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Abstract

Tensorial data are frequently encountered in
various machine learning tasks today and di-
mensionality reduction is one of their most
important applications. This paper extends
the classical principal component analysis
(PCA) to its multilinear version by propos-
ing a novel unsupervised dimensionality re-
duction algorithm for tensorial data, named
as uncorrelated multilinear PCA (UMPCA).
UMPCA seeks a tensor-to-vector projec-
tion that captures most of the variation in
the original tensorial input while produc-
ing uncorrelated features through successive
variance maximization. We evaluate the
UMPCA on a second-order tensorial prob-
lem, face recognition, and the experimental
results show its superiority, especially in low-
dimensional spaces, through the comparison
with three other PCA-based algorithms.

1. Introduction

Various machine learning problems take multi-
dimensional data as input, which are formally called
tensors. The elements of a tensor are to be addressed
by several indices and the number of indices used in the
description defines the order of the tensor object, with
each index defining one “mode” (Lathauwer et al.,
2000). Many real-world data are naturally tensor ob-
jects. For example, matrix data such as gray-level
images are second-order tensors, gray-scale video se-
quences and 3-D objects are third-order tensors. In ad-
dition, streaming data and mining data are frequently
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organized as third-order tensors. For instance, data in
environmental sensor monitoring are often organized
in three modes of time, location and type, and data
in web graph mining are commonly organized in three
modes of source, destination and text. Other appli-
cations involving tensorial data include data center
monitoring, social network analysis, network forensics
and face recognition (Faloutsos et al., 2007). In these
practical applications, tensor objects are often spec-
ified in a high-dimensional tensor space, leading to
the so-called curse of dimensionality. Nonetheless, the
class of tensor objects in most applications are highly
constrained to a subspace, a manifold of intrinsically
low dimension (Shakhnarovich & Moghaddam, 2004),
and feature extraction or dimensionality reduction is
frequently employed to transform a high-dimensional
data set into a low-dimensional space of equivalent
representation while retaining most of the underlying
structure (Law & Jain, 2006).

The PCA is a classical linear method for unsupervised
dimensionality reduction that transforms a data set
consisting of a large number of interrelated variables
to a new set of uncorrelated variables, while retain-
ing as much as possible the variations present in the
original data set (Jolliffe, 2002). PCA on tensor ob-
jects requires their reshaping (vectorization) into vec-
tors in a very high-dimensional space, which not only
results in high computational and memory demands
but also breaks the natural structure and correlation
in the original data (Ye, 2005; Ye et al., 2004; Lu et al.,
2008a). It is believed by many researchers that po-
tentially more compact or useful representations can
be obtained from the original form and PCA exten-
sions operating directly on the tensor objects rather
than their vectorized versions are emerging recently
(Ye et al., 2004; Lu et al., 2008a; Xu et al., 2005).

In (Shashua & Levin, 2001), the tensor rank-one de-
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composition (TROD) is used to represent a class of im-
ages based on variance maximization and (greedy) suc-
cessive residue calculation. A two-dimensional PCA
(2DPCA) is proposed in (Yang et al., 2004) that con-
structs an image covariance matrix using image ma-
trices as inputs. However, linear transformation is
applied only to the right side of image matrices so
the image data is projected in one mode only, result-
ing in poor dimensionality reduction. A more general
algorithm named generalized low rank approximation
of matrices (GLRAM) was introduced in (Ye, 2005),
which applies two linear transforms to both the left
and right sides of input image matrices and results
in a better dimensionality reduction than 2DPCA.
GLRAM is developed from the perspective of approx-
imation while the generalized PCA (GPCA) is pro-
posed in (Ye et al., 2004) from the view of variation
maximization, as an extension of PCA. Later, the con-
current subspaces analysis (CSA) is formulated in (Xu
et al., 2005) for optimal reconstruction of general ten-
sor objects, which can be considered as a generaliza-
tion of GLRAM, and the multilinear PCA (MPCA)
introduced in (Lu et al., 2008a) targets at variation
maximization for general tensor objects in the exten-
sion of PCA to the multilinear case, which can be con-
sidered as a further generalization of GPCA.

However, none of the existing multilinear extensions
of PCA mentioned above takes an important property
of PCA into account, i.e., PCA derives uncorrelated
features, which contain minimum redundancy and en-
sure independence among features. Instead, most of
them produce orthogonal bases in each mode. Al-
though uncorrelated features imply orthogonal projec-
tion bases in PCA, this is not necessarily the case for
its multilinear extension. With this motivation, this
paper investigates multilinear extension of PCA that
can produce uncorrelated features. We propose a novel
uncorrelated multilinear PCA (UMPCA) for unsuper-
vised tensor object dimensionality reduction (feature
extraction). UMPCA is based on the tensor-to-vector
projection (TVP) (Lu et al., 2008b) and it follows the
classical PCA derivation of successive variance maxi-
mization (Jolliffe, 2002). Thus, a number of elemen-
tary multilinear projections (EMPs) are solved to max-
imize the captured variance with the zero-correlation
constraint. The solution is iterative in nature, as many
other multilinear algorithms (Xu et al., 2005; Ye et al.,
2004; Shashua & Levin, 2001).

The rest of this paper is organized as follows. Section
2 reviews basic multilinear notations and operations,
as well as the concept of tensor-to-vector projection.
In Sec. 3, the problem of UMPCA is formulated and
the solution is derived as a sequential iterative process.

Table 1. Notations
Notations Descriptions

Xm, m = 1, ..., M the mth input tensor sample

u(n), n = 1, ..., N the n-mode projection vector

{u(n)T

p , n = 1, ..., N} the pth EMP, where p is the
index of the EMP

ym the projection of Xm on the

TVP {u(n)T

p , n = 1, ..., N}P
p=1

ym(p) = ymp = gp(m) the projection of Xm on the

pth EMP {u(n)T

p , n = 1, ..., N}
gp the pth coordinate vector

Next, Sec. 4 evaluates the effectiveness of UMPCA in
the popular face recognition task through comparison
with PCA, MPCA and TROD. Finally, the conclusions
are drawn in Sec. 5.

2. Multilinear Fundamentals

This section introduces the multilinear notations, op-
erations and projections needed in the presentation of
UMPCA, and for further pursuing of multilinear alge-
bra, (Lathauwer et al., 2000) is a good reference. The
important notations used in this paper are listed in
Table 1 for handy reference.

2.1. Notations and basic multilinear operations

Due to the multilinear nature of tensor objects, new
notations have been introduced in the literature for
mathematical analysis. Following the notations in
(Lathauwer et al., 2000), we denote vectors by low-
ercase boldface letters, e.g., x; matrices by uppercase
boldface letters, e.g., U; and tensors by calligraphic
letters, e.g., A. Their elements are denoted with in-
dices in parentheses. Indices are denoted by lowercase
letters and span the range from 1 to the uppercase
letter of the index, e.g., n = 1, 2, ..., N .

An N th-order tensor A ∈ RI1×I2×...×IN is addressed
by N indices in, n = 1, ..., N , and each in addresses
the n-mode of A. The n-mode product of a tensor A
by a matrix U ∈ RJn×In , denoted by A ×n U, is a
tensor with entries:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN )

=
∑
in

A(i1, i2, ..., iN ) ·U(jn, in). (1)

The scalar product of two tensorsA,B ∈ RI1×I2×...×IN

is defined as:

< A,B >=
∑
i1

...
∑
iN

A(i1, ..., iN ) · B(i1, ..., iN ). (2)

A rank-one tensor A equals to the outer product of N
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vectors: A = u(1) ◦ u(2) ◦ ... ◦ u(N), which means that
A(i1, i2, ..., iN ) = u(1)(i1) ·u(2)(i2) · ... ·u(N)(iN ) for all
values of indices.

2.2. Tensor-to-vector projection

In order to extract uncorrelated features from tenso-
rial data directly, we employ the TVP introduced in
(Lu et al., 2008b), which is a more general form of
the projection in (Shashua & Levin, 2001) and con-
sists of multiple EMPs. An EMP is a multilinear pro-
jection {u(1)T

,u(2)T

, ...,u(N)T } consisting of one unit
projection vector in each mode, i.e., ‖ u(n) ‖= 1 for
n = 1, ..., N , where ‖ · ‖ is the Euclidean norm for
vectors. It projects a tensor X ∈ RI1×I2×...×IN to a
scalar y through the N unit projection vectors as

y = X ×1 u(1)T

×2 u(2)T

...×N u(N)T

=< X ,U >,

where U = u(1) ◦ u(2) ◦ ... ◦ u(N). An EMP can
be viewed as a constrained linear projection since
< X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ),
where vec(·) denotes the vectorized representation.

The TVP of a tensor object X to a vector y ∈
RP consists of P EMPs {u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p =
1, ..., P , which can be written concisely as {u(n)T

p , n =
1, ..., N}Pp=1:

y = X ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1, (3)

where the pth component of y is obtained from the pth

EMP as: y(p) = X ×1 u(1)T

p ×2 u(2)T

p ...×N u(N)T

p . The
TROD (Shashua & Levin, 2001) in fact seeks a TVP
to maximize the captured variance, however, it takes
a heuristic greedy approach. In the next section, we
propose a systematic, more principled formulation by
taking consideration of the correlation among features.

In addition, the TVP for dimensionality reduction here
is related mathematically to the parallel factor analysis
(PARAFAC) originated from psychometrics (Harsh-
man, 1970), also known as the canonical decomposi-
tion (CANDECOMP) (Carroll & Chang, 1970), which
is popular in factor analysis of multi-way data, i.e.,
tensors. However, they are developed from different
perspectives. The PARAFAC in the factorization lit-
erature aims to decompose a higher-order tensor, often
formed by arranging lower-order tensors, into a num-
ber of rank-one tensorial factors explaining the for-
mation of the data. In contrast, the objective of the
TVP for dimensionality reduction here is to learn a
low-dimensional (subspace) representation of a class
of tensor objects from a number of samples so that
the underlying (class) structure is well captured.

3. Uncorrelated Multilinear PCA

This section proposes the UMPCA for unsupervised
dimensionality reduction of tensor objects by first for-
mulating the UMPCA objective function and then
adopting the successive variance maximization ap-
proach and alternating projection method to solve the
problem. In the presentation, for the convenience of
discussion, the training samples are assumed to be
zero-mean 1 so that the constraint of uncorrelated
features is the same as orthogonal features (Koren &
Carmel, 2004).

3.1. Problem formulation

Following the standard derivation of PCA given in
(Jolliffe, 2002), we consider the variance of the princi-
pal components (PCs) one by one. In the TVP setting,
the pth PCs are {ymp

,m = 1, ...,M}, where M is the
number of training samples and ymp

is the projection

of the mth sample Xm by the pth EMP {u(n)T

p , n =
1, ..., N}: ymp

= Xm ×N
n=1 {u

(n)T

p , n = 1, ..., N}. Ac-
cordingly, the variance is measure by their total scatter
Sy

Tp
, which is defined as

Sy
Tp

=
M∑

m=1

(ymp
− ȳp)2, (4)

where ȳp = 1
M

∑
m ymp

. In addition, let gp denote
the pth coordinate vector, with its mth component
gp(m) = ymp

. A formal definition of the unsupervised
multilinear feature extraction problem to be solved in
UMPCA is then given in the following:

A set of M tensor object samples {X1, X2, ...,
XM} are available for training. Each tensor object
Xm ∈ RI1×I2×...×IN assumes values in the tensor
space RI1

⊗
RI2 ...

⊗
RIN , where In is the n-mode di-

mension of the tensor and
⊗

denotes the Kronecker
product. The objective of the UMPCA is to find a
TVP, which consists of P EMPs {u(n)

p ∈ RIn×1, n =
1, ..., N}Pp=1, mapping from the original tensor space
RI1

⊗
RI2 ...

⊗
RIN into a vector subspace RP (with

P <
∏N

n=1 In):

ym = Xm ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1,m = 1, ...,M,
(5)

such that the variance of the projected samples, mea-
sured by Sy

Tp
, is maximized in each EMP direction,

subject to the constraint that the P coordinate vec-
tors {gp ∈ RM , p = 1, ..., P} are uncorrelated.

1When the training sample mean is not zero, it can be
subtracted to make the training samples to be zero-mean.
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In other words, the UMPCA objective is to determine
a set of P EMPs {u(n)T

p , n = 1, ..., N}Pp=1 that maxi-
mize the variance while producing features with zero-
correlation. Thus, the objective function for the pth

EMP is

{u(n)T

p , n = 1, ..., N} = arg max
M∑

m=1

(ymp
− yp)2,

subject to u(n)T

p u(n)
p = 1 and

gT
p gq

‖ gp ‖ ‖ gq ‖
= δpq, p, q = 1, ..., P, (6)

where δpq is the Kronecker delta (defined as 1 for p = q
and as 0 otherwise).

3.2. The UMPCA algorithm

To solve the UMPCA problem (6), we follow the suc-
cessive variance maximization approach in the deriva-
tion of PCA in (Jolliffe, 2002). The P EMPs
{u(n)T

p , n = 1, ..., N}Pp=1 are determined one by one
in P steps, with the pth step obtaining the pth EMP:

Step 1: Determine the first EMP {u(n)T

1 , n =
1, ..., N} by maximizing Sy

T1
without any con-

straint.

Step 2: Determine the second EMP {u(n)T

2 , n =
1, ..., N} by maximizing Sy

T2
subject to the con-

straint that gT
2 g1 = 0.

Step p(p = 3, ..., P ): Determine the pth EMP
{u(n)T

p , n = 1, ..., N} by maximizing Sy
Tp

subject
to the constraint that gT

p gq = 0 for q = 1, ..., p−1.

In order to solve for the pth EMP {u(n)T

p , n = 1, ..., N},
we need to determineN sets of parameters correspond-
ing to N projection vectors, u(1)

p ,u(2)
p , ...u(N)

p , one in
each mode. Unfortunately, simultaneous determina-
tion of these N sets of parameters in all modes is a
complicated non-linear problem without an existing
optimal solution, except when N = 1, which is the
classical PCA where only one projection vector is to
be solved. Therefore, we follow the approach in the
alternating least square (ALS) algorithm (Harshman,
1970) to solve this multilinear problem. For each EMP
to be determined, the parameters of the projection vec-
tor u(n∗)

p for each mode n∗ are estimated one mode by
one mode separately, conditioned on {u(n)

p , n 6= n∗},
the parameter values of the projection vectors in the
other modes.

To solve for u(n∗)
p in the n∗-mode, assuming that

{u(n)
p , n 6= n∗} is given, the tensor samples are pro-

jected in these (N − 1) modes {n 6= n∗} first to obtain
the vectors

ỹ(n∗)
mp

= Xm ×1 u(1)T

p ...×n∗−1 u(n∗−1)T

p

×n∗+1u(n∗+1)T

p ...×N u(N)T

p , (7)

where ỹ(n∗)
mp ∈ RIn∗ . This conditional subproblem then

becomes to determine u(n∗)
p that projects the vector

samples {ỹ(n∗)
mp ,m = 1, ...,M} onto a line so that the

variance is maximized, subject to the zero-correlation
constraint, which is a PCA problem with the input
samples {ỹ(n∗)

mp ,m = 1, ...,M}. The corresponding to-
tal scatter matrix S̃(n∗)

Tp
is then defined as

S̃(n∗)
Tp

=
M∑

m=1

(ỹ(n∗)
mp
− ¯̃y(n∗)

p )(ỹ(n∗)
mp
− ¯̃y(n∗)

p )T , (8)

where ¯̃y(n∗)
p = 1

M

∑
m ỹ(n∗)

mp . With (8), we are ready
to solve for the P EMPs. For p = 1, the u(n∗)

1 that

maximizes the total scatter u(n∗)T

1 S̃(n∗)
T1

u(n∗)
1 in the

projected space is obtained as the unit eigenvector of
S̃(n∗)

T1
associated with the largest eigenvalue. Next, we

show how to determine the pth (p > 1) EMP given
the first (p− 1) EMPs. Given the first (p− 1) EMPs,
the pth EMP aims to maximize the total scatter Sy

Tp
,

subject to the constraint that features projected by
the pth EMP are uncorrelated with those projected
by the first (p − 1) EMPs. Let Ỹ(n∗)

p ∈ RIn∗×M be
a matrix with ỹ(n∗)

mp as its mth column, i.e., Ỹ(n∗)
p =[

ỹ(n∗)
1p

, ỹ(n∗)
2p

, ..., ỹ(n∗)
Mp

]
, then the pth coordinate vector

is gp = Ỹ(n∗)T

p u(n∗)
p . The constraint that gp is un-

correlated with {gq, q = 1, ..., p − 1} can be written
as

gT
p gq = u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1. (9)

Thus, u(n∗)
p (p > 1) can be determined by solving the

following constrained optimization problem:

u(n∗)
p = arg max u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p , (10)

subject to u(n∗)T

p u(n∗)
p = 1 and

u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1,

The solution is given by the following theorem:
Theorem 1. The solution to the problem (10) is the
(unit-length) eigenvector corresponding to the largest
eigenvalue of the following eigenvalue problem:

Ψ(n∗)
p S̃(n∗)

Tp
u = λu, (11)
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where

Ψ(n∗)
p = IIn∗ − Ỹ(n∗)

p Gp−1Φ−1
p GT

p−1Ỹ
(n∗)T

p , (12)

Φp = GT
p−1Ỹ

(n∗)T

p Ỹ(n∗)
p Gp−1, (13)

Gp−1 = [g1 g2 ...gp−1] ∈ RM×(p−1), (14)

and IIn∗ is an identity matrix of size In∗ × In∗ .

Proof. First, Lagrange multipliers can be used to
transform the problem (10) to the following to include
all the constraints:

F (u(n∗)
p ) = u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p − ν

(
u(n∗)T

p u(n∗)
p − 1

)
−

p−1∑
q=1

µqu(n∗)T

p Ỹ(n∗)
p gq, (15)

where ν and {µq, q = 1, ..., p− 1} are Lagrange multi-
pliers.

The optimization is performed by setting the partial
derivative of F (u(n∗)

p ) with respect to u(n∗)
p to zero:

∂F (u(n∗)
p )

∂u(n∗)
p

= 2S̃(n∗)
Tp

u(n∗)
p − 2νu(n∗)

p

−
p−1∑
q=1

µqỸ(n∗)
p gq = 0. (16)

Multiplying (16) by u(n∗)T

p results in

2u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p − 2νu(n∗)T

p u(n∗)
p = 0

⇒ ν =
u(n∗)T

p S̃(n∗)
Tp

u(n∗)
p

u(n∗)T

p u(n∗)
p

, (17)

which indicates that ν is exactly the criterion to be
maximized, with the constraint on the norm of the
projection vector incorporated.

Next, a set of (p− 1) equations are obtained by multi-
plying (16) by gT

q Ỹ(n∗)T

p , q = 1, ..., p− 1, respectively:

2gT
q Ỹ(n∗)T

p S̃(n∗)
Tp

u(n∗)
p −

p−1∑
q=1

µqgT
q Ỹ(n∗)T

p · Ỹ(n∗)
p gq

= 0. (18)

Let
µp−1 = [µ1 µ2 ... µp−1]T (19)

and use (13) and (14), then the (p − 1) equations of
(18) can be represented in a single matrix equation as
following:

2GT
p−1Ỹ

(n∗)T

p S̃(n∗)
Tp

u(n∗)
p −Φpµp−1 = 0. (20)

Thus,

µp−1 = 2Φ−1
p ·GT

p−1Ỹ
(n∗)T

p S̃(n∗)
Tp

u(n∗)
p . (21)

Since from (14) and (19),

p−1∑
q=1

µqỸ(n∗)
p gq = Ỹ(n∗)

p Gp−1µp−1, (22)

the equation (16) can be written as

2S̃(n∗)
Tp

u(n∗)
p − 2νu(n∗)

p − Ỹ(n∗)
p Gp−1µp−1 = 0

⇒νu(n∗)
p = S̃(n∗)

Tp
u(n∗)

p − Ỹ(n∗)
p Gp−1

µp−1

2

=
[
IIn∗ − Ỹ(n∗)

p Gp−1Φ−1
p GT

p−1Ỹ
(n∗)T

p

]
S̃(n∗)

Tp
u(n∗)

p .

Using the definition in (12), an eigenvalue problem is
obtained as Ψ(n∗)

p S̃(n∗)
Tp

u = νu. Since ν is the criterion
to be maximized, the maximization is achieved by set-
ting u(n)∗

p to be the (unit) eigenvector corresponding
to the largest eigenvalue of (11).

By setting Ψ(n∗)
1 = IIn∗ and from Theorem 1, we have

a unified solution for UMPCA: for p = 1, ..., P , u(n∗)
p

is obtained as the unit eigenvector of Ψ(n∗)
p S̃(n∗)

Tp
asso-

ciated with the largest eigenvalue. Algorithm 1 sum-
marizes the UMPCA developed here.

Algorithm 1 Uncorrelated Multilinear Principal
Component Analysis (UMPCA)

Input: A set of tensor samples {Xm ∈
RI1×...×IN ,m = 1, ...,M}, the subspace dimension-
ality P , and the maximum number of iterations K.
for p = 1 to P do

for n = 1 to N do
Initialize u(n)

p(0) = 1/ ‖ 1 ‖.
end for
for k = 1 to K do

for n = 1 to N do
Calculate ỹ(n)

mp = Xm ×1 u(1)T

p(k) ... ×n−1

u(n−1)T

p(k) ×n+1 u(n+1)T

p(k−1) ...×N u(N)T

p(k−1) , for m =
1, ...,M .
Calculate Ψ(n)

p and S̃(n)
Tp

. Set u(n)
p(k) to be

the (unit) eigenvector of Ψ(n)
p S̃(n)

Tp
associated

with the largest eigenvalue.
end for

end for
Set u(n)

p = u(n)
pk for all n.

Calculate the coordinate vector gp.
end for
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3.3. Initialization, projection order and
termination

As an iterative algorithm, the UMPCA may be af-
fected by the initialization method, the projection or-
der and the termination conditions. Due to the space
constraint, these issues, as well as the convergence and
computational issues, are not studied here. Instead,
we adopt simple implementation strategies for them.
First, we use the uniform initialization for UMPCA,
where all n-mode projection vectors are initialized to
have unit length and the same value along the In di-
mensions in n-mode, which is equivalent to the all ones
vector 1 with proper normalization. Second, as shown
in Algorithm 1, the projection order, which is the mode
ordering in computing the projection vectors, is from
1-mode to N -mode, as in other multilinear algorithms
(Ye, 2005; Xu et al., 2005; Lu et al., 2008a). Third,
the iteration is terminated by setting K, the maximum
number of iterations.

4. Experimental Evaluation

The proposed UMPCA can potentially benefit various
applications involving tensorial data, as mentioned in
Sec. 1. Since face recognition has practical impor-
tance in security-related applications such as biomet-
ric authentication and surveillance, it has been used
widely for evaluation of unsupervised learning algo-
rithms (Shashua & Levin, 2001; Yang et al., 2004; Xu
et al., 2005; Ye, 2005). Therefore, in this section, we
focus on evaluating the effectiveness of UMPCA on
this popular classification task through performance
comparison with existing unsupervised dimensionality
reduction algorithms.

4.1. The FERET database

The Facial Recognition Technology (FERET)
database (Phillips et al., 2000) is widely used for
testing face recognition performance, with 14,126
images from 1,199 subjects covering a wide range
of variations in viewpoint, illumination, facial ex-
pression, races and ages. A subset of this database
is selected in our experimental evaluation and it
consists of those subjects with each subject having
at least eight images with at most 15 degrees of
pose variation, resulting in 721 face images from 70
subjects. Since our focus here is on the recognition of
faces rather than their detection, all face images are
manually cropped, aligned (with manually annotated
coordinate information of eyes) and normalized to
80 × 80 pixels, with 256 gray levels per pixel. Figure
1 shows some sample face images from two subjects
in this FERET subset.

Figure 1. Examples of face images from two subjects in the
FERET subset used in our experimental evaluation.

4.2. Face recognition performance comparison

In the evaluation, we compare the performance of
the UMPCA against three PCA-based unsupervised
learning algorithms: the PCA (eigenface) algorithm
(Turk & Pentland, 1991), the MPCA algorithm (Lu
et al., 2008a)2 and the TROD algorithm (Shashua &
Levin, 2001). The number of iterations in TROD and
UMPCA is set to ten, with the same (uniform) initial-
ization used. For MPCA, we obtain the full projection
and select the most descriptive P features for recogni-
tion. The features obtained by these four algorithms
are arranged in descending variation captured (mea-
sured by respective total scatter). For classification of
extracted features, we use the nearest neighbor classi-
fier (NNC) with Euclidean distance measure.

Gray-level face images are naturally second-order ten-
sors (matrices), i.e., N = 2. Therefore, they are
input directly as 80 × 80 tensors to the multilin-
ear algorithms (MPCA, TROD, UMPCA), while for
PCA, they are vectorized to 6400 × 1 vectors as in-
put. For each subject in a face recognition experiment,
L(= 1, 2, 3, 4, 5, 6, 7) samples are randomly selected for
unsupervised training and the rest are used for testing.
We report the results averaged over ten such random
splits (repetitions).

Figures 2 and 3 show the detailed results3 for L = 1
and L = 7, respectively. L = 1 is an extreme small
sample size scenario where only one sample per class is
available for training, the so-called one training sample
(OTS) case important in practice (Wang et al., 2006),
and L = 7 is the maximum number of training samples
we can use in our experiments. Figures 2(a) and 3(a)
plot the correct recognition rates against P , the di-
mensionality of the subspace for P = 1, ..., 10, and Figs
2(b) and 3(b) plot those for P = 15, ..., 80. From the
figures, UMPCA outperforms the other three methods
in both cases and across all dimensionality, indicating
that the uncorrelated features extracted directly from
the tensorial face data are more effective in classifi-

2Note that MPCA with N = 2 is equivalent to GPCA.
3Note that for PCA and UMPCA, there are at most 69

features when L = 1 (only 70 faces for training).
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(a) (b)

(c) (d)

Figure 2. Detailed face recognition results on the FERET
database for L = 1: (a) performance curves for the low-
dimensional case, (b) performance curves for the high-
dimensional case, (c) the variation captured by individual
features and (d) the correlation among features.

(a) (b)

(c) (d)

Figure 3. Detailed face recognition results on the FERET
database for L = 7: (a) performance curves for the low-
dimensional case, (b) performance curves for the high-
dimensional case, (c) the variation captured by individual
features and (d) the correlation among features.

cation. The figures also show that for UMPCA, the
recognition rate saturates around P = 30, which can
be explained by observing the variance captured by in-
dividual features as shown in Figs. 2(c) and 3(c) (in log
scale). These figures show that the variance captured

by UMPCA is considerably lower than those captured
by the other methods, which is due to its constraints
of zero-correlation and TVP. Despite capturing lower
variance, UMPCA is superior in the recognition task
performed. Nonetheless, when the variance captured
is too low, those corresponding features are no longer
descriptive enough to contribute in classification, lead-
ing to the saturation.

In addition, we also plot the average correlation of in-
dividual features with all the other features in Figs.
2(d) and 3(d). As supported by theoretical deriva-
tion, features extracted by PCA and UMPCA are un-
correlated. In contrast, features extracted by MPCA
and TROD are correlated, with TROD features have
higher correlation on average.

Table 2. Face recognition results on the FERET database:
the recognition rates (in percentage) for various Ls and P s.

L P 1 5 10 20 50 80
PCA 2.8 20.2 32.0 39.1 43.6 45.1

2 MPCA 2.6 21.4 28.1 38.9 44.6 46.0
TROD 3.6 19.3 30.6 38.4 43.0 44.3

UMPCA 8.1 27.6 40.6 45.0 45.8 45.7
PCA 2.7 23.9 37.1 45.9 51.3 52.6

3 MPCA 2.3 25.9 34.8 45.5 52.0 53.3
TROD 4.0 23.5 36.1 44.5 50.1 51.7

UMPCA 7.5 35.5 49.8 56.0 56.6 56.6
PCA 2.7 25.5 41.7 49.4 56.8 57.9

4 MPCA 2.3 28.7 39.4 50.2 57.5 58.9
TROD 4.2 25.3 41.1 49.0 55.1 56.6

UMPCA 8.5 39.5 56.2 63.5 64.1 64.2
PCA 3.0 28.9 47.1 55.6 63.9 64.6

5 MPCA 2.6 33.0 43.2 56.8 64.3 65.8
TROD 4.5 28.4 47.2 55.6 62.0 63.9

UMPCA 8.1 43.6 61.7 68.2 69.1 69.1
PCA 2.8 30.3 49.0 58.5 66.7 68.1

6 MPCA 2.2 33.5 45.7 59.7 67.9 69.7
TROD 4.3 27.3 49.3 58.6 64.7 66.9

UMPCA 9.1 45.6 62.9 70.7 71.8 71.8

The recognition results for P = 1, 5, 10, 20, 50, 80 are
listed in Table 2 for L = 2, 3, 4, 5, 6, where the best
recognition results among the four methods are shown
in bold. More detailed results are omitted here to
save space. From the table, UMPCA achieves supe-
rior recognition results in all cases except for P = 80
and L = 2, where the difference with the best results
by MPCA is small (0.3%). In particular, for smaller
P (1, 5, 10, 20), UMPCA outperforms the other algo-
rithms significantly, demonstrating its superior capa-
bility in classifying faces in low-dimensional spaces.
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5. Conclusions

This paper proposes a novel uncorrelated multilinear
PCA algorithm, where uncorrelated features are ex-
tracted directly from tensorial representation through
a tensor-to-vector projection. The algorithm succes-
sively maximizes variance captured by each elemen-
tary projection while enforcing the zero-correlation
constraint. The solution employs the alternating pro-
jection method and is iterative. Experiments on face
recognition demonstrate that compared with other
unsupervised learning algorithms including the PCA,
MPCA and TROD, the UMPCA achieves the best re-
sults and it is particularly effective in low-dimensional
spaces. Thus, face recognition through unsupervised
learning benefits from the proposed UMPCA and in
future research, it is worthwhile to investigate whether
UMPCA can contribute in other unsupervised learning
tasks, such as clustering.
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