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Abstract. Various approaches to edge detection for color images, in-
cluding techniques extended from monochrome edge detection as well
as vector space approaches, are examined. In particular, edge detection
techniques based on vector order statistic operators and difference vec-
tor operators are studied in detail. Numerous edge detectors are ob-
tained as special cases of these two classes of operators. The effect of
distance measures on the performance of different color edge detectors
is studied by employing distance measures other than the Euclidean
norm. Variations are introduced to both the vector order statistic opera-
tors and the difference vector operators to improve noise performance.
They both demonstrate the ability to attenuate noise with added algo-
rithm complexity. Among them, the difference vector operator with adap-
tive filtering shows the most promising results. Other vector directional
filtering techniques are also introduced and utilized for color edge detec-
tion. Both quantitative and subjective tests are performed in evaluating
the performance of the edge detectors, and a detailed comparison is
presented. © 1999 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(99)00904-6]
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1 Introduction

The subject of color image processing has gained incr
ing recent attention because color images convey more
formation about objects in a scene than gray-scale ima
and this information can be used to further refine the p
formance of an imaging system. The multichannel nature
a color image, however, adds considerable complexity
the processing system. One of the challenges facing c
image processing is to extract the additional color inform
tion without incurring large complexity in the system.

One of the fundamental tasks in image processing
edge detection. High level image processing, such as ob
recognition, segmentation, image coding, and robot vis
depends on the accuracy of edge detection since edges
tain essential image information. In a monochrome ima
an edge usually corresponds to object boundaries
changes in physical properties such as illumination or
flectance. This definition is more elaborate in the case
multispectral~color! images since more detailed edge info
mation is expected from color edge detection. According
psychological research on the human visual system,1,2 color
plays a significant role in the perception of boundari
Monochrome edge detection may not be sufficient for c
tain applications since no edges will be detected in g
value images when neighboring objects have different h
but equal intensities.3 Objects with such boundaries a
treated as one big object in the scene. Since the capab
to distinguish between different objects is crucial for app
cations such as object recognition and image segmenta
the additional boundary information provided by color is
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paramount importance. Color edge detection also outp
forms monochrome edge detection in low contrast imag3

There is thus a strong motivation to develop efficient co
edge detectors that provide high quality edge maps.

Despite the relatively short period of time, numero
approaches of different complexities to color edge det
tion have been proposed. It is important to identify th
strengths and weaknesses in choosing the best edge d
tor for an application. The major performance issues c
cerning edge detectors are their ability to extract edges
curately, their robustness to noise, and their computatio
efficiency. To provide a fair assessment, it is necessar
have a set of effective performance evaluation metho
Though numerous evaluation methods for edge detec
have been proposed, there has not been any standar
method. In image processing, the evaluation methods
usually be categorized into objective and subjective eva
ation. While objective evaluation can provide analytic
data for comparison purposes, it is not sufficient to rep
sent the complexity of the human visual systems. In m
image processing applications, human evaluation is the
nal step, as noted by Clinque et al.4 The subjective evalua
tion, which takes into account human perception, seem
be very attractive in this perspective. The visual assessm
method proposed by Heath et al.5,6 is entirely based on sub
jective evaluation. In this paper, both types of evaluat
methods are utilized for comparing various edge detect

An overview of the methodology for color edge dete
tion is presented in Section 2, where early approaches
tended from monochrome edge detection, as well as
© 1999 Society of Photo-Optical Instrumentation Engineers
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
more recent vector space approaches are addressed
edge detectors illustrated in this section, among others,
the Sobel operator,3,7 the Laplacian operator,3 the Mexican
hat operator,3,8 the vector gradient operator,9 the directional
operator,10 the entropy operator,11 and the Cumani
operator.12 Two families of vector based edge detection o
erators, vector order statistic operators13,14 and difference
vector operators15 are studied in detail in Section 3 and
respectively. A variety of edge detectors obtained as spe
cases of the two families are introduced and their per
mances are evaluated. The evaluation results from both
jective and subjective tests are listed in Section 5 follow
by our conclusions in Section 6.

2 Overview of Color Edge Detection
Methodology

2.1 Techniques Extended from Monochrome Edge
Detection

In a monochrome image, an edge is defined as an inten
discontinuity. In the case of color images, the additio
variation in color must also be considered. Early a
proaches to color edge detection are extensions of mo
chrome edge detection. These techniques are applied t
three color channels independently and then the results
combined using certain logical operation.3 Several standard
techniques can be applied in this way. One of the repre
tative classes of edge detection is the Sobel operator. It
be realized by convolving the image with the following tw
convolution masks:

Mx5S 1 0 21

2 0 22

1 0 21
D , My5S 1 2 1

0 0 0

21 22 21
D . ~1!

These two masks are applied to each color channel in
pendently and the sum of the squared convolution gives
estimated gradient in each channel. A pixel is regarded
an edge point if the maximum of the gradient magnitu
values in the three channels exceeds a predeterm
threshold.

Another operator that can also be used in a similar fa
ion is the eight-neighbor Laplacian operator. The Laplac
convolution mask is defined as follows:

M5S 10 22 10

22 128 22

10 22 10
D . ~2!

Again, the Laplacian mask is applied to the three co
channels independently and edge points are located
thresholding the maximum gradient magnitude.

Another group of edge detectors commonly used
monochrome edge detection is based on second deriv
operators, and they can also be extended to color edge
tection in the same way. A second derivative method
be implemented based on the preceding operator.
he
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Mexican hat operator uses convolution masks genera
based on the negative Laplacian derivative of the Gaus
distribution:

2¹2G~x,y!5
x21y222s2

2ps6 expS 2
x21y2

2s2 D . ~3!

Edge points are located if zero-crossing occur in any o
color channel.

The gradient operators proposed for gray-scale imag16

can also be extended to color images by taking the ve
sum of the gradients for individual components.9,11 Similar
to Sobel and Laplacian operators, the gradient operator
employs first derivative like mask patterns. Other a
proaches consider performing operations in an alterna
color space. The Hueckel edge operator17 operates in the
luminance, chrominance color space. The edges in the t
color components are also assumed to be independen
der the constraints that they must have the same orienta
In studying the application of the compass gradient ed
detection method to color images, Robinson18 also utilized
different color coordinates.

One common problem with the preceding approache
that they failed to take into account the correlation amo
the color channels, and as a result, they are not able
extract certain crucial information conveyed by color. F
example, they tend to miss edges that have the s
strength but in opposite direction in two of their color com
ponents. Consequently, the approach to treat the color
age as vector space has been proposed.

2.2 Vector Space Approach

Various approaches proposed consider the problem of c
edge detection in vector space. Color images can be vie
as a 2-D three-channel vector field,19 which can be charac
terized by a discrete integer functionf(x,y). The value of
this function at each point is defined by a 3-D vector in
given color space. In the RGB color space, the function
be written as f(x,y)5(R(x,y),G(x,y),B(x,y)), where
(x,y) refers to the spatial dimensions in the 2-D plan
Most existing edge detection algorithms use either first
second difference between neighboring pixels for edge
tection. A significant change gives rise to a peak in the fi
derivative and zero-crossing in the second difference, b
of which can be identified fairly easily. Some of these o
erators are considered in the following.

2.2.1 Vector gradient operators

The vector gradient operator employs the concept of a g
dient operator, except that instead of scalar space the
erator operates in a 2-D three-channel color vector sp
There are several ways of implementing the vector grad
operator.9 One simple approach is to employ a 333 win-
dow centered on each pixel and then obtain eight dista
values (D1 ,D2 ,...,D8) by computing the Euclidean dis
tance between the center vector and its eight neighbo
vectors. The vector gradient (g) is then chosen as

g5max~D1 ,D2 ,...,D8!. ~4!
613Optical Engineering, Vol. 38 No. 4, April 1999
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Another approach employs directional operators.
the image be a vector function f(x,y)
5(R(x,y),G(x,y),B(x,y)), and letr , g, andb be the unit
vectors along the R, G, and B axes, respectively. The h
zontal and vertical directional operators can be defined

u5
]R

]x
r1

]G

]x
g1

]B

]x
b, ~5!

v5
]R

]y
r1

]G

]y
g1

]B

]y
b, ~6!

gxx5u•u5U ]R

]x U2

1U ]G

]x U2

1U ]B

]x U2

, ~7!

gyy5v•v5U ]R

]y U2

1U ]G

]y U2

1U ]B

]y U2

, ~8!

gxy5
]R

]x

]R

]y
1

]G

]x

]G

]y
1

]B

]x

]B

]y
. ~9!

Then the maximum rate of change off and the direction of
the maximum contrast can be calculated as:

u5
1

2
arctan

2gxy

gxx2gyy
, ~10!

F~u!5 1
2 @~gxx1gyy!1cos 2u~gxx2gyy!12gxy sinu#.

~11!

Edge can be obtained by thresholding@F(u)#1/2.
The image derivatives along thex andy directions can

be computed by convolving the vector functionf with two
spatial masks as follows:

] f i

]x
.

1

6 F 21 0 1

21 0 1

21 0 1
G * f i ,

~12!

] f i

]y
.

1

6 F 1 1 1

0 0 0

21 21 21
G * f i .

Unlike the gradient operator extended from the me
tioned monochrome edge detection, the vector gradient
erator can extract more color information from the ima
because it considers the vector nature of the color ima
On the other hand, the vector gradient operator is very s
sitive to small texture variations.14 This may be undesirable
in some cases since it can cause confusion in identify
the real objects. The operator is also sensitive to Gaus
and impulse noise.
614 Optical Engineering, Vol. 38 No. 4, April 1999
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2.2.2 Directional operators

The direction of an edge in color images can be utilized
a variety of image analysis tasks.20 A class of directional
vector operators was proposed to detect the location
orientation of edges in color images.10 In this approach, a
color c(r ,g,b) is represented by a vectorc in color space.
Similar to the well known Prewitt operator21 shown below,

DH5
1

3 S 21 0 1

21 0 1

21 0 1
D , DV5

1

3 S 21 21 21

0 0 0

1 1 1
D ,

~13!

the row and column directional operators~i.e., in the hori-
zontal and vertical directions!, each have one positive an
one negative component. For operators of size (2w11)
3(2w11) the configuration is the following:

DH5@H20H1#, DV5FV2

0
V1

G , ~14!

where the parameterw is a positive integer. These positiv
and negative components areconvolution kernels, denoted
by V2 , V1 , H2 andH1 , whose outputs are vectors co
responding to the localaverage colors. To estimate the
color gradient at the pixel (xo ,yo), the outputs of these
components are calculated as follows:

H1~xo ,yo!5
1

w~2w11! (
y5yo2w

y5yo1w

(
x5xo11

x5xo1w

c~x,y!,

H2~xo ,yo!5
1

w~2w11! (
y5yo2w

y5yo1w

(
x5xo21

x5xo2w

c~x,y!,

~15!

V1~xo ,yo!5
1

w~2w11! (
y5yo11

y5yo1w

(
x5xo2w

x5xo1w

c~x,y!,

V2~xo ,yo!5
1

w~2w11! (
y5yo21

y5yo2w

(
x5xo2w

x5xo1w

c~x,y!,

wherec(x,y) denotes the color (r ,g,b) at the image loca-
tion (x,y).

Local colors and local statistics affect the output of t
operator components@V1(x,y), V2(x,y), H1(x,y) and
H2(x,y)#. To estimate the local variation in the vertic
and horizontal directions, the following vector differenc
are calculated:

DH~xo ,yo!5H1~xo ,yo!2H2~xo ,yo!,
~16!

DV~xo ,yo!5V1~xo ,yo!2V2~xo ,yo!.
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
The scalarsiDH(xo ,yo)i andiDV(xo ,yo)i give the varia-
tion rate at (xo ,yo) in orthogonal directions~i.e., are the
amounts of color contrast in the horizontal and vertical
rections!. The local changes in the color channels~i.e., R, G
and B! can not be combined properly by simply adding t
R, G and B components ofDH and DV. This approach
leads to a mutual canceling out effect in several situati
~e.g., when contrast is in phase opposition in different ch
nels!. Instead, the local changes in R, G and B are assu
to be independent~i.e., orthogonal!, and the intensity of the
local color contrast is obtained as the magnitude of
resultant vector in the RGB space~using the Euclidean
norm!, as shown in Equations~17! and~18!. Therefore, the
magnitudeB of the maximum variation rate at (xo ,yo) is
estimated as the magnitude of the resultant vector:

B~xo ,yo!5@ iDV~xo ,yo!i21iDH~xo ,yo!i2#1/2, ~17!

and the directionu of the maximum variation rate a
(xo ,yo) is estimated as:

u5arctanF DV8~xo ,yo!

DH8~xo ,yo!G1kp, ~18!

where,k is an integer, and:

DV8~xo ,yo!5H if iV1~xo ,yo!i>iV2~xo ,yo!i
then iDV~xo ,yo!i
otherwise, 2iDV~xo ,yo!i ,

DH8~xo ,yo!5H if iH1~xo ,yo!i>iH2~xo ,yo!i
then iDH~xo ,yo!i
otherwise, 2iDH~xo ,yo!i ,

wherei.i denotes theEuclideannorm. In this formulation,
the color contrast has no sign. To obtain the direction
maximal contrast, a convention is adopted to attribute si
to the quantitiesDV8(xo ,yo) andDH8(xo ,yo) in Equation
~18!. These quantities are considered positive if the lum
nance increases in the positive directions of the image
ordinate system. The luminance quantities are estima
here by the norms:iH1i , iH2i , iV1i and iV2i . Typi-
cally the luminance has been estimated by theluminance
quantity, using the normici15r 1g1b. However, the
norm ici25(r 21g21b2)1/2 also has been used to estima
luminance.22 Here i .i2 is denoted simply byi.i. Another
possibility would be to consider the local color contra
with respect to a reference~e.g., the central portion of the
operatorco!, instead of the luminance quantity. Howeve
this last possibility could present some ambiguities@e.g., in
vertical ramp edges iH22coi5iH12coi , then
DH8(xo ,yo) would have positive sign, irrespective of th
actual sign of the ramp slope#.10

Note the similarity between the color gradient form
lated above and a Prewitt-type (2w11)3(2w11) mono-
chromatic gradient.21 The larger the parameterw, the
smaller the operator sensitivity to noise, and also to sh
edges. This happens because there is asmoothing~low
d

-

pass! effectassociated with the convolution mask. Ther
fore, the larger the size of the convolution mask, the str
ger the low pass effect and the less sensitivity the oper
has to high spatial frequencies. Also, note thatH2 , H1 ,
V2 andV1 are in fact convolution masks, and could eas
implement the latest vector order statistics filtering a
proaches.

2.2.3 Compound edge detectors

The simple color gradient operator can also be used
implement compound gradient operators.10 A well known
example of a compound operator is thederivative of Gauss-
ian (DG) operator.21 In this case, each channel of the col
image is initially convolved with aGaussiansmoothing
functionG(x,y,s), wheres is thestandard deviation, and,
after then this gradient operator is applied to the smoot
color image to detect edges. Torre and Poggio23 stated that
differential operations on sampled images require the
age to first be smoothed by filtering. The Gaussian filter
has the advantage that it guarantees the bound-limited
of the signal, so the derivative exists everywhere. This
equivalent toregularizing the signal using a low pass filte
prior to the differentiation step.

The low pass filtering~regularization! step is done by
the convolution of aGaussian G(x,y,s) with the image
signal. In a multispectral image, each pixel is associated
a vectorc(x,y) whose components are denoted byci(x,y),
and i 51,2,3. This convolution is expressed as follows:

G~x,y,s! ^ I5G~x,y,s! ^ I i , ; i , ~19!

whereI and I i denote the image itself and the image co
ponenti . The image edges are then detected using the
erator described before, and at each pixel the edge orie
tion u(x,y) and magnitudeB(x,y) are obtained. The
filtering operation introduces an arbitrary parameter,
scaleof the filter, e.g., the standard deviation for the Gau
ian filter. A number of authors have discussed the relati
ship existing between multi resolution analysis, Gauss
filtering and zero-crossings of filtered signals.23,24

The actualedge locationsare detected by computing th
zero-crossings of the second-order differences image,
noted by ZC(x,y), obtained by applying first-order differ
ence operators twice. Once the zero-crossings are fo
they still must be tested for maximality of contrast. In pra
tice, the image components are only known at the node
a rectangular grid of sampling points (x,y), and the zero-
crossing condition ZC(x,y)50 often does not apply. The
simple use oflocal minimaconditions leaves a margin fo
uncertainty. The zero-crossing image locations can be
cated by identifying how the sign of ZC(x,y) varies in the
direction of maximal contrast, near the zero-cross
location.12 Therefore, the condition ZC(x,y)50 must then
be substituted by the more practical condition:

ZC~xi ,yi !•ZC~xj ,yj !,0, ~20!

where the sampling points (xi ,yi) and (xj ,yj ) are eight-
adjacent, and the derivatives required for the computa
of ZC(x,y) are approximated by convolutions with th
615Optical Engineering, Vol. 38 No. 4, April 1999
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
masks proposed by Beaudet.25 Notice that (xi ,yi) and
(xj ,yj ) are in the direction of maximal contrast calculat
at (xo ,yo), the center of the eight-adjacent neighborho
To improve the spatial location~mostly with larger operator
sizes w!, a local minimum condition is also used@i.e.,
uZC(xo ,yo)u,t, t.0#. With the compound detector, th
Gaussian noise can be reduced due to the Gaussian sm
ing function. Though this operator improves performan
in Gaussian noise, it is still sensitive to impulsive noise

2.2.4 Entropy operator

The entropy operator is employed for both monochro
and color images. It yields a small value when the chrom
ticity in the local region is uniform, and a large value wh
there are drastic changes in the chromaticity. The entr
in a processing window~i.e., 333! centered on vectorvo

5(r o ,go ,bo) is defined as:

H5qRHR1qGHG1qBHB ~21!

whereHR , HG , andHB denote the entropies in the R, G
and B directions, respectively, and

qR5
r o

r o1go1bo
, qG5

go

r o1go1bo
, qB5

bo

r o1go1bo
.

~22!

Let Xo ,X1 ,...,XN , (X5R,G,B) denote the values in eac
corresponding channel inside the processing window,
HX is defined as:

HX52
( i 51

N pXi
log ~pXi

!

log ~N!
, ~23!

pXi
5

Xi

( j 51
N Xj

. ~24!

Edges can be extracted by detecting the change of ent
H in a window region. Since the presence of noise c
disturb the local chromaticity in an image, the entropy o
erator is sensitive to noise.14

2.2.5 Second derivative operators

A more sophisticated approach which involves second
rivative operator is suggested by Cumani. Given a vec
field f(x,y) for a color image, the squared local contrast
f at point P5(x,y) in the direction of the unit vecto
n(n1 ,n2) is defined as:

S~P,n!5En1
21Fn1n21Gn2

2, ~25!

where

E5
]f

]x*
]f

]x
5

]R

]x

]R

]x
1

]G

]x

]G

]x
1

]B

]x

]B

]x
, ~26!
616 Optical Engineering, Vol. 38 No. 4, April 1999
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F5
]f

]x*
]f

]y
5

]R

]x

]R

]y
1

]G

]x

]G

]y
1

]B

]x

]B

]y
, ~27!

E5
]f

]y*
]f

]y
5

]R

]y

]R

]y
1

]G

]y

]G

]y
1

]B

]y

]B

]y
. ~28!

The eigenvalues of the 232 matrix (F
E

G
F ) coincide with the

extreme values ofS(P,n) and are attained whenn is the
corresponding eigenvector. The extreme values are

l65
E1G6@~E2G!214F2#1/2

2
, ~29!

and the two corresponding eigenvectorsn1 and n2 are
given as

n65~cosu6 ,sinu6! ~30!

u155
p

4
if ~E2G!50 and F.0

2
p

4
if ~E2G!50 and F,0

undefined if E5F5G50

1

2
arctan

2F

E2G
1kp otherwise,

~31!

u25u16
p

2
. ~32!

Possible edge points are considered as pointP where the
first directional derivativeDs(P,n) of maximal squared
contrastl1(P) is zero in the direction of maximal contras
n1(P). The directional derivative is defined as:

Ds~P,n!5¹l1•n1 ~33!

5
]l1

]x
n11

]l1

]y
n2 ~34!

5Exn1
31~2Fx1Ey!n1

2n21~Gx12Fy!n1n2
2

1Gyn2
3. ~35!

The edge points are determined by computing ze
crossings ofDs(P,n). Since the local directional contras
must be a maximum or minimum, the sign ofDs along a
curve tangent atP in the direction ofn1 is checked and the
edge point is located if it is found to be a maximal poin

The ambiguity of the gradient direction in the abo
method causes some difficulties in locating edge poin
Cumani suggested the subpixel technique with bilinear
terpolation to solve the problem. Alshatti and Lamber26
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suggested a modification in solving the ambiguities by
timating the eigenvectorn1 , which can avoid the compu
tational costly subpixel approximation. Other techniqu3

have also been proposed to reduce the complexity of
Cumani operator. Similar to the vector gradient opera
the second-order derivative operator is very sensitive
texture variations and impulsive noise, but it produces th
ner edges. The regularizing filter applied in this opera
causes a certain amount of blurriness in the edge map

3 Vector Order Statistic Operators

3.1 Introduction

One important family of operators for image processing
based on order statistics.27 It has played an important rol
in monochrome image processing and it was also exten
to color image filtering and edge detection.28 This approach
is inspired by the morphological edge detectors29,30 that
have been proposed for the monochrome images. This c
of color edge detectors is characterized by linear comb
tions of the sorted vector samples. Different sets of coe
cients of the linear combination give rise to different ed
detectors that vary in performance and efficiency. The
mary step in order statistics is to arrange a set of rand
variables in ascending order according to certain criteria
color space, since we are dealing with 2-D, multichan
variables, there is no universal way of defining an orderi
A number of ways have been proposed to perform mu
variate data ordering28 and they can be classified into ma
ginal ordering ~M -ordering!, reduced aggregate orderin
(R-ordering!, partial ordering~P-ordering!, and conditional
ordering ~C-ordering!. In M -ordering, the ordered vector
do not correspond to the original vectors, andP-ordering is
difficult to implement for digital image processing
C-ordering considers only one color compone
R-ordering is hence more appropriate for color image p
cessing.R-ordering reduces each multichannel variable t
scalar value according to a distance criterion. Let the im
vectors in a windowW denote X i , i 51,2,...,n and
D(X i ,X j ) be a measure of distance between vectorsX i and
X j . The reduced scalar quantity associated withX i is de-
fined as

di5 (
k51

n

D~X i ,X j !, i 51,2,...,n. ~36!

The arrangement ofdi in ascending order (d(1)<d(2)<...
<d(n)) corresponds to the same ordering to the multivari
variables:

X~1!<X~2!<...<X~n!. ~37!

In the ordered sequence,X(1) is the vector median and vec
tors appearing at high ranks are referred to as outliers
cause they diverge the most from the data population.
d

s
-

-

3.2 Edge Detectors

The vector range~VR! edge detector is the simplest colo
edge detector based on order statistics. It expresses th
viation of the vector outlier in the highest rank from th
vector median inW as follows:

VR5D~X~n!,X~1!!, ~38!

where VR is small in a uniform area since all vectors a
close together, and it gives large output when discontin
ties exist. Edges can be obtained by thresholding the
outputs.

The VR detector, though simple and efficient, is sen
tive to noise, especially to impulsive noise. It will respon
to a noise pixel at the center ofW with n pixels. To im-
prove noise performance, a more general class of opera
vector dispersion edge detector~VDED!, is defined as a
linear combination of the ordered vectors:

VDED5I(
i 51

n

a iX
~ i !I , ~39!

wherei•i denotes the appropriate norm. Note that VR is
special case of VDED witha1521, an51, anda i50, i
52,...,n21. The preceding equation can be further gen
alized by employing several sets of coefficients and co
bining the resulting vector magnitude in a suitable wa
The coefficients can be chosen in a way to attenuate no
One proposed class of operator is the minimum vector
persion~MVD ! detector, and it is defined as:

MVD5minj H DFX~n2 j 11!,(
i 51

l X~ i !

l G J ,

j 51,2,...,k,k,l ,n. ~40!

The choice ofk and l depend onn, the size ofW. These
two parameters control the trade-off between complex
and noise attenuation. This more computationally involv
operator can improve edge detection performance in
presence of both impulsive and Gaussian noise. It
eliminate14 up tok21 impulse noise pixels inW. Let there
bek21 impulsive noise pixels in a window ofn pixels. By
their nature, impulsive noise differ from the rest of th
pixels by a large amount. Therefore, after ordering, the
pulsive noise pixels have the highest rank
X(n2k12),X(n2k13),...,X(n). Since the distance betwee
these noise pixels and the rest of the pixels are large, Eq
tion ~40! can be reduced to MVD
5D@X(n2k11),( i 51

l X( i )/ l #. Notice that none of the noise
pixels appears at this equation, and thus would not af
the edge detection process. The MVD is also robust
Gaussian noise due to thel -points average term.

An alternative design of the generalized VDED ope
tors utilizes the adaptive nearest-neighbor~NN! filter.31 The
coefficients are chosen to adapt to local image characte
tics. Instead of constants, the coefficients are determine
617Optical Engineering, Vol. 38 No. 4, April 1999
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
an adaptive weight function for each windowW. The op-
erator is defined as the distance between the outlier and
weighted sum of all the ranked vectors:

NNVR5DFX~n!,(
i 51

n

wiX
~ i !G . ~41!

The weight functionwi is determined adaptively usin
transformations of a distance criterion at each image lo
tion and it is not uniquely defined. There are two co
straints on the weight function:

1. Each weight coefficient is positive,wi>0.

2. The weight function is normalized,( i 51
n wi51.

Since the operator should also attenuate noise, it is im
tant to assign a small weight to the pixels with high ran
~i.e., outliers!. A possible weight function can be defined
follows:

wi5
d~n!2d~ i !

n•d~n!2( j 51
n d~ j ! . ~42!

One special case for this weight function occurs in hig
uniform areas where all pixels have the same distance.
preceding weight function can not be used since the
nominator is zero. Since no edge exists in this area,
difference measure NNVR is set to zero.

The MVD operator can also be incorporated with t
NNVR operator to further improve its performance in t
presence of impulse noise as follows:

NNMVD5minj H DFX~n2 j 11!2(
i 51

n

wiX
~ i !G J ,

j 51,2,...,k,k,n. ~43!

A final annotation on the class of vector order statis
operators concerns the distance measureD(X i ,X j ). By
convention, the Euclidean distance measure~L2 norm! is
adopted. The use ofL1 norm is also considered because
reduces the computational complexity by computing
absolute values instead of squares and square root, a
shows no notable deviation in performance. A few oth
distance measures are also considered in the attempt t
cate an optimal measure, namely, the Canberra me
implementation, the Czekanowski coefficient, and the
gular distance measure. Their performances are addre
later. The Canberra metric implementation32 is defined as:

D~X i ,X j !5 (
k51

m uX i ,k2X j ,ku
X i ,k1X j ,k

. ~44!

The Czekanowski coefficient32 is defined as:

D~X i ,X j !512
2(k51

m min ~X i ,k1X j ,k!

(k51
m ~X i ,k1X j ,k!

, ~45!
618 Optical Engineering, Vol. 38 No. 4, April 1999
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where them is the number of vector components, in th
case of color image,m53, corresponding to the three cha
nels ~R, G, and B!. The angular distance measure13 is de-
fined as:

D~X i ,X j !5arccosS X i•X j

iX i iiX j i
D , ~46!

where i•i denotes the magnitude of the color vectorxi .
Based on these three distance measures, a variety of c
edge detectors can be established.

4 Difference Vector Operators

The class of difference vector~DV! operators can be
viewed as first derivative like operators. This group of o
erators is extremely effective from the point of view of th
computational aspects of the human visual system. In
approach, each pixel represents a vector in the RGB c
space, and a gradient is obtained in each of the four p
sible directions~0, 45, 90, and 135 deg! by applying con-
volution kernels to the pixel window. Then a threshold c
be applied to the maximum gradient vector to locate edg
The gradients are defined as:

u¹ f u0 deg5iY0 deg2X0 degi , ~47!

u¹ f u90 deg5iY90 deg2X90 degi , ~48!

u¹ f u45 deg5iY45 deg2X45 degi , ~49!

u¹ f u135 deg5iY135 deg2X135 degi , ~50!

DV5max~ u¹ f u0 deg,u¹ f u90 deg,u¹ f u45 deg,u¹ f u135 deg!,
~51!

where i•i denotes theL2 norm, andX and Y are three
dimensional vectors used as convolution kernels. The va
tion in the definitions of these convolution kernels give ri
to a number of operators. Figure 1 shows the partition
the pixel window into two subwindows within which eac
convolution kernel is calculated in all four directions.

Fig. 1 Subwindow configurations.
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
The basic operator of this group employs a 333 win-
dow involving a center pixel and eight neighboring pixe
Let each pixel denotesv(x,y), and the convolution kernel
for the center pixelv(x0 ,y0) in all four directions are de-
fined as:

X0 deg5v~x21 ,y0!, Y0 deg5v~x1 ,y0!, ~52!

X45 deg5v~x21 ,y1!, Y45 deg5v~x1 ,y21!, ~53!

X90 deg5v~x0 ,y21!, Y90 deg5v~x0 ,y1!, ~54!

X135 deg5v~x1 ,y1!, Y135 deg5v~x21 ,y21!. ~55!

This operator requires the least amount of computa
among the edge detectors considered so far. Howeve
with the VR operator, the DV operator is also sensitive
impulsive and Gaussian noise.15 As a result, more complex
operators with subfiltering are designed. A larger wind
size is required in this case to allow more data for proce
ing. Although there is no upper limit on the size of th
window, usually a 535 window is preferred since th
computational complexity is directly linked to the size
the window. In addition, when the window becomes t
large it can no longer represent the characteristics of
local region. For ann3n window ~n52k11, k52,3,...!,
the number of pixels in each of the subwindows illustra
in Figure 1 isN5(n221)/2. A filter function can be ap-
plied to theseN pixels in each subwindow to obtain th
respective convolution kernels:

Xd deg5 f ~vd deg,1
sub1 ,vd deg,2

sub1 ,...,vd deg,N
sub1 !, ~56!

Yd deg5 f ~vd deg,1
sub2 ,vd deg,2

sub2 ,...,vd deg,N
sub2 !, ~57!

where d50,45,90,135. ~58!

Depending on the type of noise one wishes to attenu
different filters can be utilized. Four types of nonlinear im
age filters based on order statistics are employed in
work.

The first type of color edge detector incorporates
vector median filter.33 This filter outputs the vector media
of the N vector samples in the subwindow using the co
cept of vector order statistics introduced earlier, where
N vector samples are arranged in ascending order u
R-ordering, v(1)<v(2)<...v(N), and the vector with the
lowest rank,v(1), is the vector median. We can make th
operator more efficient by locating the vector with t
minimum reduced distance calculated inR-ordering instead
of ordering allN samples since only the vector median is
importance here. The output of the filter is:

f VM~v1 ,v2 ,...,vN!5v~1!. ~59!
s

-

,

r

g

The vector median filter is very effective for reducing im
pulse noise because it can reject up toN21 impulse noise
pixels in a subwindow. However, since only the medi
vectors are used for edge detection, some edges ma
rejected as noise and not able to be detected.

The second type of filter is the vector mean filter. Th
filter reduces the effect of Gaussian noise by averaging
the vector samples:

f VM~v1 ,v2 ,...,vN!5
1

N (
i 51

N

vi . ~60!

Due to the simplicity of the averaging operation, the vec
mean operator is much more efficient than the vector m
dian operator. The vector mean operator may cause ce
false edges since the pixels used for edge detection ar
longer the original pixels.

The third type of filter, thea-trimmed mean filter, is a
compromise between the preceding two filters. It is defin
as:

f a2trim~v1 ,v2 ,...,vN!5
1

N~122a! (
i 51

N~122a!

v~ i !, ~61!

wherea is in the range@0,0.5!. Whena is 0, no vector is
rejected and the filter reduces to vector mean filter. Whea
is 0.5, all vectors except vector median are rejected and
filter reduces to vector median filter. For othera values,
this operator can reject 200a% of impulse noise pixels, and
it outputs the average of the remaining vector samp
Therefore thea-trimmed mean filter can improve noise pe
formance in the presence of both Gaussian and imp
noise.

The last type of filter to be addressed is the adapt
nearest-neighbor filter.34 As introduced in the last section
the output of this filter is a weighted vector sum with
weight function that varies adaptively for each subwindo

f adap~v1 ,v2 ,...,vN!5(
i 51

N

wivi , ~62!

where the weight functionwi was given in Eq.~42!, and it
assigns a higher weight to the vectors with lower ranks, a
a lower weight to the outliers. This filter is also effectiv
with mixed Gaussian and impulsive noise and it bears
proximately the same complexity as thea-trimmed mean
filter since they both need to perform theR-ordering. Again
since edge detection is performed on the outputs of
filter instead of the original pixels, there may be a reduct
in resulting edge qualities.

Another group of operators denotes a similar concep
the subfiltering operators where prefiltering is used inste
Any one of the preceding filters can be used to perfo
prefiltering on an image with a 333 window, and then the
DV operator with the same window size is used for ed
detection. Unlike the previous group, in this family th
pixel window is not divided into subwindows during filter
ing, and the filter is applied only once to the whole wi
dow. The advantage with this group of operators is that i
619Optical Engineering, Vol. 38 No. 4, April 1999
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
considerably more efficient than the previous group si
the filtering operation, which accounts for most of the co
plexity, is performed only once instead of eight times~two
for each of the four directions! for each pixel.

One last proposed variation for the DV operators co
siders edge detection in only two directions, horizontal a
vertical, instead of four directions:

DV–hv5max~ u¹ f u0 deg,u¹ f u90 deg!. ~63!

It is anticipated that such a design will be as powerful
the other DV operator due to the facts that~1! human vision
is more sensitive to horizontal and vertical edges than
others and~2! the horizontal and vertical difference vecto
are able to detect most of the diagonal edges as well, w
in turn can reduce the thickness of these edges by elimi
ing the redundancy from the diagonal detectors. In addit
the amount of computation involved with this operator
slightly reduced.

5 Evaluation Procedures and Results

To investigate further the performance of the vector or
statistic operators and the DV operators, we must determ
how these two classes of operator compare to each o
and how the individual edge detectors in each class r
among themselves. Both quantitative and qualitative m
sures are used to evaluate the performance of the edg
tectors in terms of accuracy in edge detection and rob
ness to noise. The quantitative performance measures
be grouped into two types, probabilistic measures and
tance measures. The first type is based on statistics of
rect edge detection and false edge rejection. The sec
type is based on edge deviation from true edges. The
type of measure can be adopted to evaluate the accura
edge detection by measuring the percentage of corre
and falsely detected edges. Since a predefined edge
~ground truth! is required, synthetic images are used for t
experiment. The second type of measure can be adopte
evaluate the noise performance by measuring the devia
of edges caused by noise from the true edges. Since
merical measures are not sufficient to model the comple
of human visual systems, qualitative evaluation using s
jective tests is required in most image processing appl
tions. Also, evaluation based on synthetic images has
ited value because they can not be extrapolated to
images easily.35 As a result, real images are also used in
evaluation process. All the images used for evaluation
defined in the RGB color space.

A total of 24 edge detectors from the class of the vec
order statistic operators and the difference vector opera
are implemented and their performance are evaluated a
with the Sobel edge detector. Table 1 provides a list of
25 edge detectors for later reference.

5.1 Probabilistic Evaluation

Several artificial images with prespecified edges are cre
for accessing the probabilistic performance of selected e
detectors. To analyze the responses of the edge detecto
different types of edge, these images contain vertical, h
zontal, and diagonal edges; round and sharp edges; e
620 Optical Engineering, Vol. 38 No. 4, April 1999
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caused by variation in only one, only two or all three com
ponents; isoluminant and nonisoluminant areas. In this
periment, noise is not added to the images. The resul
edge maps from each detector are compared with the
defined edge maps, and the number of correct and f
edges detected are computed and are represented as h
fault ratio, as shown in Table 2. The hit ratio is defined
the percentage of correctly detected edges and the
ratio is the ratio between the number of false edges dete
and the number of true edges in the predefined edge m
These two parameters are selected for this evaluation
cause they characterize the accuracy of an edge detec

From the results in Table 2, a few conclusions can
drawn:

Table 1 Edge detectors for evaluation.

Edge
Detector Description

Sobel
Sobel edge detector extended from monochrome

edge detection

Vector Order Statistic Operators

VR0 VR operator (W:333) with L1 norm

VR1 VR operator (W:333) with Canberra metric
implementation

VR2 VR operator (W:333) with Czekanowski coefficient

VR3 VR operator (W:333) with angular distance
measure

MVD–3 MVD operator (W:333) with k53, l54

MVD–5a MVD operator (W:535) with k53, l54

MVD–5b MVD operator (W:535) with k56, l59

NNVR–3 NNVR operator (W:333)

NNVR–5 NNVR operator (W:535)

NNMVD–3 NNMVD operator (W:333) with k53

NNMVD–5a NNMVD operator (W:535) with k53

NNMVD–5b NNMVD operator (W:535) with k56

Difference Vector Operators

DV DV operator (W:333) in four directions

DV–hv DV operator (W:333) in only horizontal and
vertical directions

DVadap DV operator (W:535) with adaptive subfilter

DVadap–hv Same as DVadap except in only two directions

DVatrim DV operator (W:535) with atrim subfilter

DVmean DV operator (W:535) with vector mean subfilter

DVmedian DV operator (W:535) with vector median subfilter

fDVadap DV operator (W:333) with adaptive prefilter on
entire window

fDVadap–hv same as fDVadap except in only two directions

fDVatrim DV operator (W:333) with atrim prefilter on
entire window

fDVmean DV operator (W:333) with vector mean prefilter
on entire window

fDVmedian DV operator (W:333) with vector median prefilter
on entire window
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• Detectors such as the Sobel operator, the VR oper
with L1 norm, and the DV operator without any filte
ing all give good performance for images free of no
contamination.

• MVD with 3 33 window size has a lower hit ratio, bu
it also gives less false edges. The MVD operators w
larger window size~i.e, 535! are able to provide high
hit ratio.

• The NNVR operators also show good performance
the NNMVD operators give slightly lower hit ratio
than those achieved by the MVD operators.

• The L1 norm used in VR operators shows super
performance than other distance measures.

• For the DV operators, the detectors with only horizo
tal and vertical direction detection have almost t
same hit ratio as the DV operator with all four dire
tions, but they detect considerably less false edge

• The DV operator with adaptive anda-trimmed subfil-
tering show very poor results. Note that this is not t
case with real images, as we see later. The subfilte
seems to have undesirable effects on synthetic ima
When prefiltering is performed~fDVadap, fDVa-
trim!, this undesirable effect does not exist, and th
operators show good performances.

5.2 Noise Performance

Real images with corrupted mixed noise are used for
experiment. The mixed noise contain 4% impulsive no
and 30% Gaussian noise, with 5% variance for both ty
of noise. The edge maps of the images corrupted with n

Table 2 Numerical evaluation with synthetic images.

Edge Detector Hit (%) Fault Ratio

Sobel 97.9 1.21

VR0 99.4 1.55

VR1 93.9 1.49

VR2 92.9 1.48

VR3 91.3 1.46

MVD–3 88.7 0.95

MVD–5a 99.2 3.33

MVD–5b 98.3 1.53

NNVR–3 99.4 1.55

NNVR–5 99.6 4.01

NNMVD–3 87.5 0.95

NNMVD–5a 94.4 3.3

NNMVD–5b 93.6 1.51

DV 99.4 1.55

DV–hv 99.1 1.14

DVadap 4.6 0.06

DVatrim 60.5 0.65

fDVadap 98.4 2

fDVadap–hv 97.7 1.58

fDVatrim 98.4 1.99
r

.

are compared with the edge maps of the original image
each edge detector. The noise performance is measure
terms of the peak SNR~PSNR! values, and the results ar
given in Table 3. The PSNR is a easily quantifiable me
sure of image quality, although it provides only a rou
evaluation of the actual visual quality the eye may perce
in an edge map.

A few observations can be made from the results:

• The simple operators such as Sobel, VR and DV
sensitive to both impulsive and Gaussian noise. T
noise performance can be improved with added co
plexity.

• In the case of vector order statistic operators,
MVD and NNMVD operators show more robustne
in the presence of noise. We can also confirmed t
the noise performance improves with the increa
complexity of the operators, which are controlled b
the two parametersk and l .

• For the class of DV operators, the added filtering im
prove the performance drastically. Since mixed no
is present, we used adaptive anda-trimmed filter for
this experiment. The use of adaptive filter as prefilte
on the whole window demonstrates the best perf
mance in noise suppression. Hence we can concl
that the adaptive filter outperforms thea-trimmed fil-
ter and the prefiltering method is better than the s
filtering method in terms of noise suppression. Ope
tors in only the horizontal and vertical directions sho
very slight deviation in PSNR values from ones in a
four directions.

5.3 Subjective Evaluation

Since subjective evaluation is very important in image p
cessing, we have applied the aforementioned operators

Table 3 Noise performance.

Edge Detector PSNR (dB)

Sobel 30.9

VR0 24.4

DV 29.4

MVD–3 26.3

MVD–5a 33.6

MVD–5b 35.4

NNVR–3 23.2

NNVR–5 28.6

NNMVD–3 25.9

NNMVD–5a 33.5

NNMVD–5b 35.2

DVadap 52.4

DVadap–hv 52.2

DVa-trimmed 45.5

fDVadap 62.6

fDVadap–hv 62.3

fDVa-trimmed 59.6
621Optical Engineering, Vol. 38 No. 4, April 1999
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collection of real and artificial images ranging from fa
features to outdoor scenes. The subjective evaluation
ables us to investigate further the characteristics of the
tained edge maps through the involvement of human
tors. In the subjective evaluation, images to be compa
are viewed simultaneously, under identical viewing con
tions by a set of observers. The operators are rated in te
of several criterion: ease in recognizing objects; continu
of edges; thinness of edges; performance in suppres
noise. The results obtained are in good agreement in
cases with our selected criterion.

After examining large quantities of edge maps produc
by each edge detector, the following conclusions can
drawn:

• As suggested in the quantitative tests, the performa
of Sobel, VR, and DV operators are very similar
that they all produce good edge maps for noisel
images.

• The MVD and NNMVD operators produce thinne
edges and are less sensitive to small texture variat
because of the averaging operation, which smoo
out small variations. Also as expected, these t
groups of operators are able to extract edges eve
noise corrupted images.

• The two groups of DV operators with subfiltering an
prefiltering all demonstrate excellent performance
noise corrupted images. The vector mean operator
forms best in impulsive noise, vector median opera
performs best in Gaussian noise, and adaptive
a-trimmed operators perform best in mixed noise. T
subfiltering operator with adaptive filter is able to pr
duce fair edge maps for real images despite its uns
cessful attempts with synthetic images during the
merical evaluation. However, the visual assessme
are in agreement with the numerical tests in that
group of prefiltering operators outperform the gro
of subfiltering operators of the same filter.

• One last note on the difference vector operators is
the operators with only horizontal and vertical dire
tions produce thinner diagonal edges than those in
four directions.

Figure 2 shows one of the images used in the experim
‘‘Lenna.’’ This image is corrupted by 4% of impulse nois
and 30% of Gaussian noise. Figures 3–6 provide the e
maps produced by four selected operators. Figure 7 is
other real image used, ‘‘Flower,’’ and four of the edg
maps are shown in Figures 8–11. One of the synthetic
ages, ‘‘Ellipse,’’ is shown in Fig. 12 and Figs. 13–16 sho
a set of edge maps of ‘‘Ellipse.’’

6 Conclusion

Recently, many effective methods for color edge detect
have been proposed and this paper presented a compa
study of some of the representative edge detectors. T
classes of operators, vector order statistic operators and
operators were studied in detail because both of these
effective with multivariate data and are computationally
ficient. Several variations were introduced to these t
classes of operators to achieve better noise suppression
higher efficiencies. We discovered that both classes off
622 Optical Engineering, Vol. 38 No. 4, April 1999
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Fig. 2 Test image ‘‘Lenna.’’

Fig. 3 Sobel detector: edge map of ‘‘Lenna.’’

Fig. 4 MVD3 detector: edge map of ‘‘Lenna.’’



Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
Fig. 5 DV detector: edge map of ‘‘Lenna.’’

Fig. 6 Filtered-based DV (fDV) detector: edge map of ‘‘Lenna.’’

Fig. 7 Test image ‘‘Flower.’’
Fig. 8 Sobel detector: edge map of ‘‘Flower.’’

Fig. 9 VR detector: edge map of ‘‘Flower.’’

Fig. 10 Distance vector detector: edge map of ‘‘Flower.’’
623Optical Engineering, Vol. 38 No. 4, April 1999
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Fig. 11 The fDV detector: edge map of ‘‘Flower.’’

Fig. 12 Synthetic image ‘‘Ellipse.’’

Fig. 13 Sobel detector: edge map of ‘‘Ellipse.’’
624 Optical Engineering, Vol. 38 No. 4, April 1999
Fig. 14 VR detector: edge map of ‘‘Ellipse.’’

Fig. 15 VR detector: edge map of ‘‘Ellipse.’’

Fig. 16 DV-hv detector (horizontal/vertical processing only): edge
map of ‘‘Ellipse.’’
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Zhu, Plataniotis, Venetsanopoulos: Comprehensive analysis of edge detection . . .
mean of improving noise performance at the cost of
creasing complexity. The performance of all edge detec
was evaluated both numerically and subjectively. The
sults presented demonstrate a superiority of the DV op
tor with adaptive prefiltering over other detectors. This o
erator scores high points in numerical tests and the e
maps it produces are perceived favorably by human e
Note that different applications have different requireme
on the edge detectors, and though some of the general c
acteristics of various edge detectors were addressed,
still better to select edge detectors that are optimum for
particular application.
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