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Abstract—Mobile terminal location is an important area of re-
search because of its applications in location-sensitive browsing
and resource allocation. This paper presents a method for reducing
the error in mobile terminal location estimation. A preprocessor
using nonparametric estimation is used to reduce the effects of
non-line-of-sight and multipath propagation on the location pro-
cedure. A model-based dynamic filter is presented that uses an ac-
curate model of mobile terminal motion to combine information
from location measurements made at different time instances to-
gether to create an improved location estimate. The model of mo-
bile terminal motion has a kinematic state space model describing
the physical rules governing terminal motion and a control model
that describes the human control input into the motion process.
Location dependency in the control input model is used to derive
a new dynamic filter. This filter provides greatly improved accu-
racy over previously known location techniques and is much more
robust to variations in the mobile terminal motion and nonlinear
effects in the propagation environment.

Index Terms—Cellular land mobile radio, filters, position
location.

I. INTRODUCTION

M UCH research has been performed on mobile terminal
location in wireless cellular networks. Even without so-

phisticated location methods, a wireless cellular network has
some knowledge of the location of a communicating mobile
terminal. The handoff algorithm determines which base station
serves the mobile terminal at any given time, which gives statis-
tical knowledge about the mobile terminal’s location. This loca-
tion information is returned in Phase I of the Federal Communi-
cation Commission’s emergency 911 wireless location require-
ment [1]. For more precise location estimates, the relationship
between radio signals’ characteristics and the relative positions
of the mobile terminal and base stations is exploited to generate
location estimation procedures. Measurements that have been
proposed for the location of mobile terminals include the angle
of arrival (AoA) of the radio signals from the mobile terminals
to the base stations, the received signal strength (RSS) of the
radio signal of the mobile terminal at the base station, the time
of arrival (ToA) of the radio signal from the base station at the
mobile terminal, and the time difference of arrival (TDoA) be-
tween signals from multiple base stations at the mobile terminal
[2]–[5]. No matter which measurements are used to locate the
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mobile terminal, there are errors in the position estimates re-
sulting from noise in the measurements.

It has been shown that time filtering of the location estimates
can reduce the location errors [6]–[10]. A filtering algorithm im-
proves the estimation of mobile terminal location by combining
the location information from measurements made at several
sampling time periods together into an improved location es-
timate. The filtering algorithms presented in the literature were
selected in a heuristic manner, with the main criterion of se-
lection being ease of implementation. A filter’s error reduction
performance is highly dependent on the relationship between
the filter’s structure and the properties of the random processes
that compose the motion and measurement generation processes
for the mobile terminals. The filter parameters in the mobile ter-
minal selection literature were selected to be optimal for the data
sets in each paper. Methods for parameter selection for different
scenarios were not presented. Thus, the robustness of the filters
to data sets generated by mobile terminal motions other than
those presented in the papers is uncertain.

This paper presents a location system where a time-based
filter based on models of the mobile terminal motions is used
to reduce the error in mobile terminal location. The mobile ter-
minal motion model consists of a kinematic model, which de-
scribes the physical rules controlling the motion of mobile ter-
minal motion, and a user control input decision model, which
describes the user decisions concerning the motions of the mo-
bile. The parameters of these models are obtained from real-
world measurements of pedestrian and vehicular motion. The
control input decision model’s parameters are based on known
rules for the motion of vehicles or pedestrians. The dependency
of the control input selection on the terminal position is ex-
ploited to improve the estimation method. The advantage of this
method is that the parameters of the models are easily mapped
from field measurements, which makes the application of the
filter to different scenarios simple.

This method is a network-based location solution since only
the cellular network can have access to the necessary infor-
mation about the local propagation and physical environment
around the mobile terminal that is required by the location es-
timate filters. A terminal-based location solution, where all lo-
cation estimation calculations are performed in the mobile ter-
minals, could not use this method without prohibitively large
downloads of information to the terminals from the base sta-
tions containing the local model parameters. The filtering algo-
rithm described in this paper can be applied to other measure-
ment types, such as GPS measurements.

The method will be evaluated for mobile terminals located
within road vehicles moving through dense urban areas. Dense
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urban areas are the regions of greatest interest to cellular net-
work operators since these regions have the highest densities of
users. These are also likely to be the areas where third-genera-
tion cellular networks are first introduced. Mobile terminals in
road vehicles can have high velocities and uncertainty in their
motion. This makes estimating their locations of greater diffi-
culty than for relatively low-mobility pedestrian-carried mobile
terminals. Mobile terminals in road vehicles derive the greatest
benefit from model-based estimation location estimation.

The location estimation filtering algorithm proposed in this
paper is independent of the type of measurements used to locate
the mobile terminal. ToA measurements are used in the simula-
tion within this paper to evaluate the effectiveness of the method.
The modulation and multiple-access schemes proposed for most
next-generation cellular networks allow for high-resolution time
measurements, which makes ToA location highly likely to be
the location technology used in these networks [11].

Section II describes the measurement model. The radio prop-
agation environment used to evaluate the location procedure is
discussed, and the preprocessing of the radio measurements be-
fore the filtering procedure is outlined. Section III describes the
motion model for the mobile terminals. The kinematic and user
control input models that dictate mobile terminal motion be-
havior are described. The model-based filter and control input
estimator are described in Section IV. The setup of the simula-
tions used to evaluate the location estimation algorithm is out-
lined in Section V. The results of the simulations are presented
within Section VI. Our conclusions and possible topics for fu-
ture research are summarized in Section VII.

II. PROPAGATION MEASUREMENTMODEL

The measurements taken to locate the mobile terminal are
ToA measurements. The propagation time from the base station
to mobile terminal is measured. These propagation time mea-
surements are converted to propagation distance measurements
by multiplication of the time measurements by the speed of
light. There are nonremovable errors in the time measurements
resulting from noise in the measurement systems and propaga-
tion environment.

The measurement error for propagation distance has been
shown in most cases to be near Gaussian in [12]. The variance of
the measurement error when there is only a single propagation
path is mostly a function of the signal power, interference power,
and noise power at the receiver. The propagation effect mainly
responsible for increasing the error in propagation distance mea-
surements is multipath propagation, during which the radio sig-
nals travel from the transmitter to receiver via multiple paths,
each with its own attenuation and transmission delay. Multipath
propagation results in the error distance measurements’ having
higher variances and positive nonzero means [13]. The positive
bias resulting from the nonzero error mean is created by the
probability that the time measurement device will incorrectly
detect one of the extra longer propagation paths as the shortest
propagation path instead of the true shortest distance path. The
increased variance is a result of the transmission energy’s being
spread over multiple paths, which makes the estimation of the

Fig. 1. Simulation environment layout.

propagation time more difficult than if all the transmission en-
ergy was in one path.

The environment used to evaluate the location estimation
procedure is a simple Manhattan model that has been used in
the mobile terminal location literature to evaluate radio location
performance [2]. The layout of the environment is shown in
Fig. 1. The positive -direction will be said to be north, making
the positive -direction east. The city blocks are 300 m long,
and the streets are 20 m wide. Base stations are located in the
intersection at every second block. This environment and base-
station layout is typical of dense urban areas. The handoff
algorithm for the cellular network is a perfect distance-based
algorithm; a mobile terminal has knowledge of which base
station it is closest to and communicates with the network via
that base station. This makes the cell of each base station, the
region where all the mobile terminals would communicate with
the base station, a diamond-shaped region, as shown in Fig. 1.

The measurement noise assumed in the model is Gaussian.
The distance measurement vector is given by

(1)

where is the measurement vector at sample interval,
is the vector of propagation distances from the base stations to
the mobile terminal at sample interval, and is a random
vector representing measurement noise. The length of is
equal to the number of base-station measurements used to lo-
cate the mobile in one sample interval. The covariance vector
of the measurement noise vector is equal to
multiplied by an identity matrix of the appropriate size.

During line-of-sight (LOS) propagation, when the shortest
distance straight line propagation path from base stationto
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Fig. 2. Manhattan propagation environment.

mobile terminal is not blocked , the th entry of the dis-
tance vector is the distance from the base station to the mo-
bile terminal. This is not true during non-line-of-sight (NLOS)
propagation when the shortest distance straight line propagation
path is blocked by a building or other obstruction. For the Man-
hattan model used in the simulations, it is assumed that during
NLOS propagation, the signal diffracts around corners and the
shortest propagation path length is the distance from the base
station to the corner plus the distance from the corner to mobile
terminal. An example of an NLOS propagation distance is given
by in Fig. 2.

The measurement noise is Gaussian with a mean of 16.0 m
and a standard deviation of 16 m. The parameters of the noise
density are taken from [2, Fig. 5], which simulated multipath
propagation based on the COST 207 urban power delay profile
in microcells and analyzed the performance of a ToA distance
measurement system.

This paper discusses a network-based algorithm. Propagation
distance measurements for mobile terminal location are made
by the base stations. It is assumed that only the five closest
base stations to the mobile terminal can measure the propaga-
tion delay. This constraint results from signal loss and channel
reuse considerations. It is assumed that base stations other than
the closest five either would not receive a strong enough signal
from the mobile terminal to be able to measure the propagation
delay or would have reassigned the mobile terminal’s channel
for use by another mobile terminal of greater proximity to them
[14]. Of these five base stations, only the three base stations with
the lowest propagation delay measurements are used to locate
the mobile terminal. The distance measurement vectorhas
a length of three and consists of the distance measurements cal-
culated from the three lowest propagation delay measurements.
Field measurements have shown that three or more base stations
can make measurements for the mobile terminal more than 90%
of the time in urban areas [15].

Fig. 3. Zero memory estimator for ToA location estimation.

A. Zero Memory Estimation

The true location of the mobile terminal at sample interval
will be designated . The time measurement vector for sam-
pling interval is designated , as was described above. The
estimated location of the mobile terminal at sampling interval
is designated .

The so-called zero memory estimator is a preprocessor for the
location estimation system. It allows the model-based location
estimation filter to operate without knowledge of the nonlinear-
ities in the propagation environment. This is illustrated in Fig. 3.
The model-based filter receives , the estimated po-
sition of the mobile terminal at sample timebased only on the
measurements made during interval. This synthetic measure-
ment is a linear function of the true system state at time

as opposed to , which is a nonlinear function of the true
system state.

Most location estimation techniques assume LOS propaga-
tion where the shortest distance straight line path between the
mobile terminal and base station is not blocked. During NLOS
propagation, when the LOS propagation path is blocked by a
building or other obstruction, location estimates made assuming
LOS propagation suffer from a bias [2]. The use of recursive
filters to estimate and remove this bias has been proposed [9].
These filters require a model not only for the motion of the mo-
bile terminals but also for the time evolution of the effect of
NLOS propagation on the measurements. The time evolution of
NLOS effects is a complicated function of the motion of the mo-
bile terminal, the location of radio propagation obstacles, and
the location of the base stations. This means that the NLOS bias
estimation algorithm is extremely complicated and must be ad-
justed if the motion model parameters change.

The approach taken to solve the NLOS problem in this paper
is to use a survey of propagation measurements to characterize
the propagation environment. Nonparametric estimation, based
on survey measurements made of the radio propagation envi-
ronment, is then used to convert measurements made by mobile
terminals at unknown locations to location estimates. These lo-
cation estimates do not assume an LOS propagation model, so
they do not have a bias when NLOS propagation occurs.
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The estimation problem is stated as estimating the location of
a mobile terminal at an unknown location within regionfrom
measurement vector given the survey set. The survey data
set consists of measurements made at respec-
tive true locations . Since the survey set is the
same for all mobile terminals within a given cell for all sampling
intervals, the survey measurements and locations are not given
a time index. The probability density function of the survey
point locations is the same as the probability density function
of the mobile terminal location. For our estimation problem,
this means the survey points for the cell the mobile terminal is
known to be residing in are used in the estimation procedure.

The survey measurement set can come from many sources.
During network configuration, propagation measurements
are made to ensure that the base stations are providing good
coverage of the network area [16]. These propagation measure-
ments can be converted for use with the zero memory estimator.
Computer models could also be used when field measurements
are considered too expensive. Survey data obtained from com-
puter models will have higher measurement error than survey
data obtained from field measurements since the computer
model cannot perfectly match the true propagation environ-
ment. The results presented in this paper are based on survey
data taken from the simulated field measurements. A mixture
of the two methods is also possible. Field measurements would
be made in high-occupancy areas, where the network provider
earns more revenue and wishes to ensure good service, and
computer models would be used in areas with lower occupancy
densities, where location accuracy is not as large a concern.

The zero memory estimation formula is

(2)

where is a kernel function that decreases monotonically
from the origin, is a smoothing constant, andis the length
of the measurement vector [17], [18].

This estimation equation can be rewritten to show that the es-
timated position is a weighted averaged of the survey point po-
sitions with the weights’ being determined by the measurement
data. Equation (2) is rewritten as [18]

(3)

where

(4)

An examination of (3) shows that the cost of this zero memory
location estimation in terms of the number of operations is
linear with respect to the number of survey points used. The
zero memory location estimate requires memory to hold all
the survey data. This should not be a considerable expense
since the amount of memory required is not large and the cost
of this memory in the base stations is not expensive (on the
order of memory cost for a personal computer). In addition,
the survey data are identical for all mobile terminals connected

to a base station. Other zero memory location estimation
methods require iterative solving techniques and calculation
of the derivatives of the conditional density functions [2]. Our
technique requires the calculation of the sum of the kernel
functions for each survey point, which is less costly.

Since we are locating only road vehicles, all the survey points
are located on the streets. As can be seen in Figs. 1 and 2, each
cell has two streets that run perpendicular to each other. One line
of survey points is sampled down the center of the street parallel
to the -axis, and another line of survey points is sampled along
the center of the street parallel to the-axis. Since there are
survey points in each cell, the survey points on each line are
separated by 6002 m.

The kernel function used in this paper is called the Parzen
Gaussian kernel [19]. It is given by

(5)

For the ToA estimation problem, the matrix is set to be an
identity matrix of size .

An examination of how is substituted into the kernel func-
tion shows that has some relation to the variance of the
measurement noise [19]. The delay spread can be measured
during network configuration. This allows for the variance of
the propagation distance measurement noise to be calculated so
this value could be known to network operators. Experience has
shown that with nonparametric estimation, using a value for the
smoothing parameters in the same order of magnitude as the op-
timal value gives estimates with errors nearly as good as if the
optimal value for the smoothing parameter was used. An anal-
ysis of parameter selection for location estimation has been per-
formed in other work [17], [18]. Experimentation with a model
similar to the one considered here suggests that parameter values
such as and provide excellent results.

An advantage of the nonparametric estimator is that in ad-
dition to estimating the location of the mobile terminal, an esti-
mate of the covariance of the measurement noise is readily avail-
able. This is obtained from

Cov

Cov

(6)

The calculation of is accomplished using
the estimator described above. An estimator for the value of

can be derived to be [20]

(7)

where is given by (4). This covariance can be used
to evaluate the accuracy of the estimation, with a low covari-
ance estimate implying high accuracy, and is an additional input
to a dynamic estimator. The covariance estimate allows a dy-
namic estimator to give more weight to the zero memory lo-
cation estimates with higher estimated accuracy than the loca-
tion estimates with low estimated accuracy. One such scenario
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is when the mobile terminal is located at a position relative to
the measuring base stations where zero memory location esti-
mators cannot provide high-accuracy location estimates. In this
situations, there are relatively large regions that create measure-
ment vectors that are almost the same. This is called the
geometric dilution of precision (GDOP) problem [21]. In this
situation, the covariance estimate from (6) will be high, indi-
cating a low-accuracy zero memory estimate.

III. M OTION MODEL

This section describes the motion of road vehicles in urban
environments. This model is split into two parts. The first part
is a kinematic model that describes the physical rules governing
the motion of a mobile terminal in response to the forces acting
on it. The second part of the model is a control decision model.
The control decision model describes the human decisions that
determine the control inputs into the kinematic model for mobile
terminal motion.

From the description of vehicle motion, two mathematical
models are derived. The first model is an estimation model, de-
scribed in Section IV, which is the time evolution model for
system state consisting of terminal location and velocity used by
the location estimation algorithm. The second model is the sim-
ulation model, described in Section V, which we use to generate
location tracks for mobile terminals to evaluate our location es-
timate algorithm. Both models share the same kinematic model
of vehicle motion. The models differ on the control decision
level. The estimation control decision model is a general deci-
sion model designed to handle many different kinds of mobile
motions subject to the constraints an urban environment places
on vehicular motion. The simulation control decision model is
designed to create a reasonable reproduction of actual human
control decisions for a vehicle moving through an urban envi-
ronment. This simulation control decision model is used only to
evaluate the filter’s performance; it was not used to generate the
filter.

A. Kinematics of Vehicle Motion

This section describes a state space model for describing the
motion of a mobile terminal located in a road vehicle. A state
space model describes the time evolution of the system state of
the mobile terminal in terms of differential equations in contin-
uous time, or time difference equations in discrete time.

Several state space models have been developed to model the
kinematics of road vehicle motion [22], [23]. These state space
models are of greater complexity than required for the mobile
tracking application. These state space models are determin-
istic, requiring precise knowledge of the control input, road con-
ditions, and vehicle parameters. This knowledge is not known
to the location estimation system, and estimating it would be
computationally expensive. This can be avoided by inserting
random process noise into the state space model of the mobile
terminal motion. The random process noise models the uncer-
tainty caused by lack of knowledge of road conditions and ve-
hicle parameters.

There are several state space models proposed in the liter-
ature for mobile terminal motion using random process noise,

such as mobile position modeled as Brownian motion [8], ve-
locity modeled as Brownian motion [7], and position modeled
as fractional Brownian motion [24]. None of the models was
based on observed characteristics of a vehicle’s motion; instead,
they were primarily selected for computational simplicity. This
resulted in some of the models’ having characteristics disparate
from actual vehicular motion. For example, the velocity mod-
eled as Brownian motion model has the characteristic that the
variance of velocity tends to infinity with increasing time.

We propose a state model based on observed vehicle motion
characteristics incorporating random process noise. A vehicle
is subject to several friction and drag forces. Two major forces
resist the motion of the vehicle: rolling resistance and air resis-
tance [25]. Rolling resistance is generated by slip between the
vehicles’ wheels and the driving surface and friction inside of
the vehicle. Air resistance is generated by the force of the air
around the vehicle against its motion. Both of these increase
with the vehicle’s speed. The result of these forces is that if the
vehicle is subject to constant driving force, the acceleration of
the vehicle will decrease as the velocity increases [26].

A random motion model that matches this observation is
based on a modified form of the Langevin equation [27]. A
linear drag term is present in the kinematic model to model
the effects of air and rolling resistance. Mobile terminal motion
in one dimension is given by

(8)

where is mobile position, is mobile velocity,
is mobile acceleration, is a deterministic function repre-
senting driver control, and is random process noise. The
process noise models random effects such as noise in the control
system of the vehicle, variations between drivers, and random
road conditions.

The control input is the driver’s input into the system,
which controls the direction in which the vehicle is moving, in
which direction it will accelerate, and so on. The value of
directly influences the mean speed of the vehicle in control input
direction.

If , then the mobile position will wander around
with . A pos-

itive value of will cause the mobile terminal to move in
the positive direction if is con-
stant. A negative value of has the opposite effect. The driver
of the vehicle will select based on the vehicle’s present
location, the speed limit and the final desired destination. Ob-
servations of real vehicle speeds by vehicular traffic engineers
have shown that the distribution of vehicle speed at a fixed lo-
cations can be modeled as Gaussian [26]. To match this obser-
vation, the process noise is selected as a white Gaussian
process and Var . The variance of the
velocity given the control input is determined by the variance of
the process noise Var Var .
The maximum mean acceleration of the vehicle is m s ,
which is attained when m s.

The location estimator works with discrete time samples of
the location state for which a discrete time motion model is re-
quired. Fortunately, as long as the time between changes in the
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Fig. 4. Lane layout and intersection configuration.

control input is longer than the time constant of the contin-
uous time state space model 1, it is possible to easily convert
the continuous time model to a discrete state space time model.
The discrete time motion model is given by

(9)

where is the location position and velocity state at time in-
terval . , , and the covariance matrix of the process noise
matrix are computed as shown in Appendix I based on the con-
tinuous time evolution equation (8).

To match the operation characteristics in typical urban set-
tings in North America, a mean velocity of 54 km/h or 15 m/s
should be introduced. The maximum mean acceleration during
standard driving for a standard passenger automobile is 2.5 m/s
[25]. To match these performance values, we set and
the standard control input . We used a value of

to give a standard deviation of 1 m/s (3.6 km/h) in
the velocity.

B. Control Input Model

The control input is the human control on the motion of the
mobile terminal. In terms of the kinematic model above, it de-
termines the value of the input functions or in discrete
time. A driver’s decision on what action to take at each point in
a journey is determined by the location of the destination as well
as other factors such as traffic conditions.

Several types of decision models have been proposed in the
mobility modeling literature. The simplest models only change
the control inputs on the boundaries of cells and do not con-
sider street layout [28], [29]. More complex motion models have
been proposed that allow the control inputs to change at any time
[30]–[32]. The control inputs are kept constant over time periods
with random lengths sampled from an exponential distribution.
The model in [30] models realistic direction-changing behavior
for vehicles. Before a vehicle makes a major direction change,
it must slow down or come to a stop. Again, street layout is not
considered in these models. Simple models that consider street
layout have been described in the literature as well [33]. These
models assume that vehicles can change their velocity and di-
rections instantaneously. Realistic vehicle braking and turning
behavior are not considered. The models allow for simple simu-
lation and analysis of the behavior of groups of mobile terminals

TABLE I
SETTING FORMOVING NORTH ON STREET

but are not designed to provide realistic behavior for a single
mobile terminal.

The control decision model we propose is designed for accu-
rate modeling of motion for a single mobile terminal. The street
layout is considered and the mobile terminal will only make
turns at intersections. Lane use is considered, and the mobile
terminal will stay in the proper lane for its chosen direction. The
mobile terminal will also brake before intersections so that it is
moving slowly while making major direction changes.

As a driver approaches an intersection, his selected route will
determine what lane he will use, the probability that he will
brake, and which direction he will move away from the inter-
section. If he is going to turn, he will have to brake in order
to make the corner safely. If he has decided that he is going to
go straight through an intersection, he will only stop if a traffic
control signal forces him to, or if there is some form of traffic
blockage.

Vehicles remain in the center of their respective lanes with
only small variations unless passing or turning. A standard
North American intersection layout is shown in Fig. 4. Turning
usually only takes place in the central area of the intersection.
Turning takes place outside of intersections when the vehicle
has reached its final destination and the vehicle is turned into a
parking area.

1) Simple Motion Without Turns:This decision model
describes the control behavior when the mobile is located away
from intersections or when the mobile terminal is traveling
down a highway. The allowed direction of all motion is in one
of two directions: up or down the street. Motion is restricted by
the lane in which the mobile terminal.

The control inputs are categorized as , which is the con-
trol input in the direction parallel to the street direction, and

, which is perpendicular to the street direction. For ex-
ample, if the street is parallel to the-axis, then
and . The control input is used to control
the speed along the street. The control input is applied
toward the center of the lane to keep the mobile terminal within
the proper lane.

A deterministic constant input of is ap-
plied in the direction of motion along the street. This will
result, as described in Section III-A, in a mean velocity
of meterssecond in that direction after a period of
initial acceleration. The other control input will be set to

, where is a control constant, is
the position of the mobile on the coordinate axis perpendicular
to the street direction, andis the location of the center of the
lane.

For example, if the mobile terminal is heading in the positive
-direction in a lane whose middle is located at m, the

control inputs will be set as shown in Table I.
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Fig. 5. Location estimation system.

2) Motion With Turns: Turning maneuvers make the mo-
bility model much more complicated. The long-term behavior
models required to model when a mobile terminal makes a turn
will not be considered here. Only the short-term behavior in-
volved with making turns and handling intersections will be
shown.

Street layout information is required to accurately model
turning behavior. A mobile terminal in a vehicle can only make
turns at street intersections. To safely make a turn, a mobile
terminal must be traveling at a low speed. Therefore, when a
mobile is traveling at a higher speed down a street, it must slow
down before an intersection in order to make a turn. If a mobile
terminal is not going to turn at an intersection, it will only slow
down if there is some form of traffic signal or blockage that
forces it to do so.

IV. ESTIMATION AND FILTERING ALGORITHM

The zero memory estimator only uses the measurements
taken at sample interval to estimate the mobile location
during period . However, there will be dependence between
the mobile’s location at period and its location during the
previous periods. The model-based filter takes the estimate of
the location from the zero memory estimator and combines it
with estimates of location from previous sampling intervals
to obtain an improved estimate of the current location. To
accomplish this, it uses information about how the system
state evolves over time to extract information from previous
time intervals about the present system state to improve the
location estimate. This also allows the location estimate system
to estimate velocities for the mobile terminal that cannot be
calculated from location measurements made at a single time
instant. This facilitates the estimation of future mobile terminal
system states.

The system state of the mobile terminal at sample intervalis
designated , and the measurement vector at sample interval

is designated . The estimate of , given measurements
, is designated . The covariance

of is designated . We select the estimator that
minimizes the mean squared error

MSE
(10)

The system state estimation system is shown in Fig. 5. To
estimate the system state, two relations need to be known: 1) that
between the system state and the measurements and 2) the time
evolution behavior of the system state. The relationship between
measurements and system state was described in Section II. The
time evolution of the system state assumed by the filter, called

the state space model, is described in Section IV-A. The actual
filtering algorithm will be described in Section IV-B.

Raw measurements are not used as inputs to the filtering algo-
rithm because of the complex relationship between propagation
distance measurements and mobile terminal location caused by
NLOS and multipath propagation. The zero memory estimator
uses nonparametric estimation to create a synthetic measure-
ment , which is a linear function of the system state

(11)

where is a random vector representing the error from the
nonparametric zero memory location estimation procedure. As
a by-product of nonparametric estimation, the zero memory
estimator also computes , an estimate of the covariance
of . The zero memory estimator preprocessor, as well as
giving the dynamic estimator an input with a linear relationship
to the system state, also provides statistical information about
the measurements to the dynamic estimator.

An advantage of the separate zero memory estimator and
model-based filter algorithms is that the algorithms can be
changed independently if the measurements or mobility mode
of the terminal change. For example, ToA measurements may
be used to locate the mobile terminal in heavy urban areas,
while AoA measurements may be used in suburban and rural
areas. It is certainly possible that a mobile terminal could move
from one area to another during a communication session. With
the algorithmic split, the time evolution algorithm could remain
the same while the measurement algorithm is changed as the
mobile terminal moves from one region to another.

A. Estimation Model

The estimation model assumed by the location estimation
filter is a simplified version of the motion model described in
Section III. The estimation motion model must concentrate on
short-term modeling of mobile terminal motion. It must also be
general enough to be able to handle most of the possible mo-
bile terminal motions without any knowledge of parameters that
would not be readily available to field implementations of the
algorithm.

The assumed kinematic model for mobile terminal motion is

(12)

The matrices and the covariance matrix
are assumed known and are based on the matrices reviewed in
Section III. We assume that the parameters of the motion such as
drag coefficient and process noise covariance are known to the
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TABLE II
INPUTS FORMOBILE TERMINAL DIRECTIONS

estimation system. The values for these model parameters can
be calculated based on the measurements made in the network
area by vehicular traffic engineers.

The only part of the kinematic estimation model that cannot
be estimated ahead of time or controlled is the control input of
the user. To approximate the behavior of the user, the estima-
tion model assumes the control input vector is one of five pos-
sible input vectors that are matched to the mobile terminal being
stopped or moving in one of the cardinal compass directions
matched to directions of the streets, as shown in Table II.

If there are other street directions, then other control input
vectors would be added to the above set to match them. The
constant in the control input set is matched to the maximum
observed acceleration of the mobile terminals. The relationship
of this constant with the velocities and drag coefficient of the
mobile terminal motions is explained in Section III.

Vehicles in urban environments usually only change direc-
tions in intersections. When the mobile terminal is not in in-
tersections, the control input usually remains constant. That is,
Pr if the mobile terminal is not in an
intersection. If the mobile is located in an intersection, there
is a substantial probability that the control input will change.
The state transition probabilities in each region are described
in Table III in the form of matrices. The optimal value of the
constant TOSELF is a function of the probability that the
mobile will turn at the intersection. If the probability of turning
is high, then the optimal TOSELF will be small. If the prob-
ability of turning is low, then the optimal TOSELF will be
close to one. Good values of TOSELF range from 3/4 to 1
for a turning probability greater than 0.1.

TABLE III
ESTIMATION MODEL: STATE TRANSITION

c = 0:999; c = (1 � 0:999=4; c = P (TOSELF); and c =
(1� P (TOSELF))=4

B. Model-Based Estimation

The probability density function that describes the evolution
of the location state is given by

(13)

where and
. Equation (13) shows that

the system state and control input are jointly
a Markov-one process [27]. The conditional density of the
system state and control input vectors at interval1 given
their values at interval are independent of the vectors’ values
at any other preceding time interval. The control input is
a function of the mobile’s present location as well as the
final destination of the trip and factors such as present traffic
conditions.

If a discrete time evolution process is a Gaussian Markov
process and the measurement equation is linear with Gaussian
noise, then the optimal filtering algorithm is the Kalman filter
[34]. The type of density of , the measurement noise, is not
known. It has been shown that the Kalman filter can still provide
good performance in many cases when the measurement noise
is not Gaussian, so it is still applied to this problem. The time
evolution process for mobile terminal location is a Gaussian
Markov process if is known, as shown in (12). Thus, it
is possible to optimally estimate if is known for all

, if is assumed to be Gaussian.



1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 4, JULY 2003

Fig. 6. Interactive multiple model filter structure.

The Kalman filter is briefly described in Appendix II. The use
of Kalman filters allows for a location estimate to be calculated
along with an estimate of the variance of the location estimate
error. The required inputs to the Kalman filter are the measure-
ment vector and the estimated variance of the measurement
vector . From , the Kalman filter calculates different
weights on the measurements from different sampling periods to
calculate the current location of the mobile terminal. If the mea-
surement for a sampling periodhas high estimated error values
within its matrix, then it will have less weight in the final
location estimate. This reduces the impact of GDOP, as isolated
measurements with high GDOP will not be given much weight
in location estimate calculations. If there are several sampling
periods with large , perhaps caused by GDOP, the accu-
racy of the final location estimates will be reduced but the cal-
culated error covariance by the Kalman filter will be high, so
that the user will be aware of the inaccuracy. The final accuracy
will still be higher than for zero memory estimator since infor-
mation from measurements taken in different sampling intervals
will be combined.

The location process is a Gaussian Markov process, allowing
optimal estimation by the Kalman filter, only if the user input
vector is known. Unfortunately, the value of must
be estimated by the location estimation process. A commonly
applied solution would be to augment the state vector with the
control input and then use a Kalman-like filter to estimate the
control input as well as the system state. Unfortunately,
and are not jointly Gaussian, and the control input process
function is discontinuous. This makes the augmented motion
model of and is nonlinear. Many of the standard non-
linear filtering algorithms, such as the extended Kalman filter,
will have a high probability of not converging because of the
discontinuities in the control input process [35].

As was shown in Section III, during normal vehicle
motion, takes on the value of one member from a
small discrete set of possible control input vectors. That is,

. Section IV-A gave a model where
the control input vector process is described as a Markov

process where the control input state transition probabilities
are a function of the current location of the mobile terminal.
Knowledge of the relationship between and and their
time evolutionary behavior are used to derive a new filtering
algorithm.

Given the problem with state augmentation techniques, an
alternative approach to the problem of estimating the system
state is to decompose the model of the system state into several
possible models for the location model. Each different model
corresponds to a different possible value of the control input
vector. An estimate of the system state for the mobile terminal
is calculated for each of the possible models. The estimation
problem is then how to calculate the probability weight for the
location estimate calculated with the different assumed models
and how to use to use these estimates and probability weights to
calculate a combined location estimate [36].

The estimation motion model assumes that the input vector
selection process is a Markov chain given the system state

Pr

Pr (14)

The input vector selection process is specified by the initial
selection and control input vector state transition probabilities.
As a consequence of the switching behavior of the control input
process, the estimation procedures for each of the different
models need to interact to properly handle the switching
probabilities.

The organization of the new multimodel filter is shown
in Fig. 6. Several Kalman filters are run in parallel with
different hypothetical values of the control input . Since
each Kalman filter gets identical values for the process noise
covariance and measurement noise covariance , each
Kalman filter will have the same Kalman gain and
covariance and . Most of the calculations are
shared between the Kalman filters. Only the different location
estimates need to be calculated using the hypothetical control
input values. The output of the Kalman filters is provided to a
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posterior calculation algorithm, which determines the posterior
probability of each process model generating the observed
input. The posterior probabilities are then used to generate
multiplicative weights for each of the Kalman filter outputs so
a combined state estimate can be calculated.

The final state estimate is given by

(15)

where is the output of theth Kalman filter and is
the weight vector with being its th entry, defined as the
probability of model ’s being the true model given the observed
measurements

(16)

Equation (15) is derived using the smoothing property of expec-
tation [27]. In the multimodel filter, the
density of , a sum of Gaussian densities with each model
contributing one term, is approximated by a single Gaussian
density. Without this approximation, the number of terms in the
density calculation would grow exponentially with each sam-
pling period. This approximation is justified since usually only
one of the terms has a weight near unity, while all other
terms have weights near zero.

Bayes’ theorem can be applied to (16) to obtain (17), as
shown at the bottom of the page [37]. The denominator term
is a normalizing constant independent of the input, so its value
need not be calculated. The first term in (17) is expanded using
the theorem of total probability as

(18)

The estimated probability weights of the models for the first
sampling period ideally would be the true initial condi-
tional probabilities for the different control inputs. In compar-
ison to the algorithm presented here, the so-called interactive
multiple model (IMM) filter assumes that is independent
of the measurements . As shown in
(14), the location and control input are dependent, which makes
the measurements and control input dependent. Therefore, we
cannot make the same independence assumption as the IMM
algorithm.

The information about the system state contained in all mea-
surements up to time interval 1 is summarized in the system
state estimate . It can be easily

seen from (12) that given , is independent of ,
and therefore is independent of given .

This allows us to use the approximation

(19)

The value of is the location estimate for the
last sampling period calculated using (15). An alternative solu-
tion would be to use the location estimate from the filter with
the highest probability weight to determine the state transition
probabilities. But, as this gives a location estimate with higher
variance, it also results in estimated transition probabilities with
higher errors than using the weighted average.

To use this dependency in the state estimator, the estimated
state determines the state transition matrix used in the model
detection algorithm. The location region is split into re-
gions, each of which has a different control state transition ma-
trix. The estimated control state transition matrix is given by

if
if

...
if

(20)

where are disjoint regions in the location
space. For this application, the regions and transition probabil-
ities are described in Table III. The weight update calculation
becomes

(21)

where is determined by (20). The conditional density of
1 in (21) gives the evidence that the last measurement

provides regarding the control input vector state. It is assumed
that the measurement vector given the past measurements and
control inputs is jointly Gaussian. The conditional density func-
tion is then given by

(22)

where

(17)
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the mean value of the estimated location for time interval1
given the measurements up to time intervalassuming

and

the covariance of the estimated measured location. The filter
uses the difference between the expected predicted measure-
ment and the true measurement, the “innovation sequence,” for
each filter and the transition probabilities for the control input
state to update the estimated probability weights for the possible
control inputs [38].

When the input vector to the motion model is constant for
several steps, the estimate for the Kalman filter with the input
vector matched to the true input vector will have the lowest mean
squared error. The other Kalman filter location estimates will
have estimates of the system state with larger mean squared er-
rors since they have assumed control inputs that do not match the
true control input. The multimodel filter will give the Kalman
filter matched to the true input vector the highest weight in the
final system state estimate.

If the input vector changes after the control input has
remained unchanged for several sample intervals, it takes the
Kalman filter that is matched to the new input several sampling
intervals to converge to the system state of mobile terminal.
The newly matched Kalman filter must first remove the errors
from its location estimate. Meanwhile, the Kalman filter that
matches the previous input vector will generate state estimates
with asymptotically increasing errors as the effects of the new
mismatch build up. The effect of these transition effects is
that the control input estimation algorithm requires several
sampling periods to properly identify the new input vector.

One method to increase the rate at which the Kalman filters
adjust to input vector changes is to elevate the assumed covari-
ance of the process noise over the value given in the mobility
model [37]. This increased covariance reflects uncertainty in the
knowledge of the input vectors. The process noise covariance, a
design parameter in the setting of Kalman filters, is set to

(23)

where is the process noise in the kinematic model of the
mobility model and is a positive scalar constant.

Higher values of increase the magnitude of the values in
and thus , the covariance of the estimated system

state. This higher covariance of the system state results in the
Kalman filters’ giving more weight to the measurements in esti-
mating the system state than on the state predictions made using
the kinematic model and assumed inputs. The Kalman filter that
has an assumed input matching the true control input will have
worse performance with higher since its state estimates will
be placing less weight on accurate state predictions made by a
good model than with lower . Conversely, the Kalman fil-
ters with assumed inputs not matching the true control input
will give better performance with higher since their state
estimates will be placing less weight on predictions made by
partially mismatched models than for lower . The value of

affects the speed at which the multimodel filter detects the
Kalman filter with the matching control input after the control
input changes.

TABLE IV
POSTPROCESSINGADJUSTMENTS FORLANE USE

The optimal value of is a tradeoff between the perfor-
mance of the Kalman filter with the correct input vector and the
performance of the filters with mismatched input vectors. Low
values of will give asymptotically better performance if the
input vector remains constant for a long period of time at the
cost of longer convergence times after the input vector changes.
The range of values for that give reasonable estimator per-
formance is from zero to the variance of the control input in one
of the coordinate axis directions. In this application, the control
input for either the - or -directions can go from to ,
where is the maximum acceleration of the vehicle from Sec-
tion IV-A. Since the mean of the control inputs is zero, it can
be easily shown that the variance of the control input along one
axis in this application is less than ; therefore .

1) Postprocessing:Another advantage of the model-based
filtering approach is that dependency of vehicle location and
velocity can be exploited to improve location accuracy. In this
application, the zero memory estimator does not have enough
resolution to identify in what lane the mobile terminal is trav-
eling. If the survey points are taken in the center of the street, as
described in Section II-A, the zero memory estimator will usu-
ally return estimated location in the center of the street when the
mobile terminal is not located in intersections. The velocity esti-
mate produced by the multimodel filter is used to improve the lo-
cation estimate by adjusting the location estimate for the proper
lane indicated by the estimated terminal velocity. The lane and
direction of travel relationship are shown in Fig. 4. The post-
processing is given by Table IV and is performed when the zero
memory location estimate is not within an intersection. No ad-
justments are performed if the mobile is moving at low velocity,
as it could be performing maneuvers that are not restricted by
lane use.

2) Filter Initial Conditions: The multimodel filter is recur-
sive and causal. The filter uses its estimate of state at time in-
terval 1 to estimate the state at time interval. The recursive
nature of the filter means the implementation memory require-
ments of the filter are finite, which allows it to be used in field
implementations. In order to effectively estimate the state of the
system, the initial estimate and its covariance
have to be accurate estimates of the true mean initial system
state and covariance. The covariance matrix indicates the accu-
racy of the initial state estimate; high values in indicate
a large uncertainty in the initial state estimate.

A good selection of initial conditions for the filters is essen-
tial for the estimation algorithm to operate well. To provide un-
biased state estimates, the state vector and covariance matrices
used to initialize a Kalman filter must match the mean of the ini-
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Fig. 7. Simulation models interaction.

tial state and covariance of the initial state for the process to be
estimated. The initial conditions selected for the filters must also
be reasonable, in that they should be values that would be avail-
able to a field implementation. In this application, we use the
zero memory estimator to obtain initial estimates of the system
state.

The initial conditions for all the Kalman filters in the multi-
model estimation filter are identical, as we assume that the ini-
tial system state is independent of the control input values. In the
absence of other information, all input vectors are equally likely
at the first sampling interval .
The zero memory estimator is applied to the first time delay
measurements to obtain an initial mobile terminal position
estimate and position covariance estimate . The ini-
tial system state estimate is based on the first location estimate
from the zero memory filter

The covariance of the first system state estimate is then

(24)

The variance of the velocity estimates and is
based on the initial velocities in the- and -coordinates being
uniformly distributed between 15 and 15 m/s, which is taken
from the estimator motion model. Initial velocity is assumed to
be independent of initial position. It is assumed that the zero
memory estimator is unbiased so the initial estimated system
state obtained from it is an unbiased estimate of the true initial
location. The initial covariance is only an estimate of the true co-
variance, which will result in errors in the state estimates. For-
tunately, the system state process has limited memory, which
means the dependency of the system state at intervaland the
system state at interval decreases with the magnitude of
. The effect of estimation error for time interval 0 will decrease

with each additional time interval. The influence of measure-
ments made in later sample periods will eventually remove the
effect of initial location estimate errors.

3) Location Estimation When Signal Unavailable:It may
occur that during a given sampling interval, there are fewer
than three base stations that receive a strong enough signal from

the mobile terminal to make a valid zero memory estimate. Field
measurements have shown that this case is rare in urban envi-
ronments [15]. The use of dynamic estimation allows a loca-
tion estimate to still be calculated for these intervals. Other ap-
proaches from zero memory estimation do not provide a sys-
tematic method for location estimation during periods of signal
unavailability since there is no formulation for based on

1 [2], [21]. The estimated mobile terminal location for
such a sampling interval is the predicted mobile terminal loca-
tion from the last sampling interval with a measurement vector

, where is the number of sampling periods where
has not been available. The predicted location can be easily

calculated using the motion model

(25)

where

is calculated from (20). The covariance of the location
estimate is calculated by applying the recursion

, times. When the signal is again
sufficient to allow for calculation of , the estimation proce-
dure continues as described in the preceding sections, replacing
estimated vectors and matrices predicted from the1 interval
with values estimated from the interval as needed.

V. SIMULATIONS

The tracking algorithms’ performance is evaluated using
simulations of vehicle motion in a dense urban area. The
simulation model consists of three parts: the kinematic model,
the decision model, and the propagation model. The kinematic
model will determine the mobile terminal’s acceleration, ve-
locity, and position in response to control inputs. The decision
model will mimic the driver’s decisions as to lane selection and
whether to turn or brake at an intersection. The propagation
model generates the simulated measurements from the mobile
terminal’s location. The relationships between the different
simulation models are summarized in Fig. 7.

The propagation model and kinematic model are based on the
actual physical phenomena that govern radio signal propagation
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TABLE V
MOTION SIMULATION PARAMETERS

and vehicular motion and are described in Sections II and III, re-
spectively. The decision model used to simulate mobile terminal
motion is described in the section below. The constants used in
the simulations are listed in Table V.

A. Decision Model

The decision model generates the control inputs into the kine-
matic model that will determine future mobile terminal position
based on the mobile terminal’s current location and the simu-
lated street layout.

Modeling human driver decision patterns accurately is dif-
ficult for computer simulations. The solution proposed in this
paper is to use a model for driver behavior that has higher en-
tropy than actual driver behavior. This means that the mobile
terminal position state at a sample intervalgives less informa-
tion about the mobile terminal position state at interval
with in the simulation motion than for true vehicular
motion. The simulated motion is harder to track than the motion
that would be generated by human drivers since past measure-
ments of mobile terminal position give less information about
the present mobile terminal location than for motions generated
by human decisions.

The simulated driver in the model described below makes de-
cisions at every intersection independently of the previous in-
tersection decision. Thus the tracking algorithm cannot use any
form of long-term behavior model to improve performance. The
tracking algorithm’s performance for mobiles with motion con-
trolled by human drivers is likely to be superior to that for mo-
biles with the control logic described below.

When the mobile terminal is not located near intersec-
tions, movement is restricted to the lane specified for the
mobile’s direction of motion. This behavior is as described in
Section III-B1.

We use a simplified decision logic system to simulate driver
decision behavior. The simulated driver’s decision at each inter-
section is independent of the decision made at any other inter-
section during the mobile’s journey.

A simple finite-state machine is used to control mobile
decisions. The simulated driver is in one of four states: normal,
braking, turning, and transit. The state transition diagram

Fig. 8. State transition diagram for motion simulator.

is shown in Fig. 8. In a true urban environment, there is a
random chance that a vehicle would be forced to brake at each
intersection encountered because of traffic control signals or
road congestion. In this simplified model, a vehicle only brakes
at an intersection when making a turn, but it must always come
to a complete stop before turning.

1) Normal State:The mobile starts in the normal state. The
mobile terminal in this state is not located in an intersection. The
mobile will, after an initial period of acceleration, move at the
mean velocity of 15.0 m/s down the street while staying in the
proper lane. The control inputs for the main direction of travel
will be set as shown in Table II.

The position of the center of the next intersection in the de-
cided direction of travel is calculated. If the mobile is within
m of the next intersection, the mobile decides if it will turn at
the next intersection. The probability of turning is given by the
constant . If the mobile is within m of the next intersec-
tion and turning, it will transition to the braking state in the next
sampling interval. If the mobile is within m of the next inter-
section and not turning, it will change to the transit state in the
next sampling interval. If the mobile terminal is farther than
m from the intersection, then the mobile remains in the normal
state.

The distance is set to 40 m. This distance was selected
based on data on vehicle braking distances in typical urban envi-
ronments [25]. In other environments, this parameter would be
set based on the mean speed in the environment and road condi-
tions. This information is also used by those designing road sys-
tems. The network operator needing this information could ob-
tain it from the traffic control authorities for the area of interest.

2) Braking State: In the braking state, the mobile’s motion
will be reduced so that it will stop just inside of the intersection
region. The control input in the main direction of travel will be
set to zero. The control input in the direction perpendicular to
the main direction of travel will still be set to hold the proper
lane, just as in the normal state.
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The drag needed to bring the mobile to a stop just after en-
tering the intersection is calculated

(26)

where is the velocity in the selected direction of travel andis
the distance to the intersection entry point. The drag coefficient

is set to the value in the interval [1/6,5.0] nearest to . This
interval represents the drag coefficients that the vehicle’s brakes
can generate. When the mobile terminal enters the intersection,
the control state transitions to the turn state in the next sampling
interval.

3) Turning State: In the turn state, the mobile will move the
mobile terminal into the proper lane for its new direction of
travel. Upon first entering the turn state, the mobile resets the
drag coefficient back to 1/6 and sets the direction of travel
to the new direction. The new direction for the mobile is 50%
likely to be either of the perpendicular cardinal directions to the
mobile’s current direction of travel. When the mobile terminal
leaves the intersection, it will change to the normal state in the
next sampling period. The lane-holding logic is set for the new
direction of travel to move the mobile terminal into the new lane.

4) Transit State:When the mobile terminal is in the transit
state, control inputs will be set as in the normal state. When the
mobile terminal is in the transit state, it will set control inputs
as in the normal state according to Table II. When the mobile
leaves the intersection, it will transit to the normal state in the
next sampling period.

The value of was set to 2/3. The result of this choice is
that when a mobile approaches an intersection, it has an equal
probability of going straight, turning left, or turning right. This
is the maximum entropy case when the mobile is restricted from
going back the direction it came.

B. Initial Conditions

For the simulation studies, we choose initial conditions in a
manner that replicates the random motion state of a mobile ter-
minal that has just been switched on. To simplify the simulation,
we always assume that the mobile terminal starts in the central
cell with the base station located at coordinates (0,0). This is not
an unrealistic assumption, as when a mobile terminal initiates a
call, it quickly identifies the base station to which it is closest.
The location and velocity state parameters are uniformly dis-
tributed within the space of possible values. This is the distribu-
tion of maximum entropy when no other information is known
about the mobile terminal’s state.

First the direction of the mobile terminal motion is selected
from the possible set of {North, South, East, West}. A position
value is sampled from a uniform distribution with a range of

where is the block length (300 m in Fig. 2). An
initial speed is sampled from a uniform distribution with a
range of [0, 15.0]. A lane position value is sampled from a
uniform distribution with a range of [0, 10].

From these random values, the initial state of the mobile ter-
minal position is generated as shown in Table VI based on North
American lane use.

TABLE VI
INITIAL STATE OF MOBILE TERMINAL

Fig. 9. Location RMSE forP = 2=3 with varying filtering parameters
(� = 1=6).

VI. RESULTS

The figures of merit used to analyze the performance of the
estimation algorithm are the root mean square error (RMSE)
of position and velocity. This figure of merit is widely used in
filter evaluation and the location estimation literature [6], [21].
The RMSE is defined as

RMSE (27)

where is the error in the estimated-coordinate and is
the error in the estimated-coordinate. For position RMSE, the

- and -coordinates are the errors in the position estimate for
the mobile terminal. For velocity RMSE, the- and -coordi-
nates specify the velocity error in the estimated mobile terminal
system state.

As was described in Section IV, the performance of the esti-
mation algorithm is dependent on the user-selected values of
and TOSELF . The optimal values of these parameters for
a user-selected figure of merit is dependent on the probability
that a mobile terminal will make a turn at an intersection .
For , Fig. 9 shows a contour plot for the position
RMSE averaged over the initial 100-s interval after filtering is
applied (the first 200 samples since the sampling periodis half
a second) for a range of different values of and TOSELF .
The minimum position RMSE was obtained for
and TOSELF . High RMSE is only obtained when
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Fig. 10. Robustness with turning probability.

or TOSELF . Other than these boundary condi-
tions, Fig. 9 shows that the values of and TOSELF can
vary significantly from the optimal values without a large in-
crease in the resulting RMSE.

We have shown that for a fixed , the multimodel filter
is robust to variations of its parameters. It is impossible for the
network designer to know the exact turning probability for the
mobile terminals at the intersections. This value is also changing
with road conditions and time of day. The robustness of a multi-
model filter that has been optimized for a given turning prob-
ability when the true turning probability varies from the de-
sign value is essential if the filter is going to be successful in
field implementations. Fig. 10 shows the position RMSE aver-
aged over the first 200 samples after filtering is applied for fil-
ters optimized for different assumed values of when the
true turning probability is varied. For comparison, the averaged
RMSEs of the multimodel filters with parameters optimized for
each are also plotted. The results for the multimodel filter
optimized for show good robustness over a wide
range of values for turning probability. The filter optimized for

gave better performance for low turning probability,
but its error increases dramatically with rising turning proba-
bility. Fig. 10 shows that the multimodel filter optimized for

gives averaged position RMSE almost as good as
the optimal multimodel filter for a wide range of turning proba-
bilities. For this reason, this set of multimodel filter parameters
is recommended for field implementations. This graph shows
what results can be expected if an accurate long-term behavior
model for the mobile terminal motion is available. In this case,
the turning probability of the mobile terminal would have less
entropy. If the long-term behavior model is perfect, then the
RMSE for turning probability of zero from Fig. 10 reflects what
the multimodel filter could return. With less accurate long-term
mobility models, the results for would reflect
the possible performance.

The next set of simulations demonstrates the convergence
of the filter algorithm. The position and velocity RMSE are
calculated for each sample periodafter filtering was initi-
ated. The turning probability at each intersection was 2/3. The
multimodel filter used the optimal values of and

TABLE VII
SIMPLE KALMAN FILTER MODEL

TOSELF found during the last set of simulations.
For comparison, the RMSE performance of a simple Kalman
filter is also plotted. This Kalman filter uses the model speci-
fied by the matrices in Table VII with no control input. This is
the dynamic model used for the Kalman filter in [8]. The as-
sumed covariance of the process noise given by the entries of
1.5 in for the simple Kalman filter model were optimized
for the best position RMSE performance. The position RMSE
for the simple Kalman filter when using the parameter selection
method presented in [8] is also shown. The zero memory esti-
mator’s position RMSE is plotted to show the improvement that
filtering provides.

In [8], it is assumed that mobile terminal acceleration process
is a zero-mean Gaussian process with variancein both the -
and -coordinate directions. If this assumption is true, the mag-
nitude of the acceleration vector for any given time is a Rayleigh
distributed random variable with a mean value of . The
average value of the acceleration vector’s magnitude is calcu-
lated from acceleration measurements made during a sample
run and the value of calculated. The change in the terminal
velocity from one sampling instance to the next along one coor-
dinate axis is then a Gaussian random variable with mean zero
and variance of , where is the sampling period. We
calculated the mean acceleration magnitude to be 1.677 ms
when the turning probability was 2/3. We therefore replace the
value of 1.5 in the matrix in Table VII with

for the simulations.

Fig. 11 shows the tracking performance for a random initial
condition. The performance for the multiple model filter shows
that the position RMSE converges to approximately 7.5 m
within 10 s of the motion’s starting. The simple Kalman filter
converges to a position RMSE of 9 m with about the same
convergence time. The zero memory estimator has a position
RMSE of about 12 m. The line labeled “Simple Kalman Filter
(Hellebrandt)” uses the parameter matrices calculated from [8].
The assumed process noise variance, for this case, is too low
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Fig. 11. Filtering location error performance.

Fig. 12. Filtering location error performance (deterministic starting position).

to handle the turns in the intersections, so the simple Kalman
filter diverges. From these results, it would appear that the
multimodel filter only reduces the position RMSE by 1.5 m
from the best simple Kalman filter, but this result does not
show the differing RMSE in intersections.

To illuminate the effect of intersections on tracking perfor-
mance, simulations were performed with the mobile terminal
always starting 150 m away from the next intersection it would
enter. The turning probability was set to 2/3. For the simula-
tions with this deterministic starting condition, the mobile ter-
minals enter intersections, on average, at 10 s, 30 s, 50 s, and
every 20 s after that since the mean mobile terminal speed is
15 m/s and intersections are 300 m apart. Fig. 12 shows the
position RMSE curves for simulations with the deterministic

starting condition. The simple Kalman filter’s performance is
greatly degraded immediately after the mobile terminal leaves
an intersection and the control input changes. The damping that
can be seen in the position RMSE error curves for the determin-
istic starting position is caused by increasing variance in the rel-
ative positions of the different simulated mobile terminals with
respect to each other caused by the process noise in the simu-
lation motion model. Both the multimodel and simple Kalman
filters show a location dependency for position RMSE, giving
lower RMSE performance between intersections. At intersec-
tions, the multiple model filter manages the higher uncertainty
in mobile motion better than the simple Kalman filter, which has
spikes of position RMSE error almost as high as the unfiltered
position RMSE provided by the zero memory estimator.
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Fig. 13. Filtering velocity error performance.

Fig. 13 shows the velocity RMSE for the multimodel and
simple Kalman filter. The multimodel filter provides velocity
estimates with lower RMSE than the simple Kalman filter.

The multimodel filter has three advantages over the simple
Kalman filter. First, it gives system state estimates with lower
error. Second, it handles the uncertainty of mobile terminal mo-
tions in an intersection much more robustly than the simple
Kalman filter, which has high spikes in estimation error be-
cause of intersections. Third, the multimodel filter is robust to
varying turning probabilities for the mobile terminal motions.
The simple Kalman filter’s parameters need to be optimized
for the specific turning probability encountered, and robustness
for a different turning probability is not guaranteed. The simple
Kalman filter does have lower computational cost but the mul-
timodel filter is designed so the multiple Kalman filters con-
tained within it all have the same Kalman gain. So the Kalman
gain calculation, the operation requiring the most operations in
the Kalman filter, is only performed once and the calculated
value used for all the filters. The additional cost of the multiple
model filter, the calculation of the posterior probability values
from (21) and applying the weights in (15), is minimal com-
pared to the Kalman gain calculation. The multimodel filter re-
quires only a small amount of additional memory compared to
the simple Kalman filter. The location estimate for each Kalman
filter needs to be stored along with its respective posterior prob-
ability. Because each filter has an identical Kalman gain, each
also has an identical posterior covariance estimate.

The last set of simulations shows the effect of uncertainty in
the knowledge of the kinematic model of mobile terminal mo-
tion on the estimation performance of the multimodel filter. The
value of used for the motion simulation and the estimation
model in the filter algorithm are varied in the range [0.1, 0.2],
which covers the drag coefficients for most passenger vehicles
likely to be used in urban environments. The other parameters
of the motion model from Section III were adjusted so the mean
and variance of the mobile terminal velocities would remain the

Fig. 14. Location RMSE with varying drag coefficients(P = 2=3).

same for all values of used. The mean velocities of the mo-
bile terminals were kept constant so the maximum acceleration
of the mobile terminals was set to and the mean ve-
locity would remain at 15 m/s. The variance of the process noise
was set to so the standard deviation of the velocities
would remain at 1 m/s. A contour plot of RMSE location errors
for ranges of values for assumed and true values ofis shown
in Fig. 14. The filter parameter values are set to
and TOSELF . Good performance is always obtained
when the assumed in the filter Filter matches the true
in the motion simulator. It can be seen that the lowered perfor-
mance for a mismatch between the truethat generated the
measurement data and the assumedin the filter algorithm is
fairly small. It is possible to estimate during filter operation
using an extended Kalman filter or the expectation maximiza-
tion algorithm, but these results show that this estimation would
give little extra benefit and at possible large computational cost
[20].
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Fig. 15. Location RMSE with varying maximum mean velocity (P =

2=3, � = 1=6).

In general, larger values of trueallow for better filter perfor-
mance. This a result of the accelerations of the vehicles’ being
higher, resulting in larger separations between the models in the
measurement domain.

Fig. 15 shows the multimodel filter’s performance when the
assumed value of maximum accelerationin the filter does
not match the true value for the vehicle. As was shown in Sec-
tion III-A, from the maximum mean velocity is calculated as

. The filter is optimized for m s for a maximum
mean velocity of 15 m/s. Fig. 15 shows that the filter works best
when the true maximum mean velocity is near 15 m/s with the
filter working nearly as well when the maximum mean velocity
is near zero. The filter works well for low velocity because, in
this case, the motion of the mobile terminal is well matched by
the filter with the assumed value for being the zero vector.
This result shows that this filter gives good performance for
both vehicular users and mobile terminals carried by low-speed
pedestrians.

VII. CONCLUSION

Estimation of mobile terminal positions based on measure-
ments made at a single time instant will contain errors because
of noise in the signal measurements. This paper introduces dy-
namic filtering to reduce the location estimation error by com-
bining the information from signal measurements made at sev-
eral time instances to calculate an improved location estimate.
Mobile terminal velocity can be estimated jointly with mobile
terminal position to facilitate prediction of future mobile ter-
minal locations.

In order for dynamic estimation to be performed successfully,
an accurate model for the mobile terminal motion is required. A
dynamic model was described that separates the mobile terminal
motion into a simple kinematic model for the physical laws gov-
erning terminal motion and a user decision model for the human
decisions that affect mobile terminal motion.

A multiple model dynamic estimation algorithm was pre-
sented that estimates the control input for simple Kalman filter
estimation algorithms. This dynamic estimation algorithm uses
knowledge of the dependency between control input changes
and the location of the mobile terminal to improve the accuracy
of its location estimates.

The performance of the estimation algorithm was evaluated
using simulations. The robustness of the algorithm to variations
in the parameters of mobile terminal motion was demonstrated.

Future work in this area includes investigation of mobile ter-
minal location prediction for resource allocation and handoff al-
gorithms. The incorporation of long-term behavior models for
mobile terminal motion is also under investigation. The eval-
uation of location estimation methods using dynamic filtering
needs investigation. Many of the techniques used to evaluate
zero memory estimation techniques, such as the GDOP [21], are
less useful when dynamic filtering is applied. New performance
measures need to be derived based on the effect that time-based
filtering can have upon measurement accuracy.

APPENDIX I
STATE SPACE MODEL DERIVATION

The state vector is defined as

(28)

where is the location vector of the mobile ter-
minal and is the velocity vector of the mobile ter-
minal. In continuous time, the state space model of vehicular
motion can be given by

(29)

The terms and represent zero-mean white Gaussian
noise processes with variances of

, which are the process noise terms for the continuous time
dynamic model. The deterministic inputs, representing driver
control input in the - and -directions, are given by and

. These inputs determine the direction that the mobile ter-
minal will move. If for all values of
and , then

Thus, and determine the final direction of motion.
If the control inputs change, the mobile terminal motion will
smoothly change to the new direction of motion as the drag term
forces the velocity functions to remain continuous.

The asymptotic covariance of the velocities can be easily
found to be

Cov

In practice, we can only sample measurements of the state of
the system at discrete times. We will assume that the state is
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sampled with a sampling period ofs. The discrete state vector
is given by

(30)

A discrete version of the dynamic model can be obtained from
the continuous time model [39]. We make the simplifying as-
sumption that the input vector changes only at the sample
times. Obviously, the inputs can change at any time instant, not
just at the sampling instants. The error introduced by this mis-
match between the modeling assumptions and real model will
be negligible provided the sampling period is small compared
to the time constant of the continuous system . The sam-
pling period is set at s, which is less than the time
constant of the system of s—which justifies the as-
sumption made to discretize the continuous state space model.
The resulting discrete time dynamic model is given by

(31)

where

The components of the process noise covarianceare given by

For handoff measurements, mobile terminals measure the
signal for the base stations they are using for primary com-
munications but also the signal from other base stations. It
is likely to be these measurements that will be extended for
mobile terminal location purposes. Therefore, the sampling
period was set to the approximate time between measurements
in support of the handoff algorithm in GSM. Other networks
standards, e.g., IS-95, have different sampling intervals for

handoff, but the handoff sampling periods are of the same order
of magnitude, so the results are still valid.

APPENDIX II
KALMAN FILTER

The Kalman filter assumes that is a jointly
Gaussian random vector with the mean 1 , the true system
state at sample time 1, and covariance matrix 1 1 .
It also assumes the measurement vector for sample timeis
given by

(32)

where is a jointly Gaussian random vector with zero mean
and covariance matrix that is independent of the process
noise .

The optimal filtering algorithm consists of two stages: the
prediction stage and the correction stage. The prediction stage
recursively predicts the system state at intervalfrom the esti-
mate of the system state at interval 1. The correction stage
then uses the measurement taken at intervaland combines it
with the prediction to get a corrected estimate of the state at in-
terval .

During the prediction stage, the value of is predicted
from the estimate of 1 using the measurements taken up
until sampling interval 1. The prediction is given by

(33)

with the covariance of the predicted system state given by

(34)

The correction stage of the filter incorporates the new measure-
ment for sampling interval , , to improve the estimate of
the location state. The first step to the correction is to calculate
the innovation at sample time , the difference between
the predicted measurement and actual measurement at time

(35)

The corrected estimate of the system state at timeis calculated
using

(36)

where is called the Kalman gain. The Kalman gain is
given by

(37)

The updated covariance of the estimate is given by

(38)

where is the appropriately sized identity matrix. The Kalman
filter has been proven to be unbiased, i.e., ,
and optimal if the process noise and measurement noise densi-
ties are Gaussian and the time evolution and measurement equa-
tions are linear [34].
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