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Dynamic Model-Based Filtering for
Mobile Terminal Location Estimation

Michael McGuire Member, IEEEand Konstantinos N. Plataniotislember, IEEE

Abstract—Mobile terminal location is an important area of re-  mobile terminal, there are errors in the position estimates re-
search because of its applications in location-sensitive browsing sulting from noise in the measurements.
and resource allocation. This paper presents amethod forreducing ¢ hag heen shown that time filtering of the location estimates
the error in mobile terminal location esgmauoré' A prﬁpm?fessor ¢ can reduce the location errors [6]-[10]. A filtering algorithm im-
using nonparametric estimation is used to reduce the effects o S > e X o
non-line-of-sight and multipath propagation on the location pro- ~Proves the estimation of mobile terminal location by combining
cedure. A model-based dynamic filter is presented that uses an ac- the location information from measurements made at several
curate model of mobile terminal motion to combine information Samp"ng time periods together into an improved location es-
from location measurements made at different time instances t0- yimate The filtering algorithms presented in the literature were
gether to create an improved location estimate. The model of mo- selected in a heuristic manner, with the main criterion of se-
bile terminal motion has a kinematic state space model describing ” k ) v o .
the physical rules governing terminal motion and a control model lection being ease of implementation. A filter's error reduction
that describes the human control input into the motion process. performance is highly dependent on the relationship between
Location dependency in the control input model is used to derive the filter's structure and the properties of the random processes
a new dynamic filter. This filter provides greatly improved accu-  yha¢ compose the motion and measurement generation processes
racy over previously known location techniques and is much more for the mobile terminals. The filter parameters in the mobile ter-
robust to variations in the mobile terminal motion and nonlinear . R : P )
effects in the propagation environment. minal selection literature were selected to be optimal for the data
sets in each paper. Methods for parameter selection for different
scenarios were not presented. Thus, the robustness of the filters
to data sets generated by mobile terminal motions other than
those presented in the papers is uncertain.

. INTRODUCTION This paper presents a location system where a time-based
M UCH research has been performed on mobile terminfdfer based on models of the mobile terminal motions is used

Index Terms—Cellular land mobile radio, filters, position
location.

location in wireless cellular networks. Even without Soto reduce the error in mObile terminal |Ocati0n. The mObile ter-

phisticated location methods, a wireless cellular network hEyghal motion model consists of a kinematic model, which de-
some knowledge of the location of a communicating mobifkcribes the physical rules controlling the motion of mobile ter-
terminal. The handoff algorithm determines which base stati§nal motion, and a user control input decision model, which
serves the mobile terminal at any given time, which gives stat@escribes the user decisions concerning the motions of the mo-
tical knowledge about the mobile terminal’s location. This locdtile. The parameters of these models are obtained from real-
tion information is returned in Phase | of the Federal Commuriorld measurements of pedestrian and vehicular motion. The
cation Commission’s emergency 911 wireless location requifé@ntrol input decision model's parameters are based on known
ment [1]. For more precise location estimates, the relationsg;yes for the motion of vehicles or pedestrians. The dependency
between radio signals’ characteristics and the relative positidisthe control input selection on the terminal position is ex-
of the mobile terminal and base stations is exploited to generifgited to improve the estimation method. The advantage of this
location estimation procedures. Measurements that have bEthod is that the parameters of the models are easily mapped
proposed for the location of mobile terminals include the angfeom field measurements, which makes the application of the
of arrival (AoA) of the radio signals from the mobile terminaldilter to different scenarios simple.

to the base stations, the received signal strength (RSS) of thd his method is a network-based location solution since only
radio signal of the mobile terminal at the base station, the tirfee cellular network can have access to the necessary infor-
of arrival (ToA) of the radio signal from the base station at th@ation about the local propagation and physical environment
mobile terminal, and the time difference of arrival (TDoA) pearound the mobile terminal that is required by the location es-
tween signals from multiple base stations at the mobile termirfinate filters. A terminal-based location solution, where all lo-

[2]-[5]. No matter which measurements are used to locate tf@tion estimation calculations are performed in the mobile ter-
minals, could not use this method without prohibitively large

. . . downloads of information to the terminals from the base sta-
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urban areas are the regions of greatest interest to cellular net [ g N
work operators since these regions have the highest densities ¢ 11 A B RN
users. These are also likely to be the areas where third-gener: L, AN i N
tion cellular networks are first introduced. Mobile terminals in R AN i N
road vehicles can have high velocities and uncertainty in their Y
motion. This makes estimating their locations of greater diffi- N A6~ z
culty than for relatively low-mobility pedestrian-carried mobile AN ~ AN -
terminals. Mobile terminals in road vehicles derive the greatest N / AN ,
benefit from model-based estimation location estimation. N | e hN |
The location estimation filtering algorithm proposed in this N
paper is independent of the type of measurements used to loca ’, N . N
the mobile terminal. TOA measurements are used in the simula: . AN 4 N
tion within this paper to evaluate the effectiveness of the method. ., J 1 N
The modulation and multiple-access schemes proposed for mos
next-generation cellular networks allow for high-resolution time AN S N L,
measurements, which makes ToA location highly likely to be AN R4 N /
the location technology used in these networks [11]. AN I e 17
Section Il describes the measurement model. The radio prop (]
agation environment used to evaluate the location procedure i
discussed, and the preprocessing of the radio measurements b
fore the filtering procedure is outlined. Section Il describes the Building
motion model for the mobile terminals. The kinematic and user
control input models that dictate mobile terminal motion be-
havior are described. The model-based filter and control input
estimator are described in Section V. The setup of the simufdg- 1. Simulation environment layout.
tions used to evaluate the location estimation algorithm is out-
lined in Section V. The results of the simulations are presentggbpagation time more difficult than if all the transmission en-
within Section VI. Our conclusions and possible topics for fuergy was in one path.
ture research are summarized in Section VII. The environment used to evaluate the location estimation
procedure is a simple Manhattan model that has been used in
the mobile terminal location literature to evaluate radio location
Il. PROPAGATION MEASUREMENT MODEL performance [2]. The layout of the environment is shown in

The measurements taken to locate the mobile terminal %:ﬁg 1. The positive-direction will be said to be north, making

S e positivez-direction east. The city blocks are 300 m long,
ToA measurements. The propagation time from the base station . . .
: L . . and the streets are 20 m wide. Base stations are located in the

to mobile terminal is measured. These propagation time mea[- . ) .
n %rsectmn at every second block. This environment and base-

o Base station

----  Cell boundary

surements are converted to propagation distance measurements

Lo . station layout is typical of dense urban areas. The handoff
by multiplication of the time measurements by the speed Of . . ;
algorithm for the cellular network is a perfect distance-based

light. There are nonremovable errors in the time measurements . ) . .
resulting from noise in the measurement systems and propagtg-c.mth.m.; a mobile terminal has I_<now|edge of which bas_e
tion environment. ation it is clqsest tq and communicates with the netwqu via

The measurement error for propagation distance has béré%F base station. This makes the cell of each base _stat|on., b
re(%lon where all the mobile terminals would communicate with

shown in most cases to be near Gaussian in [12]. The varianc?h . . i . S
: . e base station, a diamond-shaped region, as shown in Fig. 1.
the measurement error when there is only a single propagatlonl_he measurement noise assumed in the model is Gaussian.

path is mostly a function of the signal power, interference POWEL . Jistance measurement vector is aiven b
and noise power at the receiver. The propagation effect mainly 9 y
responsible for increasing the error in propagation distance mea- z(k) = d(k) + (k) 1)
surements is multipath propagation, during which the radio sig-

nals travel from the transmitter to receiver via multiple pathsyherez(k) is the measurement vector at sample intekyal(k)

each with its own attenuation and transmission delay. Multipaiththe vector of propagation distances from the base stations to
propagation results in the error distance measurements’ havihg mobile terminal at sample intervial ande (%) is a random
higher variances and positive nonzero means [13]. The positixector representing measurement noise. The leng#{/of is

bias resulting from the nonzero error mean is created by tegqual to the number of base-station measurements used to lo-
probability that the time measurement device will incorrectlgate the mobile in one sample interval. The covariance vector
detect one of the extra longer propagation paths as the shortdshe measurement noise vectoie (k) (k)" is equal too,>
propagation path instead of the true shortest distance path. Tindtiplied by an identity matrix of the appropriate size.
increased variance is a result of the transmission energy’s beinduring line-of-sight (LOS) propagation, when the shortest
spread over multiple paths, which makes the estimation of tistance straight line propagation path from base statitm
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Fig. 3. Zero memory estimator for ToA location estimation.
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Fig. 2. Manhattan propagation environment. A. Zero Memory Estimation

The true location of the mobile terminal at sample intefval
will be designated (k). The time measurement vector for sam-
. N . § . plingintervalk is designated(k), as was described above. The
[noblle te;ménzl IS S]Ot;.lot(:kedjf(k)’ merth ent:yfof tTetﬁ'S' estimated location of the mobile terminal at sampling intekval
ance vectod (k) is the distance from the base station to emo: designated(k).

bile terminal. This is not true during non-line-of-sight (NLOS) "0 5 cajied zero memory estimator is a preprocessor for the
propagation when the shortest distance straight line propagatligg . Lo .

. - . ation estimation system. It allows the model-based location
path is blocked by a building or other obstruction. For the Ma y

. ; . . Ystimation filter to operate without knowledge of the nonlinear-
hattan model u;ed n the_S|mqut|ons, itis assumed that duru&gs in the propagation environment. This is illustrated in Fig. 3.
NLOS propagatlon, the signal d|ffr_acts arc_)und corners and t e model-based filter receivegk) — 9(k), the estimated po-

sho_rtest propagation path Iength is the distance from the b fifon of the mobile terminal at sample tirkdased only on the
station to the corner plus the distance from the corner to mobjle

terminal. A le of an NLOS tion dist . “measurements made during interkallhis synthetic measure-
erminai. An example ot an propagation distances g'v?ﬂenty(k‘) is a linear function of the true system state at time
by (d; = d. + d,.) in Fig. 2.

T , ) k as opposed ta(k), which is a nonlinear function of the true
The measurement noise is Gaussian with a mean of 16'059§tem state

and a standard deviatiery of 16 m. The parameters of the noise * \1 st [ocation estimation techniques assume LOS propaga-

density are taken from [2, Fig. 5], which simulated multipathy, \here the shortest distance straight line path between the
propagation based on the COST 207 urban power delay profighije terminal and base station is not blocked. During NLOS
in microcells and analyzed the performance of a ToA d'Stanﬁ?opagation, when the LOS propagation path is blocked by a
measurement system. building or other obstruction, location estimates made assuming
This paper discusses a network-based algorithm. Propagajiefis propagation suffer from a bias [2]. The use of recursive
distance measurements for mobile terminal location are maggyrs to estimate and remove this bias has been proposed [9].
by the base stations. It is assumed that only the five closg$iese filters require a model not only for the motion of the mo-
base stations to the mobile terminal can measure the propagifs terminals but also for the time evolution of the effect of
tion delay. This constraint results from signal loss and channgl os propagation on the measurements. The time evolution of
reuse considerations. It is assumed that base stations other {pos effectsis a complicated function of the motion of the mo-
the closest five either would not receive a strong enough sigmle terminal, the location of radio propagation obstacles, and
from the mobile terminal to be able to measure the propagatigfe location of the base stations. This means that the NLOS bias
delay or would have reassigned the mobile terminal’s chanrgltimation algorithm is extremely complicated and must be ad-
for use by another mobile terminal of greater proximity to thefsted if the motion model parameters change.
[14]. Ofthese five base stations, only the three base stations withThe approach taken to solve the NLOS problem in this paper
the lowest propagation delay measurements are used to lo¢gat® use a survey of propagation measurements to characterize
the mobile terminal. The distance measurement vexttorhas  the propagation environment. Nonparametric estimation, based
a length of three and consists of the distance measurements galsurvey measurements made of the radio propagation envi-
culated from the three lowest propagation delay measurement&ment, is then used to convert measurements made by mobile
Field measurements have shown that three or more base statiensinals at unknown locations to location estimates. These lo-
can make measurements for the mobile terminal more than 9@%tGion estimates do not assume an LOS propagation model, so
of the time in urban areas [15]. they do not have a bias when NLOS propagation occurs.
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The estimation problem is stated as estimating the locationtof a base station. Other zero memory location estimation
a mobile terminal at an unknown location within regifirom methods require iterative solving techniques and calculation
measurement vecta(k) given the survey set. The survey dataf the derivatives of the conditional density functions [2]. Our
set consists of measuremefts , z», . . ., z, } made at respec- technique requires the calculation of the sum of the kernel
tive true locationg 6,0, ...,8,}. Since the survey set is thefunctions for each survey point, which is less costly.
same for all mobile terminals within a given cell for all sampling Since we are locating only road vehicles, all the survey points
intervals, the survey measurements and locations are not gieea located on the streets. As can be seen in Figs. 1 and 2, each
a time index. The probability density function of the survegell has two streets that run perpendicular to each other. One line
point locations is the same as the probability density functiai survey points is sampled down the center of the street parallel
of the mobile terminal location. For our estimation problemntp thez-axis, and another line of survey points is sampled along
this means the survey points for the cell the mobile terminaltise center of the street parallel to theaxis. Since there are
known to be residing in are used in the estimation proceduresurvey points in each cell, the survey points on each line are

The survey measurement set can come from many sourcparated by 6002/n m.
During network configuration, propagation measurementsThe kernel function used in this paper is called the Parzen
are made to ensure that the base stations are providing g@alissian kernel [19]. It is given by
coverage of the network area [16]. These propagation measure- 1 \™ . <TC-1x
ments can be converted for use with the zero memory estimator. K (x) = (\/7> |C|™ 2 exp <_T) %)
Computer models could also be used when field measurements ) 7T i
are considered too expensive. Survey data obtained from cdrf! the ToA estimation problem, the matiiX is set to be an
puter models will have higher measurement error than sur/&§ntity matrix of sizem.

data obtained from field measurements since the computef\N €xamination of hows. is substituted into the kernel func-

model cannot perfectly match the true propagation envirofion Shows thati. has some relation to the variance of the
surement noise [19]. The delay spread can be measured

ment. The results presented in this paper are based on suff¥#

data taken from the simulated field measurements. A mixt &N network configuration. This allows for the variance of

of the two methods is also possible. Field measurements onF& propagation distance measurement noise to be ca_lculated o)
be made in high-occupancy areas, where the network providfds value could be known to network operators. Experience has
earns more revenue and wishes to ensure good service, SN that with nonparametric estimation, using a value for the
computer models would be used in areas with lower occuparyC0thing parameters in the same order of magnitude as the op-

densities, where location accuracy is not as large a concern timal value gives estimates with errors nearly as good as if the
The zero memory estimation formula is optimal value for the smoothing parameter was used. An anal-

. ysis of parameter selection for location estimation has been per-
> 0i(h.) K, (Z(,z—_ZJ) formed in other work [17], [18]. Experimentation with a model
= n oy (k) —2; (2)  similar to the one considered here suggests that parameter values
Zj:l (hz) " K. (T) such ash. = 20, andn = 100 provide excellent results.
whereK_(-) is a kernel function that decreases monotonically An advantage of the nonparametric estimator is that in ad-
from the origin k. is a smoothing constant, andis the length dition to estimating the location of the mobile terminal, an esti-
of the measurement vecte(k) [17], [18]. mate of the covariance of the measurement noise is readily avail-
This estimation equation can be rewritten to show that the édle. This is obtained from
timated position is a weighted averaged of the survey point po- R(k) = Cov (9(k)|z(k~))
sitions with the weights’ being determined by the measurement
data. Equation (2) is rewritten as [18]

— Cov(8(k)la(k))

(k) =00k) = 3 8, (a(k) @ =5 o)
N — A(F) — w; (z(k
Y im1 — E[6(k)|2(k)] E [8(k)|z(k)]" . (6)
where The calculation oE[f(k)|z(k)] ~ 8(k) is accomplished using
K. (z(k,?—_z’) the estimator described above. An estimator for the value of
w; (z(k)) = - (4)  E[6(k)8(k)" |z(k)] can be derived to be [20]

Z?:l KZ (Z(k‘}g—:Zl) n
An examination of (3) shows that the cost of this zero memory E [0(k)0(k)T|Z(k)} ~ > 0,0, w; (z(k)) @)
location estimation in terms of the number of operations is i=1

linear with respect to the number of survey points used. Théerew;(z(k)) is given by (4). This covariance can be used
zero memory location estimate requires memory to hold ai evaluate the accuracy of the estimation, with a low covari-
the survey data. This should not be a considerable expeasee estimate implying high accuracy, and is an additional input
since the amount of memory required is not large and the ctsta dynamic estimator. The covariance estimate allows a dy-
of this memory in the base stations is not expensive (on thamic estimator to give more weight to the zero memory lo-
order of memory cost for a personal computer). In additionation estimates with higher estimated accuracy than the loca-
the survey data are identical for all mobile terminals connectéidn estimates with low estimated accuracy. One such scenario
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is when the mobile terminal is located at a position relative guch as mobile position modeled as Brownian motion [8], ve-
the measuring base stations where zero memory location ekt&ity modeled as Brownian motion [7], and position modeled
mators cannot provide high-accuracy location estimates. In this fractional Brownian motion [24]. None of the models was
situations, there are relatively large regions that create measur@sed on observed characteristics of a vehicle’s motion; instead,
ment vectorg(k) that are almost the same. This is called ththey were primarily selected for computational simplicity. This
geometric dilution of precision (GDOP) problem [21]. In thigesulted in some of the models’ having characteristics disparate
situation, the covariance estimate from (6) will be high, indfrom actual vehicular motion. For example, the velocity mod-

cating a low-accuracy zero memory estimate. eled as Brownian motion model has the characteristic that the
variance of velocity tends to infinity with increasing time.
. M OTION MODEL We propose a state model based on observed vehicle motion

_ ) ) ) ) _ characteristics incorporating random process noise. A vehicle
This section describes the motion of road vehicles in urbafigypiect to several friction and drag forces. Two major forces
environments. This model is split into two parts. The first paggsist the motion of the vehicle: rolling resistance and air resis-
is a kinematic model that describes the physical rules governipg,ce [25). Rolling resistance is generated by slip between the
the motion of a mobile terminal in response to the forces actifghjcles’ wheels and the driving surface and friction inside of
on it. The second part of the model is a control decision modgle venicle. Air resistance is generated by the force of the air
The control decision model describes the human decisions gfnq the vehicle against its motion. Both of these increase
determine the control inputs into the kinematic model for mobilgiiy the vehicle’s speed. The result of these forces is that if the

terminal motion. vehicle is subject to constant driving force, the acceleration of

From the description of vehicle motion, two mathematicghe yehicle will decrease as the velocity increases [26].
models are derived. The first model is an estimation model, de-A random motion model that matches this observation is

scribed in Section 1V, which is the time evolution model fof5caq on a modified form of the Langevin equation [27]. A
system state consisting of terminal location and velocity used Py o drag termv is present in the kinematic model to model

the location estimation algorithm. The second model is the Sifg effects of air and rolling resistance. Mobile terminal motion
ulation model, described in Section V, which we use to generate ne dimension is given by

location tracks for mobile terminals to evaluate our location es-

timate algorithm. Both models share the same kinematic model #(t) = —ad(t) + w(t) + u(t) @)

of vehicle motion. The models differ on the control decision

Igvel. The estimation control decision model is a general deQ\i/herex(t) is mobile position,(t) is mobile velocity, #()

sion model designed to handle many different kinds of mobilg qpije ‘accelerationy(t) is a deterministic function repre-
motions subject to the constraints an urban environment plaggsing driver control, anes() is random process noise. The
on vehicular motion. The simulation control decision model i§;ocess noise models random effects such as noise in the control

designed to create a reasonable reproduction of actual hurdggyem of the vehicle, variations between drivers, and random
control decisions for a vehicle moving through an urban envigoq conditions

ronment. This simulation control decision model is used only to The control inputu(t) is the driver's input into the system
evaluate the filter's performance; it was not used to generate {fich controls the direction in which the vehicle is moving, in

filter. which direction it will accelerate, and so on. The value:0f)
] ) ) . directly influences the mean speed of the vehicle in control input
A. Kinematics of Vehicle Motion direction.

This section describes a state space model for describing th& «(t) = 0, then the mobile position will wander around
motion of a mobile terminal located in a road vehicle. A state(t) = 0 with E[z(t)] = E[#(¢)] = E[w(¢)] = 0. A pos-
space model describes the time evolution of the system statétivE value ofu(t) will cause the mobile terminal to move in
the mobile terminal in terms of differential equations in contirthe positive directiottim;_,~ E[Z ()] = u(t)/« if u(t) is con-
uous time, or time difference equations in discrete time. stant. A negative value af(t) has the opposite effect. The driver

Several state space models have been developed to modebftidae vehicle will selectu(¢) based on the vehicle’s present
kinematics of road vehicle motion [22], [23]. These state spat@eation, the speed limit and the final desired destination. Ob-
models are of greater complexity than required for the mobigervations of real vehicle speeds by vehicular traffic engineers
tracking application. These state space models are deterntiave shown that the distribution of vehicle speed at a fixed lo-
istic, requiring precise knowledge of the control input, road coations can be modeled as Gaussian [26]. To match this obser-
ditions, and vehicle parameters. This knowledge is not knowation, the process noise(¢) is selected as a white Gaussian
to the location estimation system, and estimating it would focessE[w(t)] = 0 and Vafw(t)] = o2. The variance of the
computationally expensive. This can be avoided by insertinglocity given the control input is determined by the variance of
random process noise into the state space model of the moliile process noisBm,_. ., Var(z(t)|u(t)) = Var(w(t))/(2«).
terminal motion. The random process noise models the unc&he maximum mean acceleration of the vehicleis) m/s?,
tainty caused by lack of knowledge of road conditions and verhich is attained wheti(t) = 0 m/s.
hicle parameters. The location estimator works with discrete time samples of

There are several state space models proposed in the litae location state for which a discrete time motion model is re-
ature for mobile terminal motion using random process noisgyired. Fortunately, as long as the time between changes in the
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TABLE |
SETTING FORMOVING NORTH ON STREET

Control Input Value

uz (k) B (pz(k) — 5)

uy(k) c
——» Direction of Traffic but are not designed to provide realistic behavior for a single
— Lane division mobile terminal.
&%lmersecﬁon The control decision model we propose is designed for accu-
rate modeling of motion for a single mobile terminal. The street
Fig. 4. Lane layout and intersection configuration. layout is considered and the mobile terminal will only make

turns at intersections. Lane use is considered, and the mobile

. ) . . terminal will stay in the proper lane for its chosen direction. The
control inputu(?) is longer than the time constant of the conting, oije terminal will also brake before intersections so that it is

uous time state space modéghi, it 'is possible to easily g:onvert moving slowly while making major direction changes.
the continuous time model to a discrete state space time mOdelAs a driver approaches an intersection, his selected route will

The discrete time motion model is given by determine what lane he will use, the probability that he will

brake, and which direction he will move away from the inter-
section. If he is going to turn, he will have to brake in order

wherex(k) is the location position and velocity state at time int-O make the comer safely. If he has decided that he is going to

terval k. ®, T, and the covariance matrix of the process noi0 straight through an intersection, he will only stop if a traffic

. ) . control signal forces him to, or if there is some form of traffic
matrix are computed as shown in Appendix | based on the cqll: o'sig oree ' ° orm ot fra

. : . . ockage.
tinuous time evolution equation (8). 9

: C : Vehicles remain in the center of their respective lanes with
To match the operation characteristics in typical urban set- - . .
. . X . only small variations unless passing or turning. A standard
tings in North America, a mean velocity of 54 km/h or 15 m/ . : . : - .
orth American intersection layout is shown in Fig. 4. Turning

should be introduced. The maximum mean acceleration duringu . . .
. o ally only takes place in the central area of the intersection.
standard driving for a standard passenger automobile is 2% m?s

urning takes place outside of intersections when the vehicle
[25]. To match these performance values, wecset 1/6 and h L L L i
X as reached its final destination and the vehicle is turned into a
th2e standard gontrol input(¢) = 2.5. We used a value Of.rparking area.
taheiello/;élo give a standard deviation of 1 m/s (3.6 km/h) i 1) Simple Motion Without TurnsThis decision model
' describes the control behavior when the mobile is located away
from intersections or when the mobile terminal is traveling
down a highway. The allowed direction of all motion is in one
The control input is the human control on the motion of thef two directions: up or down the street. Motion is restricted by
mobile terminal. In terms of the kinematic model above, it dghe lane in which the mobile terminal.
termines the value of the input function&) oru(k) indiscrete  The control inputs are categorizediggk ), which is the con-
time. A driver’s decision on what action to take at each point imol input in the direction parallel to the street direction, and
ajourney is determined by the location of the destination as well (k), which is perpendicular to the street direction. For ex-
as other factors such as traffic conditions. ample, if the street is parallel to the-axis, theru, (k) = u (k)
Several types of decision models have been proposed in #meu,. (k) = w1 (k). The control inputy (k) is used to control
mobility modeling literature. The simplest models only changle speed along the street. The control inputk) is applied
the control inputs on the boundaries of cells and do not cotoward the center of the lane to keep the mobile terminal within
sider street layout [28], [29]. More complex motion models havie proper lane.
been proposed that allow the control inputs to change atany timeA deterministic constant input ofy (k) = C is ap-
[30]-[32]. The controlinputs are kept constant over time periogdied in the direction of motion along the street. This will
with random lengths sampled from an exponential distributioresult, as described in Section llI-A, in a mean velocity
The model in [30] models realistic direction-changing behaviaf C/a metergsecond in that direction after a period of
for vehicles. Before a vehicle makes a major direction changeitial acceleration. The other control input will be set to
it must slow down or come to a stop. Again, street layout is net, (k) = B(p. (k) — ¢), whereg is a control constang, (k) is
considered in these models. Simple models that consider stithetposition of the mobile on the coordinate axis perpendicular
layout have been described in the literature as well [33]. Theethe street direction, andis the location of the center of the
models assume that vehicles can change their velocity andldire.
rections instantaneously. Realistic vehicle braking and turningFor example, if the mobile terminal is heading in the positive
behavior are not considered. The models allow for simple simg+direction in a lane whose middle is locatedrat= 5 m, the
lation and analysis of the behavior of groups of mobile terminat®ntrol inputs will be set as shown in Table I.

x(k + 1) = ®x(k) + Tu(k) + w(k) 9)

B. Control Input Model
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Location Q(k+m[k),P(k+m[k2
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Fig. 5. Location estimation system.

2) Motion With Turns: Turning maneuvers make the mo-he state space model, is described in Section IV-A. The actual
bility model much more complicated. The long-term behavidiltering algorithm will be described in Section IV-B.
models required to model when a mobile terminal makes a turnRaw measurements are not used as inputs to the filtering algo-
will not be considered here. Only the short-term behavior imthm because of the complex relationship between propagation
volved with making turns and handling intersections will beistance measurements and mobile terminal location caused by
shown. NLOS and multipath propagation. The zero memory estimator
Street layout information is required to accurately modeises nonparametric estimation to create a synthetic measure-
turning behavior. A mobile terminal in a vehicle can only makmenty (%), which is a linear function of the system state
turns at street intersections. To safely make a turn, a mobile
terminal must be traveling at a low speed. Therefore, when a y(k) =Hx(k) +v(k)
mobile is traveling at a higher speed down a street, it must slow - [1 000
down before an intersection in order to make a turn. If a mobile 0010
terminal is not going to turn at an intersection, it will only slowyherev (k) is a random vector representing the error from the
down if there is some form of traffic signal or blockage thatonparametric zero memory location estimation procedure. As

} x(k) + v(k) 11)

forces it to do so. a by-product of nonparametric estimation, the zero memory
estimator also computéB(k), an estimate of the covariance
IV. ESTIMATION AND FILTERING ALGORITHM of v(k). The zero memory estimator preprocessor, as well as

The zero memory estimator only uses the measuremefiyng the dynamic estimator an input with a linear relationship
taken at sample intervat to estimate the mobile location [0 the system state, also provides statistical information about

during periodk. However, there will be dependence betweelf'€ Meéasurements to the dynamic estimator. .
the mobile’s location at period and its location during the An advantage of the separate zero memory estimator and

previous periods. The model-based filter takes the estimatejpdel-based filter algorithms is that the algorithms can be

the location from the zero memory estimator and combinesSanged independently if the measurements or mobility mode

with estimates of location from previous sampling interval@' the terminal change. For example, ToA measurements may
to obtain an improved estimate of the current location. Tof USed to locate the mobile terminal in heavy urban areas,

accomplish this, it uses information about how the systefflile A0A measurements may be used in suburban and rural
state evolves over time to extract information from previod%reas' Itis certainly posmble_thatamoblle t_ern?lnal COU_Id move
time intervals about the present system state to improve fh@M One areato another during a communication session. With
location estimate. This also allows the location estimate systéi¢ 2lgorithmic split, the time evolution algorithm could remain
to estimate velocities for the mobile terminal that cannot §8€ Same while the measurement algorithm is changed as the
calculated from location measurements made at a single tiff@Pile terminal moves from one region to another.
;r;sstf;nr;c{ l’tr;tselacmtates the estimation of future mobile termm%_ Estimation Model

The system state of the mobile terminal at sample intdri@l _ The estimation model assumed by the location estimation
designated(k), and the measurement vector at sample intenvlfer is a simplified version of the motion model described in
k is designategt (k). The estimate ot (%), given measurements Section lll. The estimation motion model must concentrate on
{y(0),y(1),....y(k)}, is designatec(k|k). The covariance Short-term modeling of mobile terminal motion. It must also be

of x(k|k) is designatedP(k|k). We select the estimator thatgéneral enough to be able to handle most of the possible mo-
minimizes the mean squared error bile terminal motions without any knowledge of parameters that

would not be readily available to field implementations of the
MSE (x(kIk)) = B { [x(k) — (klR)] " [x(k) — %(KIR)] } . algorithm.
(10) The assumed kinematic model for mobile terminal motion is
The system state estimation system is shown in Fig. 5. To i _ ) i
estimate the system state, two relations need to be known: 1) that x(k+1) = @x(k) + u(k) + w(k). (12)
between the system state and the measurements and 2) the Tilvee matrices®, I' and the covariance matriQ.,.qe1 = Q
evolution behavior of the system state. The relationship betwesne assumed known and are based on the matrices reviewed in
measurements and system state was described in Section Il. $ketion 1ll. We assume that the parameters of the motion such as
time evolution of the system state assumed by the filter, callddag coefficient and process noise covariance are known to the
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TABLE 1l TABLE 11l
INPUTS FORMOBILE TERMINAL DIRECTIONS ESTIMATION MODEL: STATE TRANSITION
Direction  Control Input Terminal Location Transition Probabilities for Terminal Location

i x(k) ©,;(x(k)) = Prlu(k + 1) = u;|u(k) = u;, x(k)]
0

North uk)=u; =
C
- ci ¢ ¢ ca ¢
- c2 c1 c2 c2 C2
0 . .

South u(k) = uy = Not in Intersection cg c2 c¢1 c2 c2
-C
L c2 c2 c2 ¢ Cc2

_02 c2 c2 cC2 Cl_

C

East u(k) =uz =
0.0
r c3 C4 €4 cC4 C4
-C

West u(k) =ug = c4 €3 c4 c4 c4
.0‘0 In Intersection cs c4 €3 ca c4
] C4 C4 C4 €3 C4

None  u(k) =us = 00 [ca ca ca ca c3
0.0

e o= 0999, ¢, = (1 — 0.999/4,¢5
(1 — P(TOSELF)y4
estimation system. The values for these model parameters can
be calculated based on the measurements made in the netvgrlodel-Based Estimation
area by vehicular traffic engineers. N ] ] ] ]
The only part of the kinematic estimation model that cannot The prob_ab|I|ty densny function that describes the evolution
be estimated ahead of time or controlled is the control input 8f the location state is given by
the user. To approximate the behavior of the user, the estima- r ok
tion model assumes the control input vector is one of five poé- x(k +1), u(k + 1)jx", u¥)

P(TOSELR,and ¢, =

sible input vectors that are matched to the mobile terminal being = f(x(k+1), u(k+ 1)|x(k), u(k)) (13)

stopped or moving in one of the cardinal compass directions

matched to directions of the streets, as shown in Table Il. ~ where  x* = {x(0),x(1),...,x(k)} and
If there are other street directions, then other control inpuf = {u(0),u(1),...,u(k)}. Equation (13) shows that

vectors would be added to the above set to match them. Tthe system state and control inp(t(k), u(k)) are jointly
constantC in the control input set is matched to the maximura Markov-one process [27]. The conditional density of the
observed acceleration of the mobile terminals. The relationstsipstem state and control input vectors at interkll given
of this constant with the velocities and drag coefficient of thiaeir values at intervat are independent of the vectors’ values
mobile terminal motions is explained in Section Ill. at any other preceding time interval. The control input is
Vehicles in urban environments usually only change diree- function of the mobile’s present location as well as the
tions in intersections. When the mobile terminal is not in irfinal destination of the trip and factors such as present traffic
tersections, the control input usually remains constant. That¢gnditions.
Pru(k) = u(k — 1)] = 1 if the mobile terminal is not in an  If a discrete time evolution process is a Gaussian Markov
intersection. If the mobile is located in an intersection, themrocess and the measurement equation is linear with Gaussian
is a substantial probability that the control input will changenoise, then the optimal filtering algorithm is the Kalman filter
The state transition probabilities in each region are describ@d]. The type of density of (&), the measurement noise, is not
in Table 11l in the form of matrices. The optimal value of theknown. It has been shown that the Kalman filter can still provide
constantP(TOSELF is a function of the probability that the good performance in many cases when the measurement noise
mobile will turn at the intersection. If the probability of turningis not Gaussian, so it is still applied to this problem. The time
is high, then the optimaP (TOSELRF will be small. If the prob- evolution process for mobile terminal location is a Gaussian
ability of turning is low, then the optimaP(TOSELF will be Markov process ifu(k) is known, as shown in (12). Thus, it
close to one. Good values 6f(TOSELF range from 3/4 to 1 is possible to optimally estimate(k) if u(k) is known for all
for a turning probability greater than 0.1. k, if v(k) is assumed to be Gaussian.
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Fig. 6. Interactive multiple model filter structure.

The Kalman filter is briefly described in Appendix Il. The useprocess where the control input state transition probabilities
of Kalman filters allows for a location estimate to be calculateake a function of the current location of the mobile terminal.
along with an estimate of the variance of the location estimat@mowledge of the relationship betweg(%) andu(k) and their
error. The required inputs to the Kalman filter are the measut@ne evolutionary behavior are used to derive a new filtering
ment vectoy (k) and the estimated variance of the measuremeaigorithm.
vectorR (k). FromR(%), the Kalman filter calculates different Given the problem with state augmentation techniques, an
weights on the measurements from different sampling periodstiternative approach to the problem of estimating the system
calculate the current location of the mobile terminal. If the meatate is to decompose the model of the system state into several
surement for a sampling periéchas high estimated error valuegpossible models for the location model. Each different model
within its R(k) matrix, then it will have less weight in the final corresponds to a different possible value of the control input
location estimate. This reduces the impact of GDOP, as isolatesttor. An estimate of the system state for the mobile terminal
measurements with high GDOP will not be given much weiglg calculated for each of the possible models. The estimation
in location estimate calculations. If there are several samplipgoblem is then how to calculate the probability weight for the
periods with largeR (%), perhaps caused by GDOP, the accuecation estimate calculated with the different assumed models
racy of the final location estimates will be reduced but the caknd how to use to use these estimates and probability weights to
culated error covariance by the Kalman filter will be high, soalculate a combined location estimate [36].
that the user will be aware of the inaccuracy. The final accuracyThe estimation motion model assumes that the input vector
will still be higher than for zero memory estimator since inforselection process is a Markov chain given the system state
mation from measurements taken in different sampling intervals
will be combined. Priu(k) = ujjx(k —1),u(k — 1),u(k — 2),...,u(0)]

The location process is a Gaussian Markov process, allowing =Prlu(k) = uj|x(k — 1),u(k — 1)]. (14)
optimal estimation by the Kalman filter, only if the user input
vectoru(k) is known. Unfortunately, the value af(k) must The input vector selection process is specified by the initial
be estimated by the location estimation process. A commordglection and control input vector state transition probabilities.
applied solution would be to augment the state vector with th& a consequence of the switching behavior of the control input
control input and then use a Kalman-like filter to estimate thsrocess, the estimation procedures for each of the different
control input as well as the system state. Unfortunate{y,) models need to interact to properly handle the switching
andu(k) are not jointly Gaussian, and the control input procegsobabilities.
function is discontinuous. This makes the augmented motionThe organization of the new multimodel filter is shown
model ofx(k) andu(k) is nonlinear. Many of the standard nonin Fig. 6. Several Kalman filters are run in parallel with
linear filtering algorithms, such as the extended Kalman filtegifferent hypothetical values of the control inputk). Since
will have a high probability of not converging because of theach Kalman filter gets identical values for the process noise
discontinuities in the control input process [35]. covarianceQ and measurement noise covariaRék), each

As was shown in Section I, during normal vehicleKalman filter will have the same Kalman gaK (k) and
motion, u(k) takes on the value of one member from &ovariancéP(k|k— 1) andP(k|k). Most of the calculations are
small discrete set of possible control input vectors. That ishared between the Kalman filters. Only the different location
u(k) € {u;,us,...uy}. Section IV-A gave a model whereestimates need to be calculated using the hypothetical control
the control input vector process is described as a Markowut values. The output of the Kalman filters is provided to a
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posterior calculation algorithm, which determines the posteriseen from (12) that givea(k — 1), x(k) is independent af(%),
probability of each process model generating the observadd thereforgy (k) is independent ofi(k) givenu(k — 1).
input. The posterior probabilities are then used to generateThis allows us to use the approximation

multlphgatlve we|ght§ for each of the Kalman filter outputs so Pr [u(k) = wly(k),y(k —1),...,y(1)]

a combined state estimate can be calculated.

N
The final state estimate is given by _ ZPr [u(k) = wlu(k — 1) = u;,
x(k|k) =E[x(k)ly(k),y(k = 1),...,y(1)] j=t A
=E{E[x(k)[uk — D] |ly(k),y(k —1),...,y(1)} x(k —1) =x(k - 1|k — 1) p;(k). (19)
N The value ofx(k — 1|k — 1) is the location estimate for the
= Z p;(k)x;(k|k) (15) last sampling period calculated using (15). An alternative solu-
j=1 tion would be to use the location estimate from the filter with

wherex ; (k|k) is the output of thgth Kalman filter andp () is the high_e_st probability \_Neight to deter_mine the state _tran;ition
the weight vector witlp ; (k) being itsjth entry, defined as the probabilities. But, as this gives a location estimate with higher

probability of modelj’s being the true model given the observedariance, it also results in estimated transition probabilities with
measurements higher errors than using the weighted average.

To use this dependency in the state estimator, the estimated
pj(k) = Priu(k —1) = u;ly(k),y(k =1),....y(1)]. (16) gtate determines the state transition matrix used in the model
Equation (15) is derived using the smoothing property of expedetection algorithm. The location region is split iMQ.gio., re-
tation E{E[Y|X]} = E[Y] [27]. In the multimodel filter, the gions, each of which has a different control state transition ma-
density ofx(k|k), a sum of Gaussian densities with each mod#ix. The estimated control state transition matrix is given by
contributing one term, is approximated by a single Gaussian 0., if Xx(k—1k—1)€ 8
density. Without this approximation, the number of terms in the 0,, if Xx(k—1]k—1) € S
density calculation would grow exponentially with each sam- ©(k) = :
pling period. This approximation is justified since usually only
one of the terms has a weighj (k) near unity, while all other region
terms have weights near zero. where{S1, S, ..., SN,..... } are disjointregions in the location
Bayes’ theorem can be applied to (16) to obtain (17), &pace. For this application, the regions and transition probabil-
shown at the bottom of the page [37]. The denominator terities are described in Table Ill. The weight update calculation
is a normalizing constant independent of the input, so its valbecomes
need not be calculated. The first term in (17) is expanded using(k+1) _
the theorem of total probability as P

(20)

Ox if %(k — 1|k —1) € Sy,

region ?

f(y(k+Duk) = w;,y(k),y(k=1),...,y(1))
f(y(k+1)|y(k),y(k=1),...,y(1))

R
x Y 6,;(k)p; (k) (21)
Jj=1

whereé(k) is determined by (20). The conditional density of
y(k),y(k—=1),....,y()]p;(k). (18) vy(k+ 1)in(21) gives the evidence that the last measurement
rovides regarding the control input vector state. It is assumed
hat the measurement vector given the past measurements and

?amr?hng é’eg!?fb(of) |thaII()j/_f\fN0ulo![ be tthel 'Frue t'n't:al condi- control inputs is jointly Gaussian. The conditional density func-
ional probabilities for the different control inputs. In comparg i 1 an given by

ison to the algorithm presented here, the so-called interactive
multiple model (IMM) filter assumes that(k) is independent f(y(k+ Du(k) =w,y(k),y(k-1),...,y(1))
of the measurementg(k),y(k — 1),...,y(1). As shown in _ 1 |C(k‘)|_%

2

The estimated probability weights of the models for the fir

(14), the location and control input are dependent, which makes
the measurements and control input dependent. Therefore, we X exp {_} [y(k + 1) — my(k)]"
cannot make the same independence assumption as the IMM
algorithm. =1 i o
The information about the system state contained in all mea- X[ y(k+1) ml(k)]} (22)
surements up to time intervak-1 is summarized in the systemwhere
state estimatéx(k — 1|k — 1), P(k — 1]k — 1)). It can be easily m; (k) = H[®%x(k|k) + Tu;]

X : b (17)
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the mean value of the estimated location for time intekval TABLE IV
given the measurements up to time intefvalssuminga(k) = POSTPROCESSINGADIUSTMENTS FORLANE USE
u; and

Condition Adjustment

_ . AHT .
C(k) - HP(k + 1|k)H + R(k + 1) X2(k|k) < —3 meters/second  X3(k|k)adjustea=%3(k|k) + 5

the covariance of the estimated measured location. The filter g, (k|k) > +3 metersisecond %3 (k|k)agjustea=%3 (k|k) — 5
uses the difference between the expected predicted measure
ment and the true measurement, the “innovation sequence,” for
each filter and the transition probabilities for the control input %, (k|k) > +3 meters/second %1 (k|k)adjustea=%1 (k|k) + 5
state to update the estimated probability weights for the possible
control inputs [38].

When the input vector to the motion model is constant for The optimal value ofY,, is a tradeoff between the perfor-
several steps, the estimate for the Kalman filter with the inpance of the Kalman filter with the correct input vector and the
vector matched to the true input vector will have the lowest meRgrformance of the filters with mismatched input vectors. Low
squared error. The other Kalman filter location estimates wiplues ofQ,, will give asymptotically better performance if the
have estimates of the system state with larger mean squaredf it vector remains constant for a long period of time at the
rors since they have assumed control inputs that do not match$Régt of longer convergence times after the input vector changes.
true control input. The multimodel filter will give the Kalman The range of values fa@., that give reasonable estimator per-
filter matched to the true input vector the highest weight in termance is from zero to the variance of the control input in one
final system state estimate. of the coordinate axis directions. In this application, the control

If the input vector changes after the control input ha§put for either thez- or y-directions can go from-C' to C,
remained unchanged for several sample intervals, it takes YW@ereC is the maximum acceleration of the vehicle from Sec-
Kalman filter that is matched to the new input several samplidipn IV-A. Since the mean of the control inputs is zero, it can
intervals to converge to the system state of mobile termin&€ €asily shown that the variance of the control input along one
The newly matched Kalman filter must first remove the erro@@Xis in this application is less thar?; therefored < @, < C?.
from its location estimate. Meanwhile, the Kalman filter that 1) Postprocessing:Another advantage of the model-based
matches the previous input vector will generate state estimatégring approach is that dependency of vehicle location and
with asymptotically increasing errors as the effects of the ne(glocity can be exploited to improve location accuracy. In this
mismatch build up. The effect of these transition effects APplication, the zero memory estimator does not have enough
that the control input estimation algorithm requires severfgsolution to identify in what lane the mobile terminal is trav-
sampling periods to properly identify the new input vector. eling. If the survey points are taken in the center of the street, as

One method to increase the rate at which the Kalman filté#§scribed in Section II-A, the zero memory estimator will usu-
adjust to input vector changes is to elevate the assumed covally return estimated location in the center of the street when the
ance of the process noise over the value given in the mobi|WbiIeterminal is not located in intersections. The velocity esti-
model [37]. This increased covariance reflects uncertainty in tAtate produced by the multimodel filter is used to improve the lo-

knowledge of the input vectors. The process noise covarianc&aiion estimate by adjusting the location estimate for the proper
design parameter in the setting of Kalman filters, is set to lane indicated by the estimated terminal velocity. The lane and

direction of travel relationship are shown in Fig. 4. The post-

X4(k|k) < —3 meters/second X1 (k|k)adjusted=X1(k|k) — 5

_ T
Q = Quoder + QulT (23) processing is given by Table IV and is performed when the zero

whereQ,,.qe1 IS the process noise in the kinematic model of thememory location estimate is not within an intersection. No ad-

mobility model and?,, is a positive scalar constant. justments are performed if the mobile is moving at low velocity,

Higher values of),, increase the magnitude of the values imas it could be performing maneuvers that are not restricted by
Q and thusP(k|k — 1), the covariance of the estimated systerfane use.
state. This higher covariance of the system state results in th@) Filter Initial Conditions: The multimodel filter is recur-
Kalman filters’ giving more weight to the measurements in est$ive and causal. The filter uses its estimate of state at time in-
mating the system state than on the state predictions made usargalk—1 to estimate the state at time interallhe recursive
the kinematic model and assumed inputs. The Kalman filter thadture of the filter means the implementation memory require-
has an assumed input matching the true control input will hawgents of the filter are finite, which allows it to be used in field
worse performance with high€ér, since its state estimates willimplementations. In order to effectively estimate the state of the
be placing less weight on accurate state predictions made bgyatem, the initial estimat&(0|0) and its covarianc&(0|0)
good model than with lowef),,. Conversely, the Kalman fil- have to be accurate estimates of the true mean initial system
ters with assumed inputs not matching the true control inpstiate and covariance. The covariance matrix indicates the accu-
will give better performance with highep,, since their state racy of the initial state estimate; high values(0|0) indicate
estimates will be placing less weight on predictions made laylarge uncertainty in the initial state estimate.
partially mismatched models than for low@r,. The value of A good selection of initial conditions for the filters is essen-
Q. affects the speed at which the multimodel filter detects thial for the estimation algorithm to operate well. To provide un-
Kalman filter with the matching control input after the controbiased state estimates, the state vector and covariance matrices
input changes. used to initialize a Kalman filter must match the mean of the ini-
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tial state and covariance of the initial state for the process to the mobile terminal to make a valid zero memory estimate. Field
estimated. The initial conditions selected for the filters must alseeasurements have shown that this case is rare in urban envi-
be reasonable, in that they should be values that would be aveslaiments [15]. The use of dynamic estimation allows a loca-
able to a field implementation. In this application, we use then estimate to still be calculated for these intervals. Other ap-
zero memory estimator to obtain initial estimates of the systgmmoaches from zero memory estimation do not provide a sys-
state. tematic method for location estimation during periods of signal
The initial conditions for all the Kalman filters in the multi- unavailability since there is no formulation faf%) based on
model estimation filter are identical, as we assume that the ixitk — 1) [2], [21]. The estimated mobile terminal location for
tial system state is independent of the control input values. In thgch a sampling interval is the predicted mobile terminal loca-
absence of other information, all input vectors are equally liketion from the last sampling interval with a measurement vector
at the first sampling intervad;(0) = (1/5)Vj € {1,2,3,4,5}. x(k|k — [), wherel is the number of sampling periods where
The zero memory estimator is applied to the first time delay(k) has not been available. The predicted location can be easily
measurements(0) to obtain an initial mobile terminal position calculated using the motion model
estimatey(0) and position covariance estima®&0). The ini- N
tial systerr(1 s)tate estimate is based on the fir?ilo)cation estimate X(klk =) = Ex(R)ly(k = 1),...,y(1)]

N
from the zero memory filter
y =Y pjwx;(klk — 1) (25)
y1(0) =1
0
x(0) = . where
0= 1y,00) A
0 p(k) =6(k - 1)p(k - 1)
. . . . -1
The covariance of the first system state estimate is then x;(k|k — 1) = @lxj(k Ik —1) + Z ®Tu;.
Rll(O) 02 R12(0) 0 a=0
P(0[0) = 0 iz 0 01 (24) O(k—1) is calculated from (20). The covariance of the location
Ri2(0) 0 Rp(0) 0 estimate is calculated by applying the recursik|k — 1) =
0 0 0 L ®P(k — 1|k — 1)®" + @, | times. When the signal is again

sufficient to allow for calculation of(k), the estimation proce-
dure continues as described in the preceding sections, replacing

baged on the |r1|t|al velocities in the andy-coordm.ate.s being estimated vectors and matrices predicted fromithé interval
uniformly distributed between 15 and 15 m/s, which is taken ~ X )
with values estimated from the— [ interval as needed.

from the estimator motion model. Initial velocity is assumed to
be independent of initial position. It is assumed that the zero
memory estimator is unbiased so the initial estimated system
state obtained from it is an unbiased estimate of the true initialThe tracking algorithms’ performance is evaluated using
location. The initial covariance is only an estimate of the true ceimulations of vehicle motion in a dense urban area. The
variance, which will result in errors in the state estimates. Faimulation model consists of three parts: the kinematic model,
tunately, the system state process has limited memory, whitle decision model, and the propagation model. The kinematic
means the dependency of the system state at interaatl the model will determine the mobile terminal’s acceleration, ve-
system state at interval+ m decreases with the magnitude ofocity, and position in response to control inputs. The decision
1. The effect of estimation error for time interval O will decreasmodel will mimic the driver’s decisions as to lane selection and
with each additional time interval. The influence of measurevhether to turn or brake at an intersection. The propagation
ments made in later sample periods will eventually remove theodel generates the simulated measurements from the mobile
effect of initial location estimate errors. terminal’'s location. The relationships between the different
3) Location Estimation When Signal Unavailabld: may simulation models are summarized in Fig. 7.

occur that during a given sampling intervglthere are fewer  The propagation model and kinematic model are based on the
than three base stations that receive a strong enough signal faemtual physical phenomena that govern radio signal propagation

The variance of the velocity estimat®s, (0|0) andP44(0]0) is

V. SIMULATIONS



1024 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 4, JULY 2003

TABLE V
MOTION SIMULATION PARAMETERS
Parameter Symbol Value
1a < B meters from
Drag a 3 next intersection
Lane Control B - %
Braking Distance B 40 m
Turning Probability P(turn) 2
Maximum Mean Acceleration C 2.5 meters/second? Entering
Intersection s
Block Length D 300 m Decision
Node
Street Width w 20 m
* o value when not braking.
Leaving Leaving
and vehicular motion and are described in Sections Il and |11, r Intersection Intersection
spectively. The decision model used to simulate mobile termiric
motion is described in the section below. The constants used in
the simulations are listed in Table V. Fig. 8. State transition diagram for motion simulator.
A. Decision Model is shown in Fig. 8. In a true urban environment, there is a

random chance that a vehicle would be forced to brake at each

The decision model generates the control inputs into the kinfAtersection encountered because of traffic control signals or
matic model that will determine future mobile terminal positioRoad congestion. In this simplified model, a vehicle only brakes
based on the mobile terminal’s current location and the simat an intersection when making a turn, but it must always come
lated street layout. to a complete stop before turning.

Modeling human driver decision patterns accurately is dif- 1) Normal State: The mobile starts in the normal state. The
ficult for computer simulations. The solution proposed in thisobile terminal in this state is not located in an intersection. The
paper is to use a model for driver behavior that has higher anebile will, after an initial period of acceleration, move at the
tropy than actual driver behavior. This means that the mobiteean velocity of 15.0 m/s down the street while staying in the
terminal position state at a sample interkaives less informa- proper lane. The control inputs for the main direction of travel
tion about the mobile terminal position state at intefval N will be set as shown in Table 1.

with N > 0 in the simulation motion than for true vehicular Tpe position of the center of the next intersection in the de-
motion. The simulated motion is harder to track than the motifyed direction of travel is calculated. If the mobile is within
that would be generated by human drivers since past measyhof the next intersection, the mobile decides if it will turn at
ments of mobile terminal position give less information aboyke next intersection. The probability of turning is given by the
the present mobile terminal location than for motions generatggnstampmm If the mobile is withinB m of the next intersec-
by human decisions. tion and turning, it will transition to the braking state in the next
The simulated driver in the model described below makes dgampling interval. If the mobile is withi# m of the next inter-
cisions at every intersection independently of the previous igection and not turning, it will change to the transit state in the
tersection decision. Thus the tracking algorithm cannot use afxt sampling interval. If the mobile terminal is farther than
form of long-term behavior model to improve performance. Th@ from the intersection, then the mobile remains in the normal
tracking algorithm’s performance for mobiles with motion constate.
trolled by human drivers is likely to be superior to that for mo- The distanceB is set to 40 m. This distance was selected
biles with the control logic described below. based on data on vehicle braking distances in typical urban envi-
When the mobile terminal is not located near interseganments [25]. In other environments, this parameter would be
tions, movement is restricted to the lane specified for thgt based on the mean speed in the environment and road condi-
mobile’s direction of motion. This behavior is as described itlons. This information is also used by those designing road sys-
Section I1I-B1. tems. The network operator needing this information could ob-
We use a simplified decision logic system to simulate drivéain it from the traffic control authorities for the area of interest.
decision behavior. The simulated driver’s decision at each inter-2) Braking State:In the braking state, the mobile’s motion
section is independent of the decision made at any other intetill be reduced so that it will stop just inside of the intersection
section during the mobile’s journey. region. The control input in the main direction of travel will be
A simple finite-state machine is used to control mobilset to zero. The control input in the direction perpendicular to
decisions. The simulated driver is in one of four states: norm#he main direction of travel will still be set to hold the proper
braking, turning, and transit. The state transition diagralane, just as in the normal state.
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The drag needed to bring the mobile to a stop just after en- TABLE VI
tering the intersection is calculated INITIAL STATE OF MOBILE TERMINAL
v Initial direction  pz(0) vz(0) py(0) wy(0) wz(0) uy(0)
Apew = E (26)
North L 0 P s 0 25
wherew is the velocity in the selected direction of travel ahid South -L 0 P -S 0 25

the distance to the intersection entry point. The drag coefficie
ais setto the value in the interval [1/6,5.0] nearest g, . This
interval represents the drag coefficients that the vehicle’s brak West P -S L 0 2.5 0
can generate. When the mobile terminal enters the intersection,

the control state transitions to the turn state in the next samplin=
interval. Multi-model filter position RMSE

3) Turning State:In the turn state, the mobile will move the
mobile terminal into the proper lane for its new direction of
travel. Upon first entering the turn state, the mobile resets tt
drag coefficienta back to 1/6 and sets the direction of travel
to the new direction. The new direction for the mobile is 50¥
likely to be either of the perpendicular cardinal directions to th
mobile’s current direction of travel. When the mobile termina| o7
leaves the intersection, it will change to the normal state in tf
next sampling period. The lane-holding logic is set for the ne\
direction of travel to move the mobile terminal into the new lane

4) Transit State: When the mobile terminal is in the transit
state, control inputs will be set as in the normal state. When ti
mobile terminal is in the transit state, it will set control inputs
as in the normal state according to Table Il. When the mobil _ 0.6 0.7 08 0.9
leaves the intersection, it will transit to the normal state in th P(TOSELF)
next sampling period.

The value ofP;,,, was set to 2/3. The result of this choice is
that when a mobile approaches an intersection, it has an equ@l9. Location RMSE foP;... = 2/3 with varying filtering parameters
probability of going straight, turning left, or turning right. This(e = 1/6)-
is the maximum entropy case when the mobile is restricted from
going back the direction it came. VI. RESuULTS

The figures of merit used to analyze the performance of the
estimation algorithm are the root mean square error (RMSE)
of position and velocity. This figure of merit is widely used in

For the simulation studies, we choose initial conditions infdter evaluation and the location estimation literature [6], [21].
manner that replicates the random motion state of a mobile t#he RMSE is defined as
minal that has just been switched on. To simplify the simulation, _ So | o
we always assume that the mobile terminal starts in the central RMSE= /E[X? +17] (27)
cell with the base station located at coordinates (0,0). This is Rghere X is the error in the estimateg-coordinate and” is
an unrealistic assumption, as when a mobile terminal initiategt® error in the estimategcoordinate. For position RMSE, the
call, it quickly identifies the base station to which it is closest;- andy-coordinates are the errors in the position estimate for
The location and velocity state parameters are uniformly dighe mobile terminal. For velocity RMSE, the andy-coordi-
tributed within the space of possible values. This is the distribbates specify the velocity error in the estimated mobile terminal
tion of maximum entropy when no other information is knowRystem state.
about the mobile terminal’s state. As was described in Section 1V, the performance of the esti-

First the direction of the mobile terminal motion is selectethation algorithm is dependent on the user-selected valugs of
from the possible set of {North, South, East, West}. A positioand P(TOSELF). The optimal values of these parameters for
value P is sampled from a uniform distribution with a range of user-selected figure of merit is dependent on the probability
(=D, D) whereD is the block length (300 m in Fig. 2). An that a mobile terminal will make a turn at an intersection, .
initial speedsS is sampled from a uniform distribution with aFor P,,,, = 2/3, Fig. 9 shows a contour plot for the position
range of [0, 15.0]. A lane position value is sampled from a RMSE averaged over the initial 100-s interval after filtering is
uniform distribution with a range of [0, 10]. applied (the first 200 samples since the sampling pefighalf

From these random values, the initial state of the mobile texsecond) for arange of different valueshf and P(TOSELBP.
minal position is generated as shown in Table VI based on Noffthe minimum position RMSE was obtained fy, = 3.15
American lane use. and P(TOSELF) = 0.80. High RMSE is only obtained when

East P S —L 0 2.5 0

‘+” marks filter parameters with lowest RMSE

B. Initial Conditions
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TABLE VII
multi-model filter, optimized for PrTURN)=2/3 —+— SMPLE KALMAN FILTER MODEL
16 multi-model filter, optimized for P(TURN)=0 —3— 1
ZEro memory estimator —¥— .
best multi-model filter for Pr(TURN) —H&— A Matrix Value
E 1 T 0 0
4
E 0 1 0 0
®
0O 0 1 T
0 0 0 1
0 0.2 0.4 0.6 0.8 1
Pr(TURN) 0 0 0 o©
0 15 0 O
Fig. 10. Robustness with turning probability. Q
0O 0 o0 o
Q. ~ 0 or P(TOSELR = 1. Other than these boundary condi- 0 0 0 15

tions, Fig. 9 shows that the values@f, and P(TOSELF) can
vary significantly from the optimal values without a large in-
crease in the resulting RMSE.

We have shown that for a fixeB,,, the multimodel filter (TOSELF) = 0.80 found during the last set of simulations.
is robust to variations of its parameters. It is impossible for tHeor comparison, the RMSE performance of a simple Kalman
network designer to know the exact turning probability for th/ter is also plotted. This Kalman filter uses the model speci-
mobile terminals at the intersections. This value is also changif#gd by the matrices in Table VII with no control input. This is
with road conditions and time of day. The robustness of a mult€ dynamic model used for the Kalman filter in [8]. The as-
model filter that has been optimized for a given turning pro@_umed covariance of the process noise given by the entries of
ability when the true turning probability varies from the del-5 in Q for the simple Kalman filter model were optimized
sign value is essential if the filter is going to be successful fR" the best position RMSE performance. The position RMSE
field implementations. Fig. 10 shows the position RMSE avelor the simple Kalman filter when using the parameter selection
aged over the first 200 samples after filtering is applied for finéthod presented in [8] is also shown. The zero memory esti-
ters optimized for different assumed valuesiyf,, when the mator’s position RMSE is plotted to show the improvement that
true turning probability is varied. For comparison, the averagdiering provides.
RMSEs of the multimodel filters with parameters optimized for In [8], it is assumed that mobile terminal acceleration process
eachP,,,, are also plotted. The results for the multimodel filteis a zero-mean Gaussian process with varianéen both thex-
optimized forP;,.., = 2/3 show good robustness over a wideandy-coordinate directions. If this assumption is true, the mag-
range of values for turning probability. The filter optimized fonitude of the acceleration vector for any given time is a Rayleigh
P.wrn = 0 gave better performance for low turning probabilityfistributed random variable with a mean valuegf /7 /2. The
but its error increases dramatically with rising turning probaverage value of the acceleration vector's magnitude is calcu-
bility. Fig. 10 shows that the multimodel filter optimized forlated from acceleration measurements made during a sample
Piurn = 2/3 gives averaged position RMSE almost as good &sn and the value of, calculated. The change in the terminal
the optimal multimodel filter for a wide range of turning probavelocity from one sampling instance to the next along one coor-
bilities. For this reason, this set of multimodel filter parametenate axis is then a Gaussian random variable with mean zero
is recommended for field implementations. This graph showsd variance ofo, ~T)2, whereT’ is the sampling period. We
what results can be expected if an accurate long-term behaviatculated the mean acceleration magnitude to be 1.6/& m
model for the mobile terminal motion is available. In this casgyhen the turning probability was 2/3. We therefore replace the
the turning probability of the mobile terminal would have lesgalue of 1.5 in theQ matrix in Table VII with (0.5)2 -1.677 =
entropy. If the long-term behavior model is perfect, then tHe419 25 for the simulations.
RMSE for turning probability of zero from Fig. 10 reflects what Fig. 11 shows the tracking performance for a random initial
the multimodel filter could return. With less accurate long-termsondition. The performance for the multiple model filter shows
mobility models, the results fdr < P, < 2/3 would reflect that the position RMSE converges to approximately 7.5 m
the possible performance. within 10 s of the motion’s starting. The simple Kalman filter

The next set of simulations demonstrates the convergermmverges to a position RMSE of 9 m with about the same
of the filter algorithm. The position and velocity RMSE areonvergence time. The zero memory estimator has a position
calculated for each sample periédafter filtering was initi- RMSE of about 12 m. The line labeled “Simple Kalman Filter
ated. The turning probability at each intersection was 2/3. Tlidellebrandt)” uses the parameter matrices calculated from [8].
multimodel filter used the optimal values &f, = 3.15 and The assumed process noise variance, for this case, is too low
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Zero memory estimator
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Filtering location error performance.

Fig. 11.
Multi-model filter

Zero memory estimator -------- i

Simple Kalman Filter ----------
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Fig. 12. Filtering location error performance (deterministic starting position).

to handle the turns in the intersections, so the simple Kalmatarting condition. The simple Kalman filter’'s performance is
filter diverges. From these results, it would appear that tlygeatly degraded immediately after the mobile terminal leaves
multimodel filter only reduces the position RMSE by 1.5 man intersection and the control input changes. The damping that
from the best simple Kalman filter, but this result does natan be seen in the position RMSE error curves for the determin-
istic starting position is caused by increasing variance in the rel-

show the differing RMSE in intersections.

To illuminate the effect of intersections on tracking perforative positions of the different simulated mobile terminals with
mance, simulations were performed with the mobile termineg¢spect to each other caused by the process noise in the simu-
always starting 150 m away from the next intersection it wouldtion motion model. Both the multimodel and simple Kalman
enter. The turning probability was set to 2/3. For the simuldilters show a location dependency for position RMSE, giving
tions with this deterministic starting condition, the mobile tetower RMSE performance between intersections. At intersec-
minals enter intersections, on average, at 10 s, 30 s, 50 s, 8ods, the multiple model filter manages the higher uncertainty

every 20 s after that since the mean mobile terminal speedrisnobile motion better than the simple Kalman filter, which has

15 m/s and intersections are 300 m apart. Fig. 12 shows #pkes of position RMSE error almost as high as the unfiltered
position RMSE curves for simulations with the deterministiposition RMSE provided by the zero memory estimator.
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Fig. 13. Filtering velocity error performance.

Fig. 13 shows the velocity RMSE for the multimodel and
simple Kalman filter. The multimodel filter provides velocity
estimates with lower RMSE than the simple Kalman filter.

The multimodel filter has three advantages over the simp
Kalman filter. First, it gives system state estimates with lowe
error. Second, it handles the uncertainty of mobile terminal mc
tions in an intersection much more robustly than the simpl
Kalman filter, which has high spikes in estimation error be
cause of intersections. Third, the multimodel filter is robust tc
varying turning probabilities for the mobile terminal motions.
The simple Kalman filter's parameters need to be optimize
for the specific turning probability encountered, and robustne:
for a different turning probability is not guaranteed. The simpli
Kalman filter does have lower computational cost but the mu 0
timodel filter is designed so the multiple Kalman filters con- ’
tained within it all have the same Kalman gain. So the Kalmarn
gain calculation, the operation requiring the most operationsgy. 14. Location RMSE with varying drag coefficiertB.... = 2/3).
the Kalman filter, is only performed once and the calculated
value used for all the filters. The additional cost of the multipleame for all values oft used. The mean velocities of the mo-
model filter, the calculation of the posterior probability valuepile terminals were kept constant so the maximum acceleration
from (21) and applying the weights in (15), is minimal comef the mobile terminals was set @ = 15 - o and the mean ve-
pared to the Kalman gain calculation. The multimodel filter rdocity would remain at 15 m/s. The variance of the process noise
quires only a small amount of additional memory compared {gas set tar? = 2« so the standard deviation of the velocities
the simple Kalman filter. The location estimate for each Kalmagould remain at 1 m/s. A contour plot of RMSE location errors
filter needs to be stored along with its respective posterior profar ranges of values for assumed and true values isfshown
ability. Because each filter has an identical Kalman gain, eaghFig. 14. The filter parameter values are set}lp = 3.15
also has an identical posterior covariance estimate. and P(TOSELP = 0.8. Good performance is always obtained

The last set of simulations shows the effect of uncertainty imhen the assumed in the filter a(Filter) matches the true
the knowledge of the kinematic model of mobile terminal mdn the motion simulator. It can be seen that the lowered perfor-
tion on the estimation performance of the multimodel filter. Thmmance for a mismatch between the tehat generated the
value ofa used for the motion simulation and the estimatiomeasurement data and the assumed the filter algorithm is
model in the filter algorithm are varied in the range [0.1, 0.2fairly small. It is possible to estimate during filter operation
which covers the drag coefficients for most passenger vehiclesing an extended Kalman filter or the expectation maximiza-
likely to be used in urban environments. The other parameteien algorithm, but these results show that this estimation would
of the motion model from Section Il were adjusted so the meaive little extra benefit and at possible large computational cost
and variance of the mobile terminal velocities would remain tH20].

o. (Filter)
o©
O
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The performance of the estimation algorithm was evaluated

13

multi-model filter, optimized for C=2.5 m/s’ —+— using simulations. The robustness of the algorithm to variations
Zero memory estimator ——— . . . .
ol | in the parameters of mobile terminal motion was demonstrated.
JOOEHHHHHHHHHHH I NI RN Future work in this area includes investigation of mobile ter-
! ] minal location prediction for resource allocation and handoff al-

gorithms. The incorporation of long-term behavior models for
mobile terminal motion is also under investigation. The eval-
uation of location estimation methods using dynamic filtering
needs investigation. Many of the techniques used to evaluate
zero memory estimation techniques, such as the GDOP [21], are
less useful when dynamic filtering is applied. New performance
measures need to be derived based on the effect that time-based

7 o 5 1‘0 1'5 " filtering can have upon measurement accuracy.

Maximum Mean Velocity (m/s)

10 |

RMSE (m)

APPENDIX |

Fig. 15. Location RMSE with varying maximum mean veloCii.{,n = STATE SPACE MODEL DERIVATION

2/3, 0 = 1/6). The state vector is defined as
(T
In general, larger values of trueallow for better filter perfor- Z E t;
mance. This a result of the accelerations of the vehicles’ being x(t) = ””(t) (28)
higher, resulting in larger separations between the models in the Z”(f)
y(t

measurement domain.
Fig. 15 shows the multimodel filter's performance when th&here (p..(¢), p,(t)) is the location vector of the mobile ter-

assumed value of maximum accelerationin the filter does minal and(v,(t), v, (t)) is the velocity vector of the mobile ter-

not match the true value for the vehicle. As was shown in Seminal. In continuous time, the state space model of vehicular

tion IlI-A, from C the maximum mean velocity is calculated asnotion can be given by

C/a. The filter is optimized foiC' = 2.5 m/s? for a maximum

mean velocity of 15 m/s. Fig. 15 shows that the filter works best X(t) = Ax(t) + B{w(t) +u(t)}

when the true maximum mean velocity is near 15 m/s with the 0 1 0 O

filter working nearly as well when the maximum mean velocity _ 10 —a 0 0 } x(t)

is near zero. The filter works well for low velocity because, in 0O 0 0 1

this case, the motion of the mobile terminal is well matched by 0 0 0 —a

the filter with the assumed value fafk) being the zero vector. 0 0

This result shows that this filter gives good performance for 1 0 wy (t) Uy ()

both vehicular users and mobile terminals carried by low-speed Tlo o { [wy(t)} + {uy (t)] } - (29)
pedestrians. 0 1

VII. CONCLUSION The termsw, (t) andw, (t) represent zero—2mean white Gzaussian
o . : iy noise processes with variancesKiiv,(0)°] = E[w,(0)7] =
Estimation of mobile terminal positions based on Measurgs "\hich are the process noise terms for the continuous time
ments made at a single time instant will contain errors beca%amic model. The deterministic inputs, representing driver
of noise in the signal measurements. This paper introduces g¥pirol input in ther- andy-directions, are given by, (¢) and

namic filtering to reduce the location estimation error by com; (4). These inputs determine the direction that the mobile ter-
bining the information from signal measurements made at seﬁ{-ma| will move. If for all values oft > T, u,(t) = u,(Ty)

eral time instances to calculate an improved location estimag@dy, (¢) = u,(T}), then
Mobile terminal velocity can be estimated jointly with mobile
terminal position to facilitate prediction of future mobile ter- i E{ {vz(t)} } 1 {um(oo)}

minal locations. t—00 vy (t) a | uy(oo)

In order for dynamic estimation to be performed successfull ) ] o ]
an accurate model for the mobile terminal motion is required.-ﬁhuslur(ﬂ andu,(#) determine the final direction of motion.
dynamic model was described that separates the mobile term#hdh€ control inputs change, the mobile terminal motion will
motion into a simple kinematic model for the physical laws goM00thly change to the new direction of motion as the drag term

erning terminal motion and a user decision model for the hum{R{ces the velocity functions to remain continuous. _
decisions that affect mobile terminal motion. The asymptotic covariance of the velocities can be easily

A multiple model dynamic estimation algorithm was prefound to be

sented that estimates the control input for simple Kalman filter va(t) 2 0
. . . . . . . . lim Cov z\Y — 2a .

estimation algorithms. This dynamic estimation algorithm uses S { [Uy (t)} } [ 0 a_}

knowledge of the dependency between control input changes 2o

and the location of the mobile terminal to improve the accurady practice, we can only sample measurements of the state of

of its location estimates. the system at discrete times. We will assume that the state is
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sampled with a sampling period 6fs. The discrete state vectorhandoff, but the handoff sampling periods are of the same order

is given by of magnitude, so the results are still valid.
pm(l,i? APPENDIX ||
x(k) = vakTg (30) KALMAN FILTER
Py(K
v;(kT) The Kalman filter assumes thatk — 1|k — 1) is a jointly

) ) ) . Gaussian random vector with the megit — 1), the true system
A discrete version of the dynamic model can be obtained froggate at sample time—1, and covariance matriR(k — 1|k —1).

the continuous time model [39]. We make the simplifying ast also assumes the measurement vector for sample fise
sumption that the input vectar(t) changes only at the samplegjyen by

times. Obviously, the inputs can change at any time instant, not
just at the sampling instants. The error introduced by this mis- y(k) = Hx(k) + v(k) (32)

match between the modeling assumptions and real model will

be negligible provided the sampling period is small compard{'erev(k) is a jointly Gaussian random vector with zero mean
to the time constant of the continuous systemt. The sam- and covariance matriR(k) that is independent of the process

pling period is set af’ = 0.5 s, which is less than the timen0isew(k). , ,
constant of the system af/a = 6.0 s—which justifies the as- The optimal filtering algorithm consists of two stages: the

sumption made to discretize the continuous state space moBggdiction stage and the correction stage. The prediction stage
The resulting discrete time dynamic model is given by recursively predicts the system state at intekvelom Fhe esti-
mate of the system state at interkal 1. The correction stage

x(k+1) =®x(k) + Lu+ w(k) (31)  then uses the measurement taken at intehad combines it
where with the prediction to get a corrected estimate of the state at in-
1 U=eezeD) 0 terval k.
& 0 exp(—aT) O 0 During the prediction stage, the value xfk) is predicted
o 0 1 (=exp(=aT)) from the estimate of(k — 1) using the measurements taken up
0 0 0 exp(iaT) until sampling intervak—1. The prediction is given by
[ exp(zaT)—1+aT 0 x(klk—1)=®x(k— 1k - 1)+Tu(k—-1) (33)
r— M 0 with the covariance of the predicted system state given by
0 W Pkl — 1) =B [(&(klk — 1) — x()) (x(klk — 1) — x(k)”
0 1—exp(=aT)
g a =®P(k— 1]k — 1)®" + Q. (34)
Q=E /exp(Atl)BW(tl)dtl The correction stage of the filter incorporates the new measure-
ment for sampling intervat, y (%), to improve the estimate of
0 r the location state. The first step to the correction is to calculate
T the innovation at sample timee y(k), the difference between
X /e)q)(putz)Bw(tQ)Ult2 the predicted measurement and actual measurement ak time
0 y(k) =y(k) — Hx(k|k — 1). (35)
- E [W( k)yw( k.)T] The corrected estimate of the system state at tiisecalculated

using

T2 122 0 0 xX(klk) = %(k|k — 1) + K(k)y (k) (36)
0 0 71 riof|’

0 0 711 7o whereK(k) is called the Kalman gain. The Kalman gain is

The components of the process noise covari&eee given by given by 1
62 (20T — 3+ dexp(—aT) — exp(—2aT)) K(k) = P(k|lk—1)H" [R(k) + HP(k|k — )H"] . (37)
= 203 The updated covariance of the estimate is given by
pry — O = exp(=aT))” P(k|k) = [I - K(k)H] P(k|k — 1) (38)
2 (1 202 90T wherel is the appropriately sized identity matrix. The Kalman
— (1 — exp(20T)) filter has been proven to be unbiased, iEx(k|k)] = x(k),

2 and optimal if the process noise and measurement noise densi-

_For handoff measurements, mobile terminals measure & are Gaussian and the time evolution and measurement equa-
signal for the base stations they are using for primary Cofsns are linear [34].

munications but also the signal from other base stations. It

is likely to be these measurements that will be extended for REFERENCES

mobile terminal location purposes. Therefore, the sampling ) , o
period was set to the approximate time between measuremen{g] FCC, “Report and Order and Further notice of proposed rulemaking in
: . . the matter of revision of the commission’s rules to ensure compatibility
in support of the handoff a|90”'_[hm in GSM. che_r networks with enhanced 911 emergency calling systems,”, FCC docket 94-102,
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