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Abstract—This paper proposes a color-based video analytic
system for quantifying limb movements in epileptic seizure
monitoring. The system utilizes colored pyjamas to facilitate
limb segmentation and tracking. Thus, it is unobtrusive and
requires no sensor/marker attached to patient’s body. We employ
Gaussian mixture models in background/foreground modeling,
and detect limbs through a coarse-to-fine paradigm with graph-
cut-based segmentation. Next, we estimate limb parameters
with domain knowledge guidance, and extract displacement
and oscillation features from movement trajectories for seizure
detection/analysis. We report studies on sequences captured in
an epilepsy monitoring unit. Experimental evaluations show that
the proposed system has achieved comparable performance to
EEG-based systems in detecting motor seizures.

Index Terms—Epilepsy, seizure, movement quantification,
video, monitoring, color-based.

I. INTRODUCTION

Epileptic seizures are transient symptoms of epilepsy, a
serious brain dynamical disorder, due to abnormal excessive
or synchronous neuronal activity in the brain [1]–[3]. A popu-
lar technique for seizure detection is Electroencephalogram
(EEG) [4]–[9]. E.g., the work in [7] extracts features for
seizure recognition from EEG signals arranged as a third-
order tensor [10], [11]. EEG-based approach requires patients
to wear electrodes on scalp and remain attached to EEG
equipment during monitoring.

Many epileptic seizures induce uncoordinated movements in
a patient’s body, such as jerking or stiffening. Unfortunately,
traditional naked-eye examination does not allow for quanti-
tative analysis of the amplitude and frequency of movements
in seizures [12]. Some researchers attempt to detect seizures
through quantifying body movements with attached markers
or sensors [12]–[14]. The works in [12], [13] attach infrared
reflective markers or white foam markers to a patient’s body
for movement quantification. However, these markers are
often identified manually with mouse clicking and lead to
correspondence difficulties. Thus, only short sequences can
be analyzed. E.g., the results in [13] show only up to 23
seconds (sec) while only about 14 sec is analyzed in [12]. On
the other hand, the work in [14] performs visual analysis of
signals from accelerometers worn on a patient’s body to detect
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seizures. As attached markers/sensors often lead to discomfort
and are susceptible to dislocation over time, these solutions are
problematic for long-term monitoring.

This paper focuses on unobtrusive video-based seizure
detection. To the best of our knowledge, the only existing
system in this category is developed by Karayiannis et al.
for neonates [15]–[19]. They select anatomic sites on moving
limbs by thresholding the motion vector magnitudes and then
track the selected sites. They quantify limb motion by temporal
motion-strength signals extracted from video segments. As this
approach relies purely on motion information, the level of
quantification details is limited and coarse. Furthermore, as
a motion-based method, tracking tends to become unreliable
over time. Thus, the maximum length of the processed video
segments in [15]–[19] is only 20 sec and this approach is not
suitable for long-term monitoring either.

This paper proposes a new unobtrusive color-based video
analytic system for quantifying limb movements in epileptic
seizure monitoring, as shown in Fig. 1 (A preliminary version
of this work was reported in [20]). We aim to quantify
movements in greater details than the motion-based system
in [15]–[19] for sequences of longer durations. The proposed
system requires a patient to wear pyjamas with limb portion
colored, instead of attaching sensors or markers. A camera
mounted on the ceiling captures videos of patient activities in
a clinical epilepsy monitoring unit (EMU). We excerpt epochs
of activities and perform automated video analysis following a
simple manual initialization. Specifically, we detect the limbs,
quantify them with three parameters each, and extract features
from parameter trajectories for seizure detection/analysis.

The main contributions of this work are as follows.
1) Introduction of a color-pyjamas-based video analytic sys-

tem for patient monitoring. It does not attach anything
to the body, providing more comfortable experience than
those in [7], [12]–[14]. Furthermore, colored pyjamas can
be worn easily. In contrast, electrodes, markers or sensors
often need a professional to attach to a patient.

2) Proposal of limb movement quantification and seizure
detection algorithms for the color-based video system.
Besides a simple user initialization on the first frame,
the algorithms are fully automatic and require no manual
input, unlike [12], [13]. The proposed algorithms utilize
color pyjamas for robust limb segmentation and tracking,
unlike the purely motion-based method in [15]–[19].

3) Evaluation of the proposed system against EEG-based
systems. The average length of studied video sequences
is 109 sec, where the longest sequence is 163 sec. In
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Fig. 1. Illustration of the proposed video analytic system. Limb movements are detected based on color pyjamas and then analyzed for epileptic seizure
detection. The patient’s face is masked in this paper for anonymity and this is not part of the user initialization.

contrast, the length in [12] is 14 sec while that in [15]–
[19] is only up to 20 sec, and there is no evaluation
against EEG-based systems in [12], [13], [15]–[19].

II. METHODS

A. Study Description and Experimental Setup
This study was conducted at the KK Women’s and Chil-

dren’s Hospital, Singapore. We recruited those pediatric
epileptic patients with informed consent obtained from their
guardians. They were subjected to the standard video-EEG
monitoring in the EMU. Moreover, we required them to wear
color pyjamas and also mounted a second camera on the
ceiling facing downward pointing to the center of patient bed
for a full view. Considering user acceptability, we chose only
two colors for the limb portions of pyjamas and this design
was well accepted by our patients. The second camera records
videos in color with 24-bit depth (RGB) at 12 frames per
sec (fps) with resolution of 384× 288 pixels, saved in JPEG
format for our study. In the standard EMU setting, light is only
dimmed rather than completely turned off during night as the
video-EEG system using a RGB camera as well. Furthermore,
we have chosen bright colors (yellow and magenta) instead
of darker colors for better capturing quality in dimmed light
conditions. The auto-gain function of the second camera is
also on for enhanced video quality. In addition, the EMU
room temperature is kept at 20-24◦C (air-conditioned) such
that blanket is not necessary at night.

Seizure events were identified from the standard video-EEG
system by epileptologists. As a video-based approach, our
system is limited to detect seizures with visible motor signs
[3]. Thus, in this study, we consider only motor/hypermotor
seizures. Five epileptic patients between the age of 1-15 years
(four males, one female) are selected with fifteen (motor)
seizures in total. We obtain the time and duration of an
interesting seizure event from the video-EEG system. We then
take as a pre-seizure event (non-seizure immediately before
the seizure event) of approximately equal duration. Hence,
we have fifteen sequences, where each sequence consists of
a pre-seizure event followed by a seizure event. The average
length of the fifteen seizure sequences is about 109 sec, which
is significantly longer than 14 sec in [12] and up to 20 sec
in [18], [19]. The shortest sequence is about 34 sec and the
longest sequence is about 163 sec.

Figure 1 illustrates the proposed system. For each selected
sequence, the user indicates a region of interest (the cyan
rectangle in the figure) and the two foreground colors (the
blue and green lines) using mouse, only for the first frame.
In the figure, the patient’s face is masked for anonymity
and this is not part of the user initialization. After user
initialization, the sequence is analyzed automatically. Limbs
are detected first and then parameters are estimated to quantify
their movements, forming movement trajectories, as shown in
Fig. 1. We further analyze these trajectories to characterize
the movements and detect seizures. These procedures will be
described in more details in the following sections.

B. Detection of Limbs from Videos

1) Foreground/Background Modeling: We employ the
Gaussian mixture models (GMMs) to model foreground and
background, as in [21]. A color video frame j of N pixels
is represented by an array ζj = (ζ1, ..., ζn, ..., ζN ), where
ζn = (Rn, Gn, Bn), n ∈ [1, N ], which are the RGB values.
Let an array α = (α1, ..., αN ), αn ∈ {0, 1} denote the labeling
of each pixel as background (αn = 0) or foreground (αn = 1).
Two GMMs with K components are defined for background
and foreground pixels, parameterized as [21]

ψ = {π(α, k), µ(α, k),Σ(α, k), α = 0, 1, k = 1, ...,K}, (1)

where π is the weight, µ is the mean, and Σ is the co-
variance matrix. The vector k = {k1, ..., kn, ..., kN} with
kn ∈ {1, ...,K} indicates the component of the background
or foreground GMM that each pixel belongs to, assigning
according to αn = 0 or 1. As the foreground is expected
to be considerably simpler than the background, we keep
K = 6 components for the foreground GMM while K = 12
components for the background GMM.

2) Limb Detection: Our limb detection algorithm follows a
coarse-to-fine approach adapted from [22] for efficiency, as
shown in Fig. 2. For the first frame, the background and
foreground GMMs are initialized based on user indicated
foreground pixels. The coarse detection then assigns back-
ground/foreground labels to pixels based on colors using the
following four rules:

1) Pixels with little color information (low saturation) are
assigned as background (αn = 0).
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Fig. 2. Limbs are detected through color-based coarse detection and then Graphcut-based fine detection, followed by analysis of the contours and enforcing
constraints. The patient’s face is masked for anonymity.

2) Pixels with color very close (defined by the GMM
likelihood [22]) to background colors (GMMs) in the first
frame are assigned as background (αn = 0), for frame
number j > 1.

3) Pixels with color very close to foreground colors (GMMs)
in the first frame are assigned as foreground (αn = 1),
for frame number j > 1.

4) Pixels corresponding to the erosions (by a 17 × 17
window) of limbs detected in the previous frame (j − 1)
are assigned as foreground (αn = 1), for frame number
j > 1.

The second and third rules are introduced to handle the
cases where the limbs are not detected in a few previous
frames, either occluded or out of view. They are based on
the observation that with user initialization, the first frame
segmentation is highly reliable and so are the corresponding
GMMs. Rule 4 is an enforcement of the temporal constraint,
under the assumption that a limb in the current frame should
be close to the same limb in the previous frame.

After the coarse detection, the fine detection employs the
popular GrabCut algorithm in [21] to produce foreground
with large connected region of pixels with the same color.
In GrabCut, a trimap Ω consists of three regions: ΩB , ΩF and
ΩU , corresponding to the initial background, foreground, and
uncertain pixels, respectively. ΩB and ΩF pixels are defined
in the coarse detection, while pixels belonging to ΩU are to be
classified as either background or foreground. To classify pix-
els in ΩU , α is initialized as αn = 0 for n ∈ ΩB and αn = 1
for n ∈ ΩU ∪ ΩF . The background and foreground GMMs
are initialized from α with k-means clustering. Each pixel is
then assigned a GMM component kn and GMM parameters
are learned. The segmentation is estimated through Graph Cut
[20], [21], [23]. Finally, for the foreground GMMs, we run
the k-means clustering algorithm on {µ(1, k), k = 1, ..., 6}
to obtain two groups with different colors (as our pyjamas
have two colors for the limbs). Foreground pixels belonging
to each group are given the same label (1 or 2), resulting a
segmentation map α′ = (α′1, ..., α

′
N ), α′n ∈ {0, 1, 2} denote

the labeling of each pixel as background (α′n = 0), foreground
1 (α′n = 1) or foreground 2 (α′n = 2).

Next, we refine the detection by analyzing the segmented
regions to obtain individual limbs using contour analysis
techniques with the following constraints enforced:

1) For each limb, its area should be larger than a threshold
(to remove noise and unreliable detections).

2) For each foreground color, there are at most two con-
nected regions (corresponding to two limbs).

3) The position, orientation and area of a limb detected in

the current frame should not differ from those of the
corresponding limb in the previous frame by a certain
amount (to alleviate the correspondence problem).

In Rule 3 above, we assume that the movement between
successive frames (i.e., within 0.08 sec) is limited within a
range. In addition, if a limb is not detected in the current
frame, it is assumed to be fully occluded and the limb detected
in the previous frame is taken as the current detection. Thus,
a fully occluded limb is assumed to be still and it will not
lead to any movement to trigger a detection. When a fully
occluded limb reappears, the detection will need a few frames
to recover. Unless all four limbs are fully occluded, limb
movement information can be extracted from visible limbs for
analysis. The initial segment labels are obtained based on the
fixed design of pyjamas and known orientation of the patient
body (with head on the right). The limbs in subsequent frames
are labeled by finding the correspondence with limbs in the
previous frames through examining inter-frame pairwise limb
distances (defined by distance between their centroids).

Besides GrabCut [21], we also studied two other popular
methods for detection and tracking: Histogram of Oriented
Gradients (HOG) [24] and Scale-Invariant Feature Transform
(SIFT) [25]. However, they did not give satisfactory results
in our testing. The HOG-based method is designed for de-
tecting objects with distinctive shape appearance, while in
our context, we need to detect and localize individual limbs
that have limited shape appearance distinctiveness. SIFT is a
point-feature-based method that works well on images with
rich texture, while our setting (a typical hospital ward) has
many regions of homogenous colors lacking rich texture. Our
GrabCut-based approach (combining GMM and Graph Cut)
bears low computation cost and gives us the most satisfactory
results in terms of efficiency and accuracy.

C. Movement Quantification for Seizure Detection

With limbs detected, we extract parameters to quantify their
movements by adapting the approach in [26]–[28]. Dynamic
parameters, i.e., the location (or position) and orientation (or
angle) of a limb, are most relevant to limb movements [26]–
[28]. Thus, a limb l is parameterized by three parameters:
the angle θ (in degrees), the x position (in pixels) and the
y position (in pixels), as shown in Fig. 3. For each frame j,
there are twelve (3× 4) movement parameters for four limbs:

φj = {θ(j, l), x(j, l), y(j, l), l = 1, 2, 3, 4}. (2)

To estimate the three parameters of a limb, we fit an ellipse
to the detected limb using the ellipse fitting method in OpenCV
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Fig. 3. Seizure can be detected by extracting discriminative features from
limb movements described by three limb parameters for each limb: angle θ,
x and y positions.

2.3 [29], the x and y coordinates of the ellipse centroid are the
x and y positions of the limb, respectively, and the orientation
of the ellipse is the angle θ of the limb. When the fitted ellipse
is close to a circle, the estimated orientation is not reliable and
we set θ(j, l) = θ(j − 1, l) for j > 1. In addition, we enforce
the following constraint for j > 1 to take temporal smoothness
into account:

|θ(j, l)− θ(j − 1, l)| < Γθ,

|x(j, l)− x(j − 1, l)| < Γx , |y(j, l)− y(j − 1, l)| < Γy, (3)

where we set the thresholds Γθ = Γx = Γy = 12 in this study.
Next, we analyze limb movements to find distinct motion

patterns for seizure detection. Based on our observations of
limb trajectories for seizure and non-seizure events, we extract
two features: the displacement feature in the time domain and
the oscillation feature in the frequency domain. We perform
displacement and frequency analysis on the trajectories. A
seizure is considered detected if the displacement value (de-
fined below) exceeds a threshold ΓD or the oscillation strength
(defined below) exceeds a threshold ΓS . We analyze each
trajectory using overlapping windows of 10 sec (i.e., window
length W = 120), with 1 sec shift (i.e., 9 sec overlap) so
that we have a detection signal every second. Moreover, as
the spatial resolution is limited at 384 × 288, our system is
not able to detect subtle movements.

Displacement feature: For the displacement feature, we try
to detect sustained displacement from a baseline in limb move-
ments, which may relate to stiffening of limbs, e.g., in the tonic
phase during seizures. We extract the displacement feature1

from the differential values of each trajectory. The signal is
preprocessed with a median filter of order 25 to remove noise.
For a windowed differential signal z(j), j = β, ..., β+W −1,
the displacement value D is calculated as the accumulated
differences below:

D =

∣∣∣∣∣∣
β+W−1∑
j=β+1

z′(j)

∣∣∣∣∣∣ , (4)

where

z′(j) =

{
5 if z(j) > 5
−5 if z(j) < −5. (5)

We impose a maximum change on z(j) to get z′(j) under
the observation that sustained displacement due to stiffening
should be gradual and smooth. A seizure is detected if D >
ΓD in a window for at least three limb parameters.

1It should be noted that this limb displacement feature is a combination of
torso movement and limb movement relative to the torso.

(a) During a seizure with sustained displacement around 4:45AM.

(b) During a seizure with strong oscillation around 3:13AM.

(c) Sitting positions around 3:12AM and 3:56AM.

Fig. 4. Examples of detected limb movements. Note all frames shown were
captured during night with decent detection quality. The images are masked
for anonymity.

Oscillation feature: For the oscillation feature, we aim
to detect presence of strong oscillations in limb movements,
which could be due to limb jerking, e.g., in the clonic phase
during seizures. We extract the oscillation feature from the
differential values of each trajectory. As we record videos
at 12 fps, the sample frequency is 12Hz. First, a differential
trajectory is bandpassed to keep only the content between 1Hz
and 5Hz to remove noise. All movements within this band are
considered with valid jerking frequency due to seizures while
movements beyond this band cannot be accurately detected.
We then obtain the power spectrum through the fast Fourier
transform (FFT). For each window, we examine the oscillation
strength Smax, which is defined in this paper as the magnitude
of the frequency component that corresponds to the highest
power of the spectrum. A seizure is detected if Smax > ΓS
in a window for at least one limb parameter.

III. RESULTS AND DISCUSSIONS

A. Detection and Quantification of Limb Movements

With the proposed color-pyjamas-based video system, we
can reliably detect body limbs of a patient for most of
frames. Common detection problems are due to false detection
of objects with colors similar to the limbs, or occlusions,
including self-occlusion and occlusion by other subjects or
objects. To illustrate, we show ten sample frames in the tonic
phase of a seizure in Fig. 4(a), where sustained displacement is
observed, particularly for the right arm. Similarly, ten sample
frames in the clonic phase of a seizure is depicted in Fig.
4(b), where we can see limb oscillations due to jerking. We
also show some results for sitting postures in Fig. 4(c). All
frames in Fig. 4 are masked for anonymity.

To mimic EEG tracings for clinician’s easy adaptation in
reading, we follow [13] to display the quantified movement
information as trajectories. Figure 5(a) shows an example of
the trajectories for twelve parameters from a short sequence.
The horizontal axis is the time axis. The vertical axis indicates
the differential values: θ(j, l)−θ(j−1, l), x(j, l)−x(j−1, l),
and y(j, l) − y(j − 1, l). Thus, the trajectories visualize the
changes in limb positions and orientations over time.

Next, we demonstrate the displacement and oscillation
features for seizure detection in Figs. 6 and 5 for sequences
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(a) Strong oscillation in the movement trajectories.

(b) Strong oscillation in the spectrograms.

Fig. 5. Demonstration of the oscillation feature for the sequence partly
shown in Fig. 4(b). Strong oscillation can be observed in both the spatial and
frequency domains.

partly shown in Figs. 4(a) and 4(b), respectively. In each
subplot of twelve parameters in these figures, we use a red
pole to indicate the ground-truth (manually labeled) of seizure
onset time, which is around the center of the time axis.
We highlight prominent features (sustained displacement and
strong oscillation) with colored ellipses.

The presence of oscillation can be observed from high
power bands in the spectrogram of affected limbs during
seizures. We can see strong oscillations from several trajecto-
ries in Fig. 5(a) and also in the spectrograms for the y positions
displayed in the third-row images of Fig. 5(b). In addition, the
quantified limb movements reflect the frequency of jerking
during epileptic seizures. E.g., the jerking frequencies of y
positions for four limbs decrease (slow down) from about
2.8Hz to around 1.9Hz in the interval highlighted by colored
ellipses in Fig. 5(b), which cannot be accurately estimated
through traditional visual inspection of video recordings or
from EEG signals. To the best of our knowledge, this is

Fig. 6. Demonstration of the displacement feature for the sequence partly
shown in Fig. 4(a). Sustained displacement can be captured by the movement
parameters.

the first demonstration of such capability for an unobtrusive
video-based approach. This information could be useful in
determining jerking pattern, severeness or type of seizures.

Sustained displacement is most apparent on plots of raw
parameters, as shown in Fig. 6. E.g., the y position of the right
arm (leg) has a displacement of about 150 (100) pixels upon
seizure onset, as highlighted by colored ellipses in Fig. 6 (with
sample frames shown in Fig. 4(a)), which cannot be accurately
estimated through traditional visual inspection or from EEG
signals. However, compared to oscillation, displacement fea-
ture is not as reliable since normal movements (e.g., normal
turn/move in bed) can lead to sustained displacement as well
so false positives are more likely.

B. Evaluation on Seizure Detection

We further study the feasibility of our color-based video
system in seizure detection. We compare seizure detection
results for the fifteen sequences from five patients as described
in Sec. II-A. The start time, duration, and main posture(s)
for each sequence are listed in Table I, where 9 out of 15
sequences were captured after sunset (7pm) and before sunrise
(7am). The limb detection parameters and the range of ΓD and
ΓS are trimmed based on three seizures from patient B (B-1,B-
2,B-3), and the same set of parameters are used for all patients
for fair evaluation. Due to variations in age and physical size,
the same parameters are not optimal for all patients.

We analyze two events (pre-seizure and seizure) for each
sequence so there are 30 events (2 × 15 sequences) in total.
When (at least) one seizure is detected in the seizure duration,
we count it as a true detection, while when (at least) one
seizure is detected in the pre-seizure duration, we count it as
a false detection. The event labels provided by epileptologists
serve as the ground truth.

We evaluate the detection performance of the proposed
displacement and oscillation features extracted from videos
using a simple threshold procedure. The performance varies
for different values of ΓD or ΓS and we show the receiver
operating characteristic (ROC) curves in Fig. 7. From the
ROC curves, the displacement feature tends to have higher
sensitivity while the oscillation feature tends to have higher
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TABLE I
THE START TIME, DURATION AND MAIN POSTURE(S) OF THE 15

SEQUENCES.

Index Start time Duration (sec) Main postures
A-1 2:15PM 123 Lying
A-2 3:47PM 133 Lying
A-3 0:49AM 118 Lying
A-4 2:34AM 132 Lying
A-5 7:02PM 45 lying
A-6 11:18PM 34 Lying
B-1 3:11AM 163 Sitting,lying
B-2 3:56AM 157 Sitting,lying
B-3 4:44AM 125 Lying
C-1 2:07PM 144 Lying
C-2 0:02AM 146 Lying
D-1 9:33AM 86 Lying
E-1 6:57PM 70 Lying
E-2 6:13AM 97 Lying
E-3 12:50PM 70 Sitting,lying

Fig. 7. The receiver operating characteristic (ROC) curves for the dis-
placement feature, oscillation feature, EEG-hybrid feature and EEG-wavelet
feature. The displacement feature is the poorest while the other three features
have close performance.

specificity2. This is expected as oscillations are unique to
jerking and normal movements do not usually result in strong
oscillation, while displacements often occur in non-seizure
movements as well. In the comparison below, we chose
operating points for these two features by maximizing the sum
of their sensitivity and specificity, as indicated by the arrows
with marker attached in Fig. 7, where ΓD = 35, ΓS = 2.2.

We benchmark our methods against two popular EEG-
based methods: the hybrid seizure detection method (EEG-
hybrid) in [8], [30] and the wavelet-decomposition-based
method (EEG-wavelet) in [4]. EEG signals in our EMU
are recorded with 32 electrodes with standard international
10-20 system at 256Hz sampling rate. The raw EEGs are
pre-processed using double banana montage to result in 18
channels. For seizure detection, feature vectors are extracted
from 10 sec windows with 1 sec shift (consistent with video-
based methods). For the EEG-hybrid method, the montaged
signals are bandpass-filtered to [0.5Hz, 25Hz]. Six univariate
features (mean, entropy, curve length, energy, nonlinear energy
and spectral power) are summed up to form a power-based
hybrid index for each channel. For the EEG-wavelet method,
subband signals are obtained through seven-level decomposi-
tion using the Daubechies wavelet filter. Those from the 4th

2Sensitivity = true positive rate. Specificity = 1 - false positive rate.

TABLE II
SEIZURE DETECTION RESULTS FROM FIFTEEN SEQUENCES BY FOUR

FEATURES: DISPLACEMENT, OSCILLATION, EEG-HYBRID [8], [30], AND
EEG-WAVELET [4] (TP: TRUE POSITIVE; FP: FALSE POSITIVE). THE

DISPLACEMENT FEATURE GIVES MORE FALSE POSITIVES.

Patient Displacement Oscillation EEG-Hybrid EEG-Wavelet
TP FP TP FP TP FP TP FP

A(6) 6 2 6 0 6 0 6 0
B(3) 3 2 2 0 3 0 3 0
C(2) 2 0 2 0 2 1 2 0
D(1) 0 0 1 0 1 0 1 0
E(3) 3 3 3 1 3 0 2 0

Total(15) 14 7 14 1 15 1 14 0

to 7th level decompositions represent activities at time-scales
corresponding to the [0.5Hz, 25Hz] band that captures seizure
onset of various electrographic manifestations [4]. Thus, the
energy in each of these four subband signals is summed up
to form a wavelet-energy-based index for each EEG channel.
A seizure is detected if the power-based hybrid index or the
wavelet-energy-based index is greater than a threshold Γh or
Γw, respectively, in a window for at least ten channels. In
performance comparison, the operating points for these two
features are similarly chosen by maximizing the sum of their
sensitivity and specificity, as indicated by the marked arrows
in Fig. 7. From the ROC curves in Fig. 7, these EEG-based
methods have better overall performance than the video-based
methods, with the EEG-hybrid feature has higher sensitivity
while the EEG-wavelet feature has higher specificity.

We present the seizure detection results in Tables II, III
and IV. Table II reports the number of true positives and false
positives for each patient. The first column of Table II indicates
the number of sequences/seizures for each patient in parenthe-
ses. The displacement feature is not unique to tonic seizures
(stiffening) as many other significant non-seizure movements,
such as normal turning in bed, can result in large displacement
too. Thus, the displacement features have many false positives.
On the other hand, the oscillation feature is characteristic of
clonic seizures (jerking) as normal movements of a patient are
less likely to give strong oscillation. Therefore, the oscillation
feature gives only one false positive and one missed detection
(out of fifteen sequences). In contrast, the EEG-hybrid feature
gives only one false detection while the EEG-wavelet feature
gives only one missed detection, showing better performance.
Furthermore, the nonparametric McNemar’s exact test [29],
[30] has been performed to study the statistical significance
of the detection results (30 events). The p values for the
displacement feature paired with the oscillation, EEG-hybrid,
and EEG-Wavelet features are 0.0352, 0.0195, and 0.0195,
respectively. The p values for the oscillation feature paired
with the EEG-hybrid, and EEG-Wavelet features are both
0.500. This indicates that the performance difference (poorer)
of the displacement feature is statistically significant from
the oscillation, EEG-hybrid and EEG-wavelet features at the
significance level of 0.05. On the other hand, the performance
difference of the oscillation feature is not statistically signif-
icant from the EEG-hybrid and EEG-wavelet features at the
significance level of 0.05.

Table III reports the detection latency for each true seizure
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TABLE III
COMPARISON OF LATENCY IN SECONDS FOR TRUE SEIZURE DETECTIONS BY FOUR FEATURES: DISPLACEMENT, OSCILLATION, EEG-HYBRID [8], [30],
AND EEG-WAVELET [4]. FOR MISSED DETECTIONS, ‘-’ IS ENTERED. THE DISPLACEMENT FEATURE HAS MUCH LOWER LATENCY THAN THE OTHERS.

Seizure A-1 A-2 A-3 A-4 A-5 A-6 B-1 B-2 B-3 C-1 C-2 D-1 E-1 E-2 E-3
Displacement 4 6 17 5 4 1 7 3 6 3 3 - 2 2 1

Oscillation 18 11 21 17 18 9 43 7 - 8 56 21 17 30 23
EEG-hybrid 25 12 13 29 0 4 67 97 73 20 0 22 15 16 24
EEG-wavelet 21 17 11 15 0 6 53 73 86 21 19 17 - 19 0

TABLE IV
COMPARISON OF SENSITIVITY (IN PERCENTAGE), SPECIFICITY (IN

PERCENTAGE) AND AVERAGE LATENCY (IN SECONDS, FOR TRUE
POSITIVES) BY FOUR FEATURES: DISPLACEMENT, OSCILLATION,

EEG-HYBRID [8], [30], AND EEG-WAVELET [4]. THE DISPLACEMENT
FEATURE HAS POORER SPECIFICITY BUT BETTER LATENCY.

Feature Displacement Oscillation EEG-Hybrid EEG-Wavelet
Sensitivity 93.3 93.3 100 93.3
Specificity 53.3 93.3 93.3 100

Latency 4.6 21.4 27.8 25.6

detection (named by [patient ID]-[seizure index]) in columns.
A ‘-’ is entered for missed detections. The average latency
together with sensitivity and specificity are summarized in
Table IV. The displacement feature has low specificity, high
sensitivity, and very low latency in detection. As mentioned
earlier, this may be due to its less unique characteristics.
Another cause is that in a motor seizure, the tonic phase
usually comes first, followed by the clonic phase. Next, the
oscillation feature has a lower latency than both EEG-based
features, while its sensitivity and specificity are comparable
to EEG-based features. Lastly, the EEG-wavelet feature gives
lower latency than the EEG-hybrid feature. On the whole, it is
encouraging to see the performance of the oscillation feature
to be close to the EEG-based features for the motor seizure
sequences studied.

Hence, from their different characteristics, we may use both
the displacement and oscillation features by giving warnings
based on displacement features while alarms based on the
oscillation features. When caretakers are less occupied, they
could react to warnings while if caretakers are highly occupied,
they could react to alarms only.

C. Discussions

On the basis of the results reported above, we have demon-
strated the feasibility of using a color-based video system
for epilepsy monitoring and seizure detection. The proposed
method has the following three key benefits:

1) It can potentially serve as an additional tool in EMU for
seizure detection when the patient is not continuously
monitored by nurses, parents or care-takers, especially
during night. Moreover, in a clinical setting, the pro-
posed video system can be combined with EEG-based
detection/analysis. The two methods can be complemen-
tary. On one hand, when there are lots of movements,
video-based system has more clues while EEG suffers
more from artifacts. On the other hand, when there is
little movement, video-based system will fail while EEG
signals are usually clean to get correct detection.

2) Extraction of quantitative limb information on epileptic
seizures provides a new method for investigating symp-
tomatology during epileptic seizures, overcoming the dis-
advantages of visual inspection. For example, our system
can estimate the jerking frequency and duration but EEG
or visual inspection cannot provide such quantitative
measurements.

3) As only one camera needs to be mounted on the ceil-
ing, the proposed system minimizes the introduction of
cabling and clutter in the patient’s living space and it can
be easily incorporated into personal computers [31], [32].
This makes it a promising solution for monitoring in a
home environment.

On the other hand, as a new technology, we are still at
the early stage of research on video-based solution for seizure
detection or patient monitoring in general. While the proposed
system has many advantages, it is important to recognize its
limitations as well as potential future works for respective
enhancements when applicable:

1) At present, our system can work for seizures with large
limb movements. It cannot be used to detect seizures
with subtle movements or movements of eyes or head
as the only signs. Furthermore, the present system will
not work when the lighting condition is poor and colors
cannot be differentiated reliably. To deal with low-light
conditions, depth camera with emitted infrared light could
be a promising solution. On the other hand, textures could
be more reliable than colors in this case.

2) As we have been experimenting with different pyjamas
designs in our investigation, the present system requires
simple user initialization on the first frame. When the
design is finalized, user initialization is not necessary
when the background is clean (with respect to the limb
colors) because of the customized color outfits. However,
an initial checking of the video content is still beneficial
to ensure that the captured video is good for automatic
analysis at the beginning.

3) Regarding the pyjamas design, various options can be
explored. We can utilize four different colors for four dif-
ferent limbs to further lift the burden of segmentation and
tracking of limbs, as well as mitigate the correspondence
problem. In addition, smaller color patches (with possibly
more colors) instead of a single color tube could give us
more detailed information about limb movements, similar
to that in [33]. However, we have to consider whether
patients are willing to wear more colorful pyjamas. Our
current designs are well accepted by pediatric patients
tested so far.

4) In our present system, we model only 2D movements
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of limbs using a single RGB camera while limbs move
in a 3D space in fact. Therefore, movements along the
camera optical axis cannot be detected. A further working
direction is to develop 3D models of limbs for more accu-
rate quantification, e.g., utilizing stereo/multiple cameras.
The Microsoft Kinect [34] has both RGB and depth
cameras, which can complement each other. It also has
a microphone array so it might be possible to further
capture audio signals to detect abnormal sounds as well.
Thus, Kinect-based system could be very promising.

5) Due to limitations of available suitable patients for anal-
ysis, we have tested only fifteen motor seizure sequences
in this study. By reporting our methods and interesting
findings, we hope that those interested in video-based
methods for clinical applications can benefit from our
experience, thus accelerating research and development
in this direction.

IV. CONCLUSIONS

We have described the implementation and evaluation of an
unobtrusive video-based method for quantifying and character-
izing limb movements in epilepsy monitoring. The proposed
color-based video system uses a single ceiling camera with
customized color pyjamas. After a simple user-initialization
on the first frame, our system extracts the positions and
angles of patient’s limbs automatically. We further perform
(time-domain) displacement analysis as well as frequency
analysis to characterize limb movements and detect motor
seizures. We identify sustained displacement and strong os-
cillation as two useful features. In experimental studies on
fifteen sequences from five patients, the oscillation feature
has achieved performance comparable to EEG-based features
while the displacement feature is inferior. On the whole, the
proposed video-based system is a promising approach for
home monitoring and a good addition to investigation on
quantified motor semiology for other movement disorders or
behavioral changes, such as sleep disorder analysis.
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