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ABSTRACT

This paper presents a localized coarse-to-fine algorithm for
efficient and accurate pedestrian localization and silhouette
extraction for the Gait Challenge data sets. The coarse de-
tection phase is simple and fast. It locates the target quickly
based on temporal differences and some knowledge on the
human target. Based on this coarse detection, the fine detec-
tion phase applies a robust background subtraction algorithm
to the coarse target regions and the detection obtained is fur-
ther processed to produce the final results. This algorithm has
been tested on 285 outdoor sequences from the Gait Chal-
lenge data sets, with wide variety of capture conditions. The
pedestrian targets are localized very well and silhouettes ex-
tracted resemble the manually labeled silhouettes closely.

1. INTRODUCTION

Gait recognition [2], the identification of individuals in video
sequences by the way they walk, has recently gained signifi-
cant attention. This interest is strongly motivated by the need
for automated person identification system at a distance in
visual surveillance and monitoring applications in security-
sensitive environments such as banks and airports, where other
biometrics such as fingerprint, face or iris information are not
available at high enough resolution for recognition [3]. In
[4], Sakar et al. introduced the HumanID Gait Challenge
problem, providing a set of twelve experiments of increas-
ing difficulty, which examine the impact of five covariates on
performance. The challenge provided the means to measure
progress in the area and various researchers have reported
results on these data sets [4, 5, 6]. However, most of them
are using silhouettes obtained semi-automatically with man-
ual outlining of bounding boxes [4]. In [5], the silhouettes
are extracted automatically but under the assumption that the
paths of the silhouette centroid must be smooth to a second
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degree polynomial. Moreover, the Gait Challenge data sets
include difficult sequences with noise resulting from heavy
shadows, camouflaging effects, other subjects in the scene,
etc. Automatic handling of these difficulties is important to
the advancement of the gait recognition research.

There are a number of background subtraction algorithms
available but most of them are pixel-wise processing [7]. In
[1], a novel background subtraction algorithm using Markov
thresholds is proposed. This method extracts the silhouettes
of moving objects from a stationary background using Markov
random fields (MRF) of binary segmentation variates so that
the spatial and temporal dependencies imposed by moving
objects on their images are exploited. It is shown that their
method produces more accurate and visually appealing sil-
houettes that are less prone to noise and background camou-
flaging effects than traditional per-pixel based methods. Three
MRFs were proposed with increasing complexity. However,
since an annealing procedure is needed, it is a costly and slow
algorithm, especially when applied to high-resolution full size
color sequences, such as those in the Gait Challenge data sets.

In this paper, a coarse-to-fine approach is proposed for au-
tomatic pedestrian localization and silhouette extraction for
the Gait Challenge data sets, where only one pedestrian in the
view field is of interest. The coarse detection phase is simple
and fast to localize the subject roughly and the fine detec-
tion phase applies the background subtraction using Markov
thresholds (BSMT) algorithm [1] to get an accurate estima-
tion of the silhouettes. Domain knowledge (e.g., on the shape
and motion of the pedestrian) is incorporated to produce ro-
bust detection results. Experiments show robust pedestrian lo-
calization results and improved silhouette extraction by eval-
uation against manually labeled silhouettes (as the ground
truth), compared with the methods in [4] and [5].

2. THE PROPOSED ALGORITHM

The proposed pedestrian localization and silhouette extraction
algorithm consists of two phases, as shown in Fig. 1.



Fig. 1. The coarse-to-fine pedestrian localization and silhou-
ette extraction algorithm.

2.1. Silhouette extraction difficulties

The Gait Challenge data sets are captured under various out-
door conditions. Since they are outdoor data sets, the exis-
tence of other pedestrians, slow-motion of pedestrians, heavy
shadows and flattering construction strips impose significant
difficulties in successful extraction of the pedestrian subject.
Fig. 2 shows some examples of the difficulties.

(a) Heavy shadow. (b) Other subjects in the scene.

(c) Slow motion (eight successive frames shown).

Fig. 2. Examples of difficulties in pedestrian silhouette ex-
traction for the Gait Challenge data sets.

Background subtraction algorithms [7] are commonly used
to generate silhouettes. In [4], bounding boxes around the
moving person are defined semiautomatically in each frame
of a sequence, and silhouettes are then extracted by adaptively
deciding on the foreground and background labels for each

frame by estimating the foreground and background likeli-
hood distributions using the iterative expectation maximiza-
tion (EM) procedure, with Gaussian Mixture Model (GMM)
for the observations. In [5], the walking path is assumed to be
smooth to a second degree polynomial, and bounding boxes
are obtained through repeated robust estimation, with Gaus-
sian model for background modeling. The algorithm pro-
posed in this paper is fully automatic and there is no specific
assumption made regarding the walking path of the pedestri-
ans. Furthermore, successful silhouette extraction by back-
ground subtraction is not always possible, especially for the
first a number of frames (since it takes time to learn the back-
ground model) and in the case of slow motion of the sub-
ject. Thus, pedestrian localization is another objective besides
silhouette extraction so that other algorithms such as model-
based solutions [8] can be applied in the case of silhouette
extraction failure.

2.2. Coarse detection: simple and fast

When a new frame arrives, the proposed algorithm first de-
tects its foreground pixels in a coarse region Rc centered at
the previous fine detection box Bf with an offset of α pixels
at each side.

A gray map M1 is used to record the maximum pixel
differences (across the color channels: red, green and blue).
Foreground pixels F1 are detected by thresholding the simple
frame differences with threshold Td.

If the number of foreground pixels detected exceeds a
threshold Tn1, the spatial distribution of these pixels is ex-
amined. Pedestrian silhouettes to be extracted are large ob-
jects with a roughly rectangular shape. Therefore, the human
subject is localized by searching for a rectangular box enclos-
ing sufficiently large number (Tn2) of foreground pixels F1,
with the left-top corner of the rectangular region being a fore-
ground pixel (in F1) with at least two connected pixels in F1.
All pixels in the rectangular box found are labeled as fore-
ground pixels in F2, resulting in a binary map M2.

Next, a bounding box is obtained for the target pedestrian.
For foreground pixels (F2) in M2, the box width and height
are obtained from the maximum and minimum row and col-
umn indexes and the box center is determined by the centroid
(xc, yc) of the foreground pixels in M2, with pixel frame dif-
ferences in M1 as the weight:

xc =

∑
(x,y)∈F2

x · M1(x, y)∑
(x,y)∈F2

M1(x, y)
, (1)

yc =

∑
(x,y)∈F2

y · M1(x, y)∑
(x,y)∈F2

M1(x, y)
. (2)

Through the weighting, the bounding box center is biased to-
wards locations with larger pixel frame differences that are
more confident to be true foreground pixels. A pedestrian typ-
ically results in a box with the height greater than the width,



thus, only those boxes satisfying this constraint are consid-
ered as valid detection. When both the current detection and
previous detection are valid, the variation in box width and
height, and the changes of the four box side positions are lim-
ited to a small number, since silhouette sizes and positions are
expected to vary gradually in pedestrian walking. The output
of this coarse detection process is a coarse box Bc.

If the current detection is invalid (detection failure), the
current coarse detection box Bt

c is set to Bt−1
c , where the su-

perscript is the time index. This is especially useful when the
cause of detection failure is slow motion of the subject.

2.3. Fine detection: robust and accurate

The outputs of this procedure are the centered fine detection
region Rc

f , the fine detection box Bf , and the silhouette Sf .
The BSMT algorithm is applied to Rf , which is centered

at the detected coarse bounding box Bc, with offset of β pixels
(β < α), to get a raw silhouette Sr. The background model is
updated using the Gaussian mixture model [9], with the pixels
outsideRf considered as all background pixels and the pixels
inside Rf according to the BSMT results.

The resulted silhouette Sr is further processed to obtain
Bf and Sf . The vertical and horizontal projections of Sr are
obtained. From the horizontal projection, the top (minimum
row) and bottom (maximum row) of Bf are determined. Next,
based on connected region analysis of the vertical projections,
the silhouette Sr is separated into clusters, and the fine detec-
tion bounding box Bf of the pedestrian corresponds to the
cluster with the maximum vertical projection. The region Rf

is then horizontally re-centered at the foreground horizontal
centroid of the silhouette Sr to get Rc

f . The final silhouette
extracted Sf is the portion of Sr that is within Rc

f .

2.4. Initial detection

At the beginning of one gait sequence, no knowledge is avail-
able about the subject’s whereabouts. Therefore, for the first a
few frames, the coarse detection procedure is skipped andRf

is set to be the whole frame in the fine detection procedure
until the number of foreground pixels in the fine detection
box Bf exceeds some threshold (e.g., 50) so that it is confi-
dent that a pedestrian is localized well in the frame. Thus, the
proposed algorithm has a “slow-start” feature.

3. EXPERIMENTAL RESULTS

The proposed algorithm is tested on 285 sequences from the
five Gait Challenge data sets (the gallery and probes B, D,
H and K), with an average of 630 frames in each sequence.
Each frame is a color (RGB) image of size 480 × 720 and
all the following parameters are determined experimentally,
with reference to the recommendations in [1] for background
subtraction. The rectangular box searched in step 2 of the

coarse detection is of size 100 × 50, and α = 100, β = 25,
Td = 15, Tn1 = 100 and Tn2 = 500. The sizes of the bound-
ing boxes (Bc, Bf ) are bounded by a maximum of 250× 150
and minimum of 100× 50. The background is modeled by 3
Gaussian mixtures [1, 9], with the weight learning rate set to
0.005 and the Gaussian learning rate set to 0.05. In the BSMT
algorithm, the M1 structure is used, with 30 iterations in the
annealing procedure.

3.1. Pedestrian localization results

Since it takes time to learn the background model, the target
subject is not expected to be localized well at the beginning of
a sequence. Thus, the localization performance is evaluated
on frames after it is confident that the subject is located well,
determined by the number of foreground pixels in the fine
detection bounding box Bf .

On average, approximately 50 frames are needed to local-
ize the pedestrian well (i.e., to gain confidence on the sub-
ject’s whereabouts). Denote the number of foreground pixels
in Sr as Fs and define the dislocation D as

D =
|XRf

cs −WRf
/2|

WRf
/2

, (3)

where X
Rf
cs is the foreground horizontal centroid of Sr (with

the origin at the left top corner of Rf ) and WRf
is the width

of Rf (so that WRf
/2 is the horizontal center of Rf ). An

error is logged if Fs < 50 or D > 0.25 (these threshold val-
ues are determined through visual examination of the results).
Experiments show that only 117 (≈ 0.07%) out of 165, 749
frames are in error. Furthermore, visual examination of the
results (especially frames in error) shows that the pedestrian
subjects are all located well except that in a few frames, some
(mostly lower) portions of the pedestrian bodies are cut and
missing, and sometimes only small portions of the complete
silhouettes can be obtained through background subtraction.

As mentioned before, pedestrian localization in case of
silhouette extraction failure is useful to further processing for
better silhouette extraction, e.g. by employing human body
model [8] and appearance modeling [10, 11, 12].

3.2. Silhouette extraction results

The silhouette extraction performance is evaluated by mea-
suring the resemblance between the extracted silhouettes and
the corresponding manually labeled silhouettes in [13], with
a total number of 10005 frames available. The metric used
measures the ratio of the intersection of the silhouettes to the
union of the silhouettes:

R(A,B) =
A

⋂
B

A
⋃

B
, (4)

where A and B are binary segmentations (silhouettes). This
metric is also called the Tanimoto similarity measure and used
in [4]. The performance comparison is shown in Fig. 3.



In Fig. 3, number 1 on the horizontal axis represents the
Gallery set and numbers 2 to 5 represent probes B, D, H and
K, respectively. The last number 6 represents the average of
these five sets. The vertical axis represents the average of the
metric (4), measured against the manually labeled silhouettes
in [13]. The figure shows the results obtained by the semi-
automatic methods of USF (USF Semi-Auto), the proposed
coarse-to-fine algorithm (UT Coarse-to-Fine) and the silhou-
ette refinement algorithm of MIT (MIT Sil-Refine). The sil-
houettes for probes H and K are not available for the MIT
Sil-Refine algorithm. The proposed algorithm (UT Coarse-
to-Fine) is observed to have consistently better performance
than the other two methods.

Fig. 3. Performance comparison through resemblance with
the manually labeled silhouettes.

4. CONCLUSIONS AND FUTURE WORK

Recently, gait recognition has attracted much attention for
its potential to surveillance and security applications. The
release of the Gait Challenge data sets provides a common
database for testing and evaluation of gait recognition algo-
rithms. The difficulties in the data sets include noise resulting
from slow motion of subjects, heavy shadow, other moving
subjects and objects in the scene.

This paper proposes a coarse-to-fine automatic pedestrian
localization and silhouette extraction algorithm. The coarse
detection phase quickly locates the subject through frame dif-
ferencing and thresholding. The fine detection phase applies
a robust background subtraction (using Markov threshold) al-
gorithm [1] to get a more accurate detection, with further
post-processing to refine the results. Experiments show that
with localized coarse-to-fine processing, the proposed algo-
rithm achieves robust localization results and the silhouettes

extracted resemble better with the manually labeled silhou-
ettes (ground truth), compared with two algorithms in the lit-
erature.

Future work includes applying human body model such as
the layered deformable model developed recently [8] and ap-
pearance modeling [10, 11, 12] to help silhouette extraction,
especially in detection failure handling.
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