains over the other schemes. Secondly, a total power
budget of 162P is assigned per frame. With equal power
distribution, superimposed PAT and NS-ASC symbols have
power of P/4, while TDM and OS symbols have power of
P/2. This assumption assures that schemes with more symbols
per frame are not biased with having more transmission power
per symbol.

Fig. 3 shows the average BER versus SNR with a =
0.95 (normalized fading rate fDT ≈ 0.02) and η = 0.1.
All symbols are DBPSK encoded and an asymmetric BPSK
constellation with points at {+1,+j} is chosen to modulate
the ASCs [4]. The power allocated to each symbol is marked
in parenthesis for each scheme. The high BER floor for NS-
ASC is evident in this figure. One interesting observation is
that OS-ASC performs better than superimposed PAT, and
the performance gap increases as SNR increases. This can
be explained intuitively by the derivation in Appendix I. For
superimposed PAT, y′k = ρddkĥk|k + (ρttk + ρddk)h̃k|k +wk
whereas for OS-ASC, ytk = ρttkĥk|k−1+ρttkh̃k|k−1+sHt wk.
Since orthogonal codes do not enhance the AWGN statistics,
the superimposed PAT detector has an extra interference term
ρddkh̃k|k to handle. As SNR increases, wk becomes less sig-
nificant and the interference term dominates the performance.
If orthogonal codes of length N = 2 are similarly applied to
superimposed PAT (OS-PAT) to remove interchannel interfer-
ence, its performance becomes slightly better than OS-ASC.
However, OS-PAT transmits only at half the data rate of OS-
ASC because its bandwidth is enlarged by the spreading codes
and half the symbols in the frame are pilot symbols. Therefore,
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Fig. 4. Average BER versus SNR for various constellations used in OS-ASC
with a = 0.95 dB and η = 0.1.

OS-ASC is still preferred over superimposed PAT and OS-PAT
when both data transmission rate and BER performance are
criteria to be considered.

Since superimposed PAT is compared against the Hyper-
model TDM PAT in [5], the TDM schemes in Fig. 3 are
simulated using the same TDM PAT receiver model as [5] for
proper comparison. Since OS-ASC outperforms superimposed
PAT, it also performs better than the two TDM schemes as
seen in Fig. 3. Finally, the OS-ASC lower bound is obtained
by setting Pe,t(k) ≈ Pe,d(k), Pk|k−1 = Pk|k = 0, K = 1,
SNRt ≈ SNRd = SNR/2, and dmin = 2 in (4).

Fig. 4 shows the average BER versus SNR for OS-ASC
with higher rate constellations. Two lines of superimposed PAT
are also plotted for performance comparison purposes with
the corresponding OS-ASC scheme. The OS-ASC subblock
structure in the pilot channel is specially constructed for
DQPSK, 8DPSK, 16DPSK, and 64MRDPSK. The first two
symbols in each subblock are DQPSK symbols to limit the
number of parallel KF’s required in the receiver. The ASC at
the end of each subblock is an asymmetric DQPSK symbol to
increase the probability of correct detection and aid the process
of breaking isometry [4]. The other symbols in between are
modulated by constellations described in the legend of Fig.
4. The data channel consists purely of a continuous stream
of data symbols also modulated by constellations described in
the legend of Fig. 4. It does not contain any ASCs or special
structures.

VI. CONCLUSION

In this letter, the superimposed PAT, NS-ASC, and OS-
ASC schemes were studied for PSK signals in a narrowband
Rayleigh fading channel modelled by a first-order Gauss-
Markov process. The motivation of applying the ASC method
in a superimposed framework arises from the observed su-
perior performance of superimposed PAT over TDM PAT in
[5]. The NS-ASC scheme encounters a high BER error floor,
but the novel OS-ASC scheme eliminates this problem and
provides better BER performance over superimposed PAT.
When both data transmission rate and BER performance are
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important performance criteria, OS-ASC is an attractive alter-
native to superimposed PAT in the superposition framework.

APPENDIX I
THE DERIVATION OF THE ML DETECTORS

For the detection of dk in superimposed PAT, yk in column
one of Table I can be rewritten in the form of yk = (ρttk +
ρddk)(ĥk|k + h̃k|k) + wk where h̃k|k = hk − ĥk|k is the
channel estimation error. Since the detector for dk is based
on the innovations y′k = yk − ρttkĥk|k, y′k = ρddkĥk|k +
(ρttk + ρddk)h̃k|k + wk . Given the pilot symbol tk, the past
observations yk−1

1 = [y(1), · · · , y(k − 1)], and all the past
transmitted symbols dk−1

1 = [d(1), · · · , d(k − 1)] detected
correctly, y′k is Gaussian distributed with the following sta-
tistics: E[y′k|yk−1

1 , tk, dk,dk−1
1 ] = ρddkĥk|k, and E[y′k −

ρddkĥk|k|yk−1
1 , tk, dk,dk−1

1 ] = | ρttk + ρddk| 2Pk|k + σ2
w.

Given the observation y′k, the a posteriori probability of dk is

P (dk| y′k,yk−1
1 , tk,dk−1

1 ) =
[P (y′k|yk−1

1 , dk, tk,dk−1
1 )P (dk)]P (yk−1

1 , tk,dk−1
1 )

P (y′k,y
k−1
1 , tk,dk−1

1 )

Thus, given y′k,y
k−1
1 , tk, and dk−1

1 , the MAP detector is
d̂k = arg max

dk∈Dk
{P (y′k|yk−1

1 , dk, tk,dk−1
1 )P (dk)} where Dk is

the constellation for dk. For PSK constellations, only the
numerator of the exponential in P (y′k|yk−1

1 , dk, tk,dk−1
1 )

matters in deciding d̂k. When each dk ∈ Dk is equiprobable,
the MAP detector simplifies to the ML detector for dk in
column one of Table I.

For the detection of tk in NS-ASC, yk can be rewritten as
yk = ρttk(ĥk|k−1 + h̃k|k−1) + vk. Using the same procedure
as above with y′k replaced by yk, E[yk|yk−1

1 , tk, tk−1
1 ] =

ρttkĥk|k−1, and E[yk − ρttkĥk|k−1|yk−1
1 , tk, tk−1

1 ] =
ρ2
tPk|k−1 + σ2

v , we arrive at the ML detector for tk.
The detection of tk in OS-ASC is the same as that for tk in

NS-ASC except that yk is replaced by ytk, vk is replaced by
sHt wk and σ2

v replaced by σ2
w. Also, since ydk has the same

form as ytk with similar statistics, the derivation above is used
again for the detector of dk in Table I.

APPENDIX II
ERROR PROBABILITY FOR PSK CONSTELLATIONS IN THE

PILOT CHANNEL

The probability of error for the NS-ASC scheme can be
obtained by rewriting yk as yk = ρttk(ĥk|k−1 + h̃k|k−1) +
vk. Given the derivation in Appendix I and that all the past
symbols of tk−1

1 = [t1, ..., tk−1] are detected correctly, the
probability of error for one-dimensional constellations is given
by

Pe, t(k) ≈ E| ĥk|k−1| 2

{
K.Q

(√
ρ2t d

2
min

| ĥk|k−1| 2
2(ρ2tPk|k−1+σ2

v)

)}

where K is the average number of nearest neighbors, dmin is
the minimum distance between adjacent points in a constella-
tion where the average power is normalized to 1, and Q(x) =∫∞
x

e−
t2
2√

2π
dt, x ≥ 0. ĥk|k−1 is a zero mean Gaussian random

variable, which means that | ĥk|k−1| 2 is exponentially distrib-
uted. By using the following result:

∫∞
0 Q(

√
x)1

c e
− x

c dx =
1
2

[
1 −√c/(2 + c)

]
, and x ∼ exp (c) = 1

c e
− x

c , Pe, t(k) can
be rewritten as

Pe, t(k) ≈ K
2

⎡
⎢⎣1 −

√√√√√ 1 − Pk|k−1

σ2
h(

4
d2

min

− 1
)
Pk|k−1

σ2
h

+ 4
d2

min

(
1
β

)
+ 1

⎤
⎥⎦

(4)

where β is the SINR defined in (2). Since x ∼ exp (c), E[x] =
c and c can be found by E[x] = E

[
ρ2t d

2
min| ĥk|k−1| 2

2(ρ2tPk|k−1+σ2
v)

]
. For

two-dimensional constellations, the 2 in the denominator of the
Q function in Pe, t(k) is changed to 4 to account for decision
regions that involve both the real and imaginary axes instead
of only the real axis. By simplifying Pe, t(k) to the form in
(4), everything in (4) remains the same except that 4

d2
min

is

changed to 8
d2

min

.
For the OS-ASC scheme, ytk can be rewritten as ytk =

ρttk(ĥk|k−1 + h̃k|k−1)+sHt wk. The only change inside the Q
function in Pe, t(k) is that ρ2

tPk|k−1+σ2
v becomes ρ2

tPk|k−1+
σ2
w. When this is evaluated to the form in (4), β is replaced

by SNRt.
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