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This paper proposes a full-body layered deformable model (LDM) inspired by manually labeled silhouettes for automatic model-
based gait recognition from part-level gait dynamics in monocular video sequences. The LDM is defined for the fronto-parallel
gait with 22 parameters describing the human body part shapes (widths and lengths) and dynamics (positions and orientations).
There are four layers in the LDM and the limbs are deformable. Algorithms for LDM-based human body pose recovery are then
developed to estimate the LDM parameters from both manually labeled and automatically extracted silhouettes, where the au-
tomatic silhouette extraction is through a coarse-to-fine localization and extraction procedure. The estimated LDM parameters
are used for model-based gait recognition by employing the dynamic time warping for matching and adopting the combination
scheme in AdaBoost.M2. While the existing model-based gait recognition approaches focus primarily on the lower limbs, the es-
timated LDM parameters enable us to study full-body model-based gait recognition by utilizing the dynamics of the upper limbs,
the shoulders and the head as well. In the experiments, the LDM-based gait recognition is tested on gait sequences with differences
in shoe-type, surface, carrying condition and time. The results demonstrate that the recognition performance benefits from not
only the lower limb dynamics, but also the dynamics of the upper limbs, the shoulders and the head. In addition, the LDM can
serve as an analysis tool for studying factors affecting the gait under various conditions.

Copyright © 2008 Haiping Lu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Automatic person identification is an important task in vi-
sual surveillance, and monitoring applications in security-
sensitive environments such as airports, banks, malls, park-
ing lots, and large civic structures, and biometrics such as
iris, face, and fingerprint have been researched extensively for
this purpose. Gait, the style of walking of an individual, is an
emerging behavioral biometric that offers the potential for
vision-based recognition at a distance where the resolution
is not high enough for the other biometrics to work [1–4].
In 1975 [5], Johansson used point light displays to demon-
strate the ability of humans to rapidly distinguish human lo-
comotion from other motion patterns. Similar experiments
later showed the capability of identifying friends or the gen-
der of a person [6, 7], and Stevenage et al. show that humans
can identify individuals based on their gait signature in the
presence of lighting variations and under brief exposures [8].
Recently, there has been increased research activities in gait

recognition from video sequences. Vision-based gait capture
is unobtrusive, requiring no cooperation or attention of the
observed subject and gait is difficult to hide. These advan-
tages of gait as a biometric make it particularly attractive in
human identification at a distance. In a typical vision-based
gait recognition application, a monocular video sequence is
used as the input.

Gait recognition approaches can be broadly categorized
into the model-based approach, where human body struc-
ture is explicitly modeled, and the model-free approach,
where gait is treated as a sequence of holistic binary patterns
(silhouettes). Although the state-of-the-art gait recognition
algorithms are taking the model-free approach [3, 4, 9–12],
from the literature of the anthropometry and the biome-
chanics of human gait [13, 14], human body is structured
with well-defined body segments and human gait is essen-
tially the way locomotion is achieved through the move-
ment of human limbs. Therefore, for detailed analysis and
in-depth understanding of what contributes to the observed
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gait (and gait-related applications), it is natural to study
the movement of individual human body segments, rather
than treating human body as one whole holistic pattern. For
example, contrary to common beliefs that cleaner silhou-
ettes are desired for successful recognition, a recent study
[15] shows that automatically extracted (noisy) silhouette
sequences achieve better recognition results than very-clean
(more accurate) manually segmented silhouettes [16], and
the explanation in [16] is that there are correlated errors
(noise) contributing to the recognition in the noisy silhou-
ette sequences. On the other hand, the model-based ap-
proach [17–21] extracts gait dynamics (various human body
poses) for recognition and appears to be more sound, but it
is not well studied and less successful due to the difficulties
in accurate gait dynamics extraction [1, 3]. For these existing
model-based gait recognition algorithms, only the dynamics
of the lower body (the legs) are used for recognition, except
in [20], where the head x-displacement is also used. However,
in the visual perception of a human gait, the dynamics of the
upper-body, including the arms, the shoulders, and even the
head, contributes significantly to the identification of a fa-
miliar person as well. Therefore, it is worthwhile to investi-
gate whether it is feasible to extract the upper-body dynamics
from monocular video sequences and whether the gait recog-
nition performance can benefit from it.

Motivated by the discussions above, the earlier version of
this paper proposed a new full-body articulated human body
model for realistic modeling of human movement, named as
the layered deformable model (LDM) [22]. It is inspired by
the manually labeled body-part-level silhouettes [15] from
the “gait challenge” data sets, which were created for studying
gait recognition from sequences free from noise and back-
ground interference, and it is designed to closely match them
in order to study gait recognition from detailed part-level gait
dynamics. In this paper, more detailed descriptions and in-
depth discussions on the LDM and the pose recovery algo-
rithms proposed in [22] are provided; and furthermore, the
LDM is applied to the automatic model-based gait recogni-
tion problem. An overview of the LDM-based gait recogni-
tion is shown in Figure 1. A coarse-to-fine silhouette extrac-
tion algorithm is employed to obtain silhouettes automat-
ically from a monocular video sequence and human body
pose recovery algorithms are then developed to estimate the
LDM parameters from the silhouettes. The pose recovery al-
gorithms developed here do not rely on any tracking algo-
rithm. Hence, it is fully automatic and does not suffer track-
ing failures as in [17], where manual parameter estimation
is needed when the tracking algorithm fails due to the prob-
lems of body part self-occlusion, shadows, occlusion by other
objects, and illumination variation in the challenging out-
door environment. Next, the dynamic time warping (DTW)
algorithm is utilized for matching body part dynamics and
the combination scheme in AdaBoost.M2 is adopted to inte-
grate the various part-level gait dynamics. The gait recogni-
tion experiments are carried out on a subset of the gait chal-
lenge data sets [9, 15] and several interesting observations are
made.

The rest of this paper is organized as follows: Section 2
describes the LDM. In Section 3, human body pose recov-

ery algorithms are presented in more details for manual sil-
houettes and automatically extracted silhouettes, followed
by a brief discussion on the computational complexity. The
LDM-based gait recognition module is then proposed in
Section 4. Finally, the experimental results are reported in
Section 5 and conclusions are drawn in Section 6.

2. THE LAYERED DEFORMABLE MODEL

As discussed in [22], in model-based gait recognition, the
desirable human body model should be of moderate com-
plexity for fast processing while at the same time it should
provide enough features for discriminant learning. In other
words, a tradeoff between the body model complexity (con-
cerning the efficiency) and the model descriptiveness (con-
cerning the accuracy) is sought. It is not to be as detailed as
a fully deformable model used for realistic modeling (e.g.,
of animated characters in movies) in computer graphics and
animations, while it must model limbs individually to en-
able model-based recognition. The existing model-based gait
recognition algorithms [17–21] regard the lower-body (the
legs) dynamics as the discriminative features and almost
completely ignore the upper-body dynamics. Such ignorance
is partly due to the difficulty in accurate extraction of the
upper-body dynamics and their assumption that the leg dy-
namics are most important for recognition. However, in our
opinion, the upper-body dynamics (the arms, shoulders, and
head) provide us with valuable information for identification
of a person as well. Therefore, gait recognition algorithms
based on a full-body model are expected to achieve better re-
sults than those relying on only the lower-body dynamics.

Although there are works making use of the full-body in-
formation, such as the seven-ellipse representation in [23]
and the combination of the left/right projection vectors and
the width vectors in [24], these representations are rather
heuristic. Since the biomechanics of human gait is a well-
studied subject, it is helpful to develop a human body model
by incorporating knowledge from this area. At the same time,
as a vision-based approach, the information available for
model estimation is limited to what can be extracted from a
camera at a distance different from the marker-based studies
in biomechanics of human gait [14].

The human full-body model named as the layered de-
formable model (LDM) was first proposed in [22] for the
most commonly used fronto-parallel gait (side-view), al-
though it can be designed for gait from various viewing an-
gles. Without loss of generality, it is assumed that the walk-
ing direction is from the right to the left. This model is in-
spired by the manually labeled silhouettes provided by the
University of South Florida (USF) [15], where the silhouette
in each frame was specified manually for five key sets: the
gallery set, probes B, D, H, and K. (In typical pattern recog-
nition problems, such as human identification using finger-
prints, face, or gait signals, there are two types of data sets:
the gallery and the probe [9]. The gallery set contains the
set of data samples with known identities and it is used for
training. The probe set is the testing set where data samples
of unknown identity are to be identified and classified via
matching with corresponding entries in the gallery set.) In
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Figure 1: Overview of the proposed automatic LDM-based gait recognition.
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Figure 2: The layered deformable model.

addition, more detailed specifications in terms of body parts
were provided. These manual silhouettes are considered to
be the ideal “clean” silhouettes that can be obtained from the
raw video sequences.

Following [22], the LDM consists of ten segments model-
ing the ten body parts: the head (a circle), the torso (a semiel-
lipse on top of a rectangle), the left/right upper arms (rect-
angles), the left/right lower arms (quadrangles), the left/right
upper/lower legs (quadrangles). The feet and the hands are
not modeled explicitly since they are relatively small in size
and difficult to detect consistently due to occlusion with the
“background” (e.g., covered by grass). Figure 2 is an illustra-
tion of the LDM, which matches closely to the manual sil-
houettes in [15]. The model is defined based on a skeleton
model, which is shown as thick lines and black dots in the
figure.

The LDM is specified in [22] using the following 22 pa-
rameters that define the lengths, widths, positions, and ori-
entations of body parts, with the number of parameters for
each category in brackets:

(i) lengths (6): the lengths of various body parts LH (the
radius of the head), LT (the torso), LUA (the upper
arm), LLA (the lower arm, including the hand), LTH

(the thigh), and LLL (the lower leg, including the feet);

(ii) widths (3): the widths (thickness) of body parts WT

(the torso, which is equal to the width of the top of the
thigh), WK (the knee), and WA (the arm, assuming the
same width for the upper and lower parts);

(iii) positions (4): the global position (xG, yG), which is also
the position of the hip joint, and the shoulder displace-
ment (dxSh,dySh);

(iv) body part orientations (9): θLTH (the left thigh), θRTH

(the right thigh), θLLL (the left lower leg), θRLL (the
right lower leg), θLUA (the left upper arm), θRUA (the
right upper arm), θLLA (the left lower arm), θRLA (the
right lower arm), and θH (the head, the neck joint an-
gle). The body part orientation is measured in the an-
gle between the major axis of the body part and the
horizontal axis, following the biomechanics conven-
tions in [13]. In Figure 2, θRLL, θLTH, and θH are labeled
for illustration.

In addition to the 22 parameters for the LDM, the height of
the human full-body is denoted as HF .

Furthermore, in order to model the human body self-
occlusion (e.g., between legs, arms, and torso), the follow-
ing four layers are introduced in [22], inspired by the layered
representation in [25]:

(i) layer one: the right arm;
(ii) layer two: the right leg;

(iii) layer three: the head, the torso, and the left leg;
(iv) layer four: the left arm

where the first layer is furthest from the camera (frequently
occluded) and the fourth layer is the closest to the cam-
era (seldom occluded). Figure 3 shows each layer as well as
the resulted overlaid image. As seen from the figure, self-
occlusion is explained well with this model. Let L j denote the
image of layer j, where j = 1, 2, 3, 4. The gait stance image Ig
obtained by overlying all layers in order can be written as

Ig = L4 + B
(

L4
)∗(L3 + B

(
L3
)∗(L2 + B

(
L2
)∗L1

))
, (1)

where “∗” denotes the elementwise multiplication and B(L j)
is the mask obtained by setting all the foreground pixels (the
body segments) in L j to zero and all the background pix-
els to one. The difference of this layered representation from
that in [25] is that here the foreground boundary is deter-
mined uniquely by the layer image L j and there is no need to
introduce an extra mask.

As described in [22], the LDM allows for limb de-
formation and Figure 4 shows an example for the right
leg deformation. This is different from the traditional 2D
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Figure 3: The four-layer representation of the LDM.
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Figure 4: Illustration of the right leg deformation.

(rectangular) models and visual comparison with the man-
ual silhouettes [15] shows that the LDM matches well with
human’s subjective perception of human body (in 2D).

On the whole, the LDM is able to model human gait re-
alistically with moderate complexity. It has a compact rep-
resentation comparable to the simple rectangle (cylinder)
model [17] and its layered structure models self-occlusion
between body parts. At the same time, it models simple limb
deformation while it is not as complicated as the fully de-
formable model [26]. In addition, the shoulder displacement
parameters model shoulder swing observed in the manual
silhouette sequences, which is shown to be useful for auto-
matic gait recognition in the experiments (Section 5.2), and
they also relate to viewing angles.

3. LDM-BASED HUMAN BODY POSE RECOVERY

With the LDM, the pose (LDM parameter) estimation prob-
lem is solved in two phases. The estimation of the LDM
parameters from the manually labeled silhouettes is tackled
first, serving as the ground truth in pose recovery perfor-
mance evaluation and facilitating the studies of the ideal-case
model-based gait recognition. In addition, statistics from the
LDM parameters obtained from the manual silhouettes are
used in the following task of direct LDM parameter estima-
tion for the silhouettes extracted automatically from raw gait
sequences.

3.1. Pose estimation from manually
labeled silhouettes

For each gait cycle of the manual part-level labeled silhou-
ettes, the LDM parameters for a silhouette are estimated by
processing each individual segment one by one. As suggested
in [22], some parameters, such as the limb orientations, are

more closely related to the way one walks and hence they
are more important to gait recognition than the others, such
as the width parameters. Therefore, the limb orientation pa-
rameters are estimated first using robust algorithms for high
accuracy.

3.1.1. Estimation of limb orientations

For reliable estimation of the limb orientations (θLTH, θRTH,
θLLL, θRLL, θLUA, θRUA, θLLA, and θRLA), it is proposed in [22]
to estimate them from reliable edge orientations, that is, they
are estimated from either the front or the back edges only,
decided by the current stance (pose/phase). For instance, the
front (back) edges are more reliable when the limbs are in
front (at back) of the torso. The number of reliable edge pix-
els is denoted by R. This method of estimation through reli-
able body part information extends the leading edge method
in [18] so that noise due to loose cloths are greatly reduced.
The mean-shift algorithm [27], a powerful kernel-based al-
gorithm for nonparametric mode-seeking, is applied in the
joint spatial-orientation domain, and the different scales in
the two domains are taken care of by using different kernel
sizes for different domains. This algorithm is applied to the
reliable edges of each limb individually with a preprocessing
by a standard Gaussian lowpass filter to reduce noise. Let an
edge pixel feature vector pi = [ps

i ; p
o
i ], where ps

i is the spatial
coordinate vector of 2×1 and poi is the local orientation value,
estimated through the gradient. Denote by {pi}i=1:R the R re-
liable edge pixel feature vectors. Their modes {qi,c}i=1:R (de-
fined similarly) are sought by iteratively computing

qi, j+1 =
∑ R

i=1pi·k
(∥∥(qs

i, j − ps
i

)
/hs
∥∥2)·k(∥∥(qoi, j − poi

)
/ho
∥∥2)

∑ R
i=1k(

∥∥(qs
i, j − ps

i

)
/hs
∥∥2)·k(∥∥(qoi, j − poi

)
/ho‖2)

(2)

until convergence, where k(·) is a kernel, hs and ho are the
kernel bandwidths for the spatial and orientation domains,
respectively, with the initialization qi,1 = pi. The modes
(points of convergence) are sorted in descending order based
on the number of points converged to it. The dominant
modes (modes at the top of the sorted list) represent body
part orientations and the insignificant modes (modes at the
bottom of the sorted list) are ignored.

This estimation process is illustrated in Figure 5.
Figure 5(a) shows the edges of one arm and our algorithm
is applied to its front edge since it is in front of the torso. The
orientations (in degrees) of the front edge points are shown
in Figure 5(b) and the converged orientation values for each
point are shown in Figure 5(c). After the mode sorting, two
dominant (top) modes (for upper arm and lower arm) are
retained and they are shown in Figure 5(d) where the con-
verged point positions are highlighted by setting their orien-
tation values to a larger number (140 degree).

3.1.2. Estimation of other parameters

With the limb orientations and positions estimated, the joint
(e.g., elbow, shoulder, knee) positions can be determined eas-
ily and the lengths (LUA, LLA, LTH, and LLL) and widths (WK
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Figure 5: Illustration of limb orientation estimation through mean-shift. (a) The edges of one arm. (b) The orientation versus the spatial
coordinate for the front edge in (a). (c) The orientation versus the spatial coordinates after mean-shift. (d) The position of the dominant
modes are highlighted by setting their orientation values to 140 degree.

and WA) of upper and lower limbs are estimated from them
using simple geometry, as discussed in [22]. The torso width
(WT), torso length (LT), and global position (xG, yG) are es-
timated from the bounding box of the torso segment. For
the head, the “head top” (the top point of the labeled head)
and the “front face” (the left most point of the labeled head)
points are estimated through Gaussian filtering and averag-
ing. These two points determine the head size (LH) and the
head center, partly eliminating the effects of hair styles. The
neck joint angle (θH) can then be estimated from the head
center and the neck joint position (estimated from the torso).
The shoulder displacement (dxSh,dySh) is determined from
the difference between the neck and the shoulder joint posi-
tions.

3.1.3. Postprocessing of the estimations

Due to the imperfection of manual labeling and the pose re-
covery algorithm in Sections 3.1.1 and 3.1.2, the estimated
LDM parameters may not vary smoothly and they need to be
smoothed within a gait sequence, since according to biome-
chanics studies [13], during walking, body segments gener-

ally enjoy smooth transition and abrupt (or even unrealis-
tic) change of body segment orientations/positions is not ex-
pected. The two-step postprocessing procedure proposed in
[22] is modified here. The first step still applies a number of
constraints such as the interframe parameter variation limits
and the body part orientation limits. The head size (LH) is
fixed to be the median over a cycle and the interdependence
between orientations of the same limbs are enforced to real-
istic values by respecting the following conditions:

θLTH ≤ θLLL, θRTH ≤ θRLL,

θLUA ≥ θLLA, θRUA ≥ θRLA.
(3)

In the second step of postprocessing, a moving average fil-
ter of window size n is again applied to the parameter se-
quences, while a parameter sequence is expanded through
circular shifting before the filtering and truncated accord-
ingly after the filtering to avoid poor filtering at the two ends
(the boundaries).
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Figure 6: The means and standard deviations of the ratios of
the length and width parameters over the full-body height for the
gallery set of manual silhouettes.

3.2. Pose estimation from automatically
extracted silhouettes

In practice, the pose recovery process needs to be automatic
and it is infeasible to obtain silhouettes manually. Therefore,
an automatic silhouette extraction algorithm is required to
produce silhouettes for pose recovery.

3.2.1. Coarse-to-fine automatic silhouette extraction

In [28], we have developed a localized coarse-to-fine algo-
rithm for efficient and accurate pedestrian localization and
silhouette extraction for the gait challenge data sets. The
coarse detection phase is simple and fast. It locates the tar-
get quickly based on temporal differences and some knowl-
edge on the human target such as the shape and the motion
of the subject. Based on this coarse detection, the fine de-
tection phase applies a robust background subtraction algo-
rithm based on Markov thresholds [29] to the coarse target
regions and the detection obtained is further processed to
produce the final results. In the robust background subtrac-
tion algorithm [29], the silhouettes of moving objects are ex-
tracted from a stationary background using Markov random
fields (MRF) of binary segmentation variates so that the spa-
tial and temporal dependencies imposed by moving objects
on their images are exploited.

3.2.2. Shape parameter estimation

As pointed out in [22], since the shape (length and width)
parameters are largely affected by cloths and the silhouette
extraction algorithm used, they are not considered as gait dy-
namics for practical automatic model-based gait recognition,
which is to be shown in the experiments (Section 5). There-
fore, coarse estimations can be used for these LDM param-
eters. The statistics of the ratios of these parameters to the
silhouette height HF are studied for the gallery set of man-
ual silhouettes and the standard deviations in these values

are found to be quite low, as shown in Figure 6, where the
standard deviations are indicated by the error bars. There-
fore, fixed ratios to the height of the silhouette are used in the
shape parameter estimations for the automatically extracted
silhouettes as in [22], based on the gallery set of manual sil-
houettes.

3.2.3. Automatic silhouette information extraction

With the help from the ideal proportions of the human eight-
head-high figure in drawing [30], the following information
is extracted for the LDM parameter (pose) estimation from
the automatically extracted silhouettes; (more detailed infor-
mation regarding body segment proportions from anthro-
pometry is available in [14], where body segments are ex-
pressed as a fraction of body height, however, the eight-head
figure is simpler and more practical for the application of
vision-based gait analysis/recognition at a distance):

(i) the silhouette height HF , the first row ymin, and the last
row ymax of the silhouette;

(ii) the center column cH of the first HF/8 rows (for the
head position);

(iii) the center column of the waist cW is obtained as the
average column position of the rows of the torso por-
tion (rows HF/8 to HF/2) with widths within a limited
deviation (±0.3) from the expected width (0.169·HF)
of the torso portion (to avoid distraction by arms); in
case that the torso portion is heavily missing, more
rows from the below (leg portion) are added until a
certain number (5) of rows within the limits are found,
these conditions are relaxed further in case of failure;

(iv) the limb spatial-orientation domain modes and the
number of points converged to each mode of the front
and back edges are obtained through the mean-shift
procedure described in Section 3.1.1 for the left and
right lower legs (last HF/8 rows) and the left and right
lower arms (rows 3·HF/8 to 5·HF/8). For the upper
arms (rows HF/8 to 3·HF/8), due to the significant
collusion with the torso in silhouettes, similar infor-
mation is extracted only for the front edge of the left
upper arm and the back edge of the right upper arm.

3.2.4. Position and orientation parameter estimation

The silhouette information extracted in the previous section
is used for the estimation of the position and orientation pa-
rameters. The global position is determined as

xG = cW , yG = ymin + LT + 2·LH. (4)

The head orientation θH is then calculated through esti-
mating the neck joint (xG, yG − LT) and the head centroid
(cH , ymin + LH).

Next, the limb orientations are estimated. The left or
right limb orientations in this section refer to the orienta-
tions estimated for the left or right limb in the silhouettes,
respectively. The next section will discuss the correct labeling
of the actual left and right limbs for a subject.
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Input: The gallery gait dynamics Xg ∈ RTg×P , g = 1, . . . ,G
Algorithm:

Initialize D1(g, c) = 1/(G(G− 1)), D1(g, g) = 0,
Do for p = 1: P:

(1) Get hypothesis {hp(xpg , c) ∈ [0, 1]} by scaling {DTW(xpg , xpc ), c = 1, . . . ,C}.
(2) Calculate εp, the pseudo-loss of hp, from (6) and set βp = εp/(1− εp).

(3) Update Dp : Dp+1(g, c) = Dp(g, c)·β(1/2)(1+hp(xpg ,g)−hp(xpg ,c))
p , and normalize it: Dp+1(g, c) = (Dp+1(g, c)/(

∑
g

∑
cDp+1(g, c))).

Output: The final hypothesis: hfin(X) = arg max c

∑ P
p=1(log (1/βp))hp(xp, c).

Algorithm 1: Combination of the LDM parameters for gait recognition.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 7: An example of human body pose recovery: (a) the raw
image frame, (b) the manual silhouette, (c) the recovered LDM
overlaid on the manual silhouette, (d) the reconstructed silhouette
for the manual silhouette, (e) the automatically extracted silhou-
ette (auto-silhouette), (e) the recovered LDM overlaid on the auto-
silhouette, (f) the reconstructed silhouette for the auto-silhouette.

For the lower leg orientations (θLLL and θRLL), if the dif-
ference of the front and back edge estimations exceeds a
threshold TLL (15) and they have similar number of con-
verged points, the estimations that will result in smaller
changes are chosen, compared to the estimations in the last

frame. Otherwise, the front and back edge estimations are
merged using weighted average if their difference is less than
the threshold TLL. If none of these two cases is true, the es-
timation that has a larger number of points converged to it
is taken. A bias of NLL (5) points is applied to the estimation
for the reliable edge, that is, NLL is added to the number of
converged points of the front edge for the left lower leg and
to that of the back edge for the right lower leg. The lower arm
orientations (θLLA and θRLA) are estimated similarly.

The row number of the left and right knees is set to row
(ymax − HF/4) of the silhouette. Since the lower leg orienta-
tions are estimated and the points on the lower legs (the po-
sitions) are also available, the knee positions are determined
through simple geometry. The thigh orientations (θLTH and
θRTH) are then calculated from the hip joint position (xG, yG)
and the knee joint positions. The upper arm orientations
(θLUA and θRUA) are set to the estimations from Section 3.2.3.

The shoulder displacement (dxSh,dySh) is estimated from
the left arm since the right arm is mostly severely occluded
when walking from the right to the left. The points (posi-
tions) on the upper and lower left arms together with their
estimated orientations determine the elbow position. The
shoulder position can then be calculated based on LUA, θLUA

and the elbow position and it is compared with the neck joint
position to give dxSh and dySh.

The constraints described in the first step of postprocess-
ing in Section 3.1.3 are enforced in the estimation above. A
number of rules are applied to improve the results and they
are not described here to save space, for example, when one
leg is almost straight (the thigh and the lower leg have the
same orientation) and its orientation differs 90 degree by a
large amount (15 degree), the other leg should be close to
straight too.

3.2.5. Limb switching detection for correct labeling of left
and right

In previous section, the orientations for limbs are estimated
without considering their actual labeling of left or right. This
problem needs to be addressed for accurate pose recovery.
Without loss of generality, it is assumed that in the first
frame, the left and right legs are “switched,” that is, the left
leg is on the right and the right leg is on the left and we at-
tempt to label the limbs in subsequent frames correctly. The
opposite case (the left leg is on the left and the right leg is on
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the right) can be tested similarly and the one results in better
performance can be selected in practice.

To determine when the thighs and lower legs switch, the
variations of respective lower-limb orientations are exam-
ined. From our knowledge, in normal gait, the arms have the
opposite “switching” mode. The arms switch in opposite di-
rection of the thighs. In addition, we set the minimum time
interval between two successive switches to be 0.37 second,
which is equivalent to a minimum number of frames of 11
for a 30 frames per second (fps) video.

A number of conditions are examined first to determine
when the lower legs switch.

(i) If switched, the sum of the changes in the left and
right lower leg orientations (compared with those in
the previous frame) is lowered by a certain amount ΔLL

(30).
(ii) When the lower leg with thigh at the back (right) is al-

most vertical (90± 5 degree) in the previous frame, its
orientation (in degree) is decreasing instead of increas-
ing. This condition is set by observing the movement
of the lower legs in crossing.

(iii) When the thighs are just switched, the sum of the
changes in the left and right lower leg orientations
(compared with those in the previous frame) is less
than a certain amount ΔLL if the lower legs are
switched.

(iv) None of the above three conditions are satisfied af-
ter the thighs have been switched for 0.13 second (4
frames for a 30 fps video).

Similarly, thigh switching is determined by examining the
following conditions.

(i) Either thigh orientation is within 90±15 degree or the
lower legs are just switched.

(ii) If the thighs are switched, the sum of the changes of the
left and right thigh orientations is less than a certain
amount ΔTS (28).

(iii) The differences of the left and right thigh orientations
are less than a certain amount ΔD (25) in the previous
frame and in this frame.

(iv) The thigh orientation difference is increasing (decreas-
ing) in the previous frames but it is decreasing (in-
creasing) in this frame.

(v) A thigh orientation is within 90±5 degree in the previ-
ous frame, and it is increasing (decreasing) in previous
frames but it is decreasing (increasing) in this frame.

(vi) If the lower legs are switched, the sum of the changes
of the left and right lower leg orientations is less than a
certain amount ΔLS (38).

(vii) The column number of the right knee minus that of
the left knee is less than −3.

Finally, the estimations are smoothed through the two-
step postprocessing described in Section 3.1.3.

3.3. Comments on the computational complexity

It can be seen from the above that with silhouettes as the
input, the LDM pose recovery takes a rule-based approach

to incorporate human knowledge into the algorithm, rather
than the popular tracking-based approach [17]. Most of the
calculations are simple geometric, with the only exceptions
to be the mean-shift procedure, which is a very efficient al-
gorithm, and the lowpass filtering procedures. Therefore, the
proposed algorithm is very efficient compared to the track-
ing algorithm in [17] based on particle-filtering, which is
a sample-based probabilistic tracking algorithm with heavy
computational cost. For example, in experiments, the pose
estimation from 10005 automatically extracted silhouettes
(with average size of 204.12 × 113.69) took only 94.798 sec-
onds on a 3.2 GHz Pentium 4-based PC (implemented in
C++), which is equivalent to a processing speed of more than
105 frames per second, which is much faster than the com-
monly used 30/25 fps video capturing speed. An additional
benefit is that incorrect estimations of the parameters, due
to the challenges in outdoor setting, do not lead to tracking
failures.

4. LDM-BASED GAIT RECOGNITION THROUGH
DYNAMIC TIME WARPING

From a gait cycle, the LDM parameters are estimated using
the pose recovery algorithms in previous section for recogni-
tion. Let X ∈ RT×P denote the LDM parameters describing
the gait dynamics in a gait cycle, where T is the number of
frames (silhouettes) in the gait cycle and P is the number of
LDM parameters. The LDM parameters are arranged in the
order as shown in Table 1. Thus, X(t, p) denotes the value of
the pth LDM parameter in the tth frame and the sequence
for the pth LDM parameter is denoted as xp ∈ RT×1. For
the automatic LDM-based gait recognition, the maximum P
is 12 since the LDM parameters for p > 12 (the shape pa-
rameters) are proportional to the full-body height (p = 9).
For gait recognition from the manual silhouettes, the maxi-
mum P is 21. Since, in this work, there is only one cycle for
each subject, the number of classes C equals to the number
of samples G for the gallery set C = G.

For the LDM-based gait recognition, the first problem
to be solved is the calculation of the distance between two
sequences of the same LDM parameter,for example, xp1 ∈
RT1×1 and xp2 ∈ RT2×1. Since there is only one cycle for each
subject, a simple direct template matching strategy, the dy-
namic time warping (DTW), is adopted here. The DTW is
an algorithm for measuring the similarity between two se-
quences that may vary in time or speed based on dynamic
programming [31] and it has been applied to gait recognition
in [32–34]. To calculate the distance between two sequences,
for example, a gallery sequence and a probe sequence, of pos-
sibly different lengths (e.g., T1 �=T2) through DTW, all dis-
tances between the gallery sequence point and the probe se-
quence point are computed and an optimal “warping” path
with the minimum accumulated distance, denoted as DTW
(xp1 , xp2 ), is determined. A warping path maps the time axis
of a sequence to the time axis of the other sequence. The start
and end points of a warping path are fixed and the mono-
tonicity of the time-warping path is enforced. In addition,
the warping path will not skip any point. Euclidean distance
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Table 1: The arrangement of the LDM parameters.

p 1 2 3 4 5 6 7 8 9 10 11 12

LDM θLTH θLLL θRTH θRLL θLUA θLLA θRUA θRLA HF θH dxSh dySh

p 13 14 15 16 17 18 19 20 21 — — —

LDM LT LH LUA LLA LTH LLL WT WK WA — — —

Table 2: The four key probe sets.

Probe Difference with the gallery Number of subjects

B Shoe 41

D Surface 70

H Briefcase 70

K Time (including shoe, cloths, etc.) 33

is used here for measuring the distance between two points.
The details of the DTW algorithm can be found in [31].

A distance is calculated for each parameter and a combi-
nation scheme is needed to integrate the gait dynamics (pa-
rameters) of each body part for gait recognition. The com-
bination scheme used in AdaBoost.M2 [35] is adopted here
to weight the different LDM parameters properly, as shown
in Algorithm 1. AdaBoost is an ensemble-based method to
combine a set of (weak) base learners, where a base learner
produces a hypothesis for the input sample. As seen in Al-
gorithm 1, the DTW distance calculator, with proper scal-
ing, is employed as the base learner in this work. Let Xg ∈
RTg×P , g = 1, . . . ,G, be the LDM gallery gait dynamics, where
G is the number of gallery subject. In the training phase, each
parameter sequence xpg is matched against all the sequences
for the same parameter xpc , c = 1, . . . ,C, using DTW and the
matching scores are scaled to the range of [0, 1], which are the
outputs of the hypothesis hp. Similar to AdaBoost.M2, the
pseudoloss εp is defined with respect to the so-called misla-
bel distribution Dp(g, c) [35], where p is the LDM parameter
index here. A mislabel is a pair (g, c) where g is the index of
a training sample and c is an incorrect label associated with
the sample g. Let B be the set of all mislabels:

B = {(g, c) : g = 1, . . . ,G, c �=g}. (5)

The pseudoloss εp of the pth hypothesis hp with respect to
Dp(g, c) is given by [35]

εp = 1
2

∑

(g,c)∈B
Dp(g, c)

(
1− hp

(
xpg , g

)
+ hp

(
xpg , c

))
. (6)

Following the procedures in Algorithm 1, log (1/βp), the
weight of each LDM parameter p, is determined.

5. EXPERIMENTAL RESULTS

The experiments on LDM-based gait recognition were car-
ried out on the manual silhouettes created in [16] and the
corresponding subset in the original “gait challenge” data
sets, which contains human gait sequences captured under
various outdoor conditions. The five key experiments of this

subset are gallery, probes B, D, H, and K. The differences of
the probe sets compared to the gallery set are listed in Table 2,
together with the number of subjects in each set. The number
of subjects in the gallery set is 71. Each sequence for a subject
consists of one gait cycle of about 30∼40 frames, and there
are 10005 frames in the 285 sequences. For the mean-shift
algorithm in the pose recovery procedure, we set the kernel
bandwidths hs = 15 and ho = 10 and use the kernel with the
Epanechnikov profile [27]. For the running average filter, a
window size n = 7 is used.

An example of the human body pose recovery for the
manual silhouettes and automatically extracted silhouettes
are shown in Figure 7, and the qualitative and quantitative
evaluations of the human body pose recovery results are re-
ported in [22], where the reconstructed silhouettes from the
automatically extracted silhouettes have good resemblance
with those from the manual silhouettes. This paper concen-
trates on the gait recognition results. The rank 1 and rank 5
results are presented, where rank k results report the percent-
age of probe subjects whose true match in the gallery set was
in the top k matches. The results on the manual silhouettes
help us to understand the effects of the body part dynamics
as well as the shapes when they can be reliably estimated and
the results on the automatically extracted silhouettes investi-
gate the performance in practical automatic gait recognition.

Table 3 compares the rank 1 and rank 5 gait recognition
performance of the baseline algorithm on the manual sil-
houettes (denoted as BL-Man) [15], the component-based
gait recognition (CBGR) on the manual silhouettes (CBGR-
Man) [36], the LDM-based algorithm on the manual sil-
houettes (LDM-Man), and the LDM-based algorithm on the
automatically extracted silhouettes (LDM-Aut). ( Note that
the baseline results cited here are consistent with those in
[15, 16, 36], but different from those in [1, 9] since the exper-
imental data is different. There are two essential differences.
The first difference is that in this work, there is only one cycle
in each sequence, while in [1, 9], there are multiple cycles.
The second difference is that in this work, gait recognition is
from the part-level gait dynamics, while in [1, 9], as shown in
[15], correlated errors/noise is a contributing factor in recog-
nition performance.) The BL-Man algorithm matches the
whole silhouettes directly while the CBGR-Man algorithm
uses componentwise matching. Since they both treat gait as
holistic patterns, we refer to them as the holistic approach.
For the LDM-Man and LDM-Aut algorithms, the indicated
recognition rates are obtained with P = 21 (all LDM param-
eters) and P = 11, respectively. The shoulder vertical dis-
placement dySh (p = 12) is excluded for the best performing
LDM-Aut algorithm (resulting in P = 11) because the es-
timated dySh in this case is not helpful in identification, as
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Figure 8: The gait recognition performance for the manual silhou-
ettes.

to be shown in Figure 9 (Section 5.2). The recognition rates
reported in brackets for the LDM-Man are obtained with
the same set of LDM parameters as in the LDM-Aut, that
is, P = 11.

5.1. Gait recognition with the manual silhouettes

The detailed gait recognition results using the manual silhou-
ettes are reported in Figure 8, where the averaged recognition
rates are shown in thicker lines. There are several interest-
ing observations from the results. First, the inclusion of the
arm dynamics (p = 5, 6, 7, 8), the dynamic of the full-body
height (p = 9), and the head dynamic (p = 10) improves
the average recognition rates, indicating that the leg dynam-
ics (p = 1, 2, 3, 4) are not the only information useful for
model-based gait recognition. A similar observation is made
recently in [36] for the holistic approach, where the arm sil-

houettes are found to have similar discriminative power as
the thigh silhouettes.

Secondly, it is observed that the length and width param-
eters concerning the shape provide little useful discrimina-
tive information when clothing is changed, that is, probe K.
Furthermore, for the rank 5 recognition rate (Figure 8(b)),
including the shape parameters (p > 12) results in little im-
provement on the performance, indicating that shapes are
not reliable features for practical model-based gait recogni-
tion, even if the body-part level silhouettes can be obtained
ideally, which agrees with intuition since shapes are largely
affected by clothing. On the other hand, from Figure 8(a),
the rank 1 recognition rate for probe B, which is captured
under the conditions with the same clothing and only dif-
ference in shoes, benefits the most from the inclusion of the
shape parameters.

Another interesting observation is that for probe H,
where the subject carries a briefcase with the right arm, the
inclusion of the right arm dynamics (p = 7 and p = 8) re-
sults in performance degradation for both rank 1 and rank
5, which can be explained by the fact that the right arms are
not moving in the “usual way.” This information could be
utilized to improve the gait recognition results through, for
example, excluding the right arm dynamics if it is known or
detected that the subject is carrying some objects (while there
is no carrying in the gallery). Moreover, these clues drawn
from the LDM gait dynamics could be useful in applications
other than gait recognition, such as gait analysis for the de-
tection of carrying objects or other abnormalities.

5.2. Gait recognition with automatically
extracted silhouettes

In [15], studies on the holistic recognition show that “the low
performance under the impact of surface and time variation
can not be explained by the silhouette quality,” based on the
fact that the noisy silhouettes (extracted semi-automatically)
outperforms the manual (clean) silhouettes due to correlated
errors/noise acting as discriminative information. Different
from [15], the LDM-based gait recognition achieves better
results on the manual (clean) silhouettes than on the auto-
matically extracted (noisy) silhouettes, especially in the rank
5 performance, as shown in Table 3, suggesting that more
accurate silhouette extraction and body pose recovery algo-
rithms could improve the performance of automatic model-
based gait recognition, which agrees with our common be-
lief.

It is also observed that the LDM-based results on the au-
tomatically extracted silhouettes are the worst on probe D,
where the rank 1 and rank 5 recognition rates are only about
half of those on the manual silhouettes. This difference is due
to the fact that our model-based gait recognition relies purely
on the gait dynamics and it seems that a different surface sig-
nificantly affects the accurate estimation of the LDM param-
eters. This suggests that by knowing the fact that the surface
is different, the silhouette extraction and body pose recovery
algorithms should be modified to adapt to (to work better
on) the different surface. Another interesting observation is
that for probe H (with briefcase), the LDM-based approaches
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Table 3: Comparison of the LDM-based and holistic gait recognition algorithms.

Rank 1 recognition rate (%) Rank 5 recognition rate (%)

Probe BL-Man CBGR-Man LDM-Man LDM-Aut BL-Man CBGR-Man LDM-Man LDM-Aut

B 46 49 51(32) 29 66 78 73(76) 49

D 23 26 21(17) 9 39 53 43(39) 26

H 9 16 20(19) 20 36 46 44(39) 40

K 12 15 6(9) 12 39 39 39(42) 27

Average 23 27 25 (19) 18 45 54 50 (49) 35
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Figure 9: The gait recognition performance for the automatically extracted silhouettes.

(both LDM-Man and LDM-Aut) outperform the holistic ap-
proach in rank 1, especially the BL-Man, implying that the
proposed LDM-based gait recognition approach suits situa-
tions with “abnormality“ better than the holistic approach.

Figure 9 depicts the detailed gait recognition results for
the automatically extracted silhouettes and the averaged
recognition rates are shown in thicker lines too. Similar to
the results on the manual silhouettes, the inclusion of the dy-
namics of the arms, the full-body height, the head, and even
the shoulder’s horizontal dynamic (p = 11) improves the av-
erage recognition rates, indicating again that there are other
gait dynamics other than the leg dynamics that are useful
for model-based gait recognition. In addition, it is worthy to
note from Table 3 (the results in brackets for LDM-Man and
the results for LDM-Aut) that for probe K, which is captured
with six months time difference from the gallery set, the in-
clusion of the shape information degrades both the rank 1
and rank 5 recognition rates from 9 to 6 and from 42 to 39,
respectively. While the recognition results for probes B, D,
and H, captured with the same clothing, improves with the
shape parameters, which confirms again that shape informa-
tion works only for the same (or similar) clothing.

6. CONCLUSIONS

Recently, gait recognition has attracted much attention for
its potential in surveillance and security applications. In or-
der to study the gait recognition performance from the dy-
namics of various body parts, this paper extends the layered
deformable model first introduced in [22] for model-based
gait recognition, with 22 parameters defining the body part
lengths, widths, positions, and orientations. Algorithms are
developed to recover human body poses from the manual
silhouettes and the automatically extracted silhouettes. The
robust and efficient mean-shift procedure, average filtering,
and simple geometric operations are employed, and domain
knowledge (including estimation through reliable edges, an-
thropometry, and biomechanics constraints) is incorporated
to achieve accurate recovery. Next, the dynamic time warp-
ing is employed for matching parameter sequences and the
contributions from each parameter are weighted as in Ad-
aBoost.M2. The experimental results on a subset of the gait
challenge data sets show that the LDM-based gait recogni-
tion achieves comparable results (and better results in some
cases) as the holistic approach. It is demonstrated that the
upper-body dynamics, including the arms, the head, and the
shoulders, are important for the identification of individuals
as well. Furthermore, the LDM serves as a powerful tool for
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the analysis of different factors contributing to the gait recog-
nition performance under different conditions and it can be
extended for other gait-related applications. In conclusion,
the LDM-based approach proposed in this paper advances
the technology of automatic model-based gait recognition.
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