
Multilinear Principal Component Analysis of Tensor Objects for Recognition

Haiping Lu, K.N. Plataniotis and A.N. Venetsanopoulos
Bell Canada Multimedia Laboratory∗

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto, M5S 3G4, Canada
{haiping, kostas, anv}@dsp.toronto.edu

Abstract

In this paper, a multilinear formulation of the popular
Principal Component Analysis (PCA) is proposed, named
as multilinear PCA (MPCA), where the input can be not
only vectors, but also matrices or higher-order tensors. It
is a natural extension of PCA and the analogous counter-
parts in MPCA to the eigenvalues and eigenvectors in PCA
are defined. The proposed MPCA has wide range of ap-
plications as a higher-order generalization of PCA. As an
example, MPCA is applied to the problem of gait recogni-
tion using a novel representation called EigenTensorGait.
A gait sequence is divided into half gait cycles and each
half cycle, represented as a 3rd-order tensor, is considered
as one data sample. Experiments show that the proposed
MPCA performs better than the baseline algorithm in hu-
man identification on the Gait Challenge data sets.

1. Introduction

Real data in pattern recognition and computer vision are
often very high-dimensional. However, they can be charac-
terized mostly by a more compact representation, e.g., sub-
space representation. Dimensionality reduction of such data
is an important preprocessing step in many statistical pat-
tern recognition problems. Principal Component Analysis
(PCA) is a traditional linear technique for dimensionality
reduction. On the other hand, while real world data, such
as images and video sequences, are often multidimensional
and naturally represented as 2nd-order (matrices) or higher-
order tensors, PCA reshapes them into vectors in a very
high-dimensional space and thus it suffers from the curse
of dimensionality.
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Multilinear algebra has recently received broad attention
as many researchers become aware of the problem above
and start to represent data in their natural form. Yang et al.
recently proposed a Two-Dimensional PCA by constructing
an image covariance matrix using the original image ma-
trices [13]. He et al. proposed Tensor Subspace Analysis
for face recognition, considering each image as a second-
order tensor [3]. Three-mode PCA was studied in as early as
1983 [4], with recent application to gender recognition [2].
However, a more general formulation of PCA to higher-
order tensors is not available to our knowledge.

Also, multilinear algebra has been applied to multifactor
analysis. Bilinear models were proposed to separate style
and content in [10]. In [11], a method was proposed for
multilinear analysis of image ensembles to account for mul-
tiple factors in image formation. The method was claimed
to subsume PCA but a centering step is missing. In [12],
this approach is named as multilinear PCA but it is differ-
ent from the proposed MPCA in this paper since images
are still represented as vectors. Similarly in [8], gait image
sequences are modeled by three components and silhouette
images are represented as (high-dimensional) vectors.

In this paper, a new multilinear PCA (MPCA) algorithm
is proposed. It is a natural extension of PCA to the multi-
linear case. The multilinear singular values and eigenten-
sors are defined analogous to eigenvalues and eigenvectors
in PCA, respectively. MPCA is particularly useful in appli-
cations where the data samples are naturally represented as
matrices or higher-order tensors, instead of vectors. As an
example, MPCA is applied to the problem of gait recogni-
tion, where gait sequences are represented naturally as 3rd-
order tensors. The spatial row space, column space and the
time space account for the 3 modes. Thus, a sample data
set to be analyzed is a 4th-order tensor, with the sample
space as the 4th-mode. Each half gait cycle is treated as a
data sample, with spatial and temporal normalization. Ex-
periments on the Gait Challenge data sets [9] show that the
proposed MPCA algorithm outperforms the baseline algo-
rithm.



2. Multilinear Principal Component Analysis

2.1. Basic multilinear algebra

The notational conventions in [1] are used in this pa-
per. Indices are denoted by lowercase letters and span
the range from 1 to the uppercase letter of the index, e.g.,
n = 1, 2, ..., N . We denote vectors by lowercase boldface
letters, e.g., x; matrices by uppercase boldface, e.g., U; and
tensors by calligraphic letters, e.g., A.

An N th-order tensor is denoted as: A ∈ RI1×I2×...×IN .
The n-mode product of a tensor A by a matrix
U ∈ RJn×In , denoted by A ×n U, is defined by
a tensor with entries: (A ×n U)i1...in−1jnin+1...iN

=∑
in

ai1...iN
ujnin

. The scalar product of two tensors
A,B ∈ RI1×I2×...×IN is defined as: < A,B >=∑

i1

∑
i2

...
∑

iN
ai1i2...iN

bi1i2...iN
. The Frobenius norm

of a tensor A is defined as ‖ A ‖=
√

< A,A >. The n-
rank of A, denoted by Rn = rankn(A), is the dimension
of the vector space spanned by the n-mode vectors. Higher-
order SVD (HOSVD) exists for tensors. Any tensor A can
be expressed as the product: A = S×1U(1)×2U(2)×...×N

U(N), where S ∈ RI1×I2×...×IN is the core tensor of which
the subtensors Sin=α have the property of all-orthogonality
and ordering based on the Frobenius-norms ‖ Sin=α ‖, and
U(n) =

(
u(n)

1 u(n)
2 ...u(n)

In

)
is a unitary In × In matrix. For

more details, please refer to [5].
For convenience of discussion in making analogy be-

tween linear PCA and MPCA, we propose to use the follow-
ing convention in forming the sample data tensor: for tensor
objects that are (N−1)-th order, the sample data tensor is an
N th-order tensor of IN samples formed with mode-N rep-
resenting the sample space and mode-1 to mode-(N − 1)
representing the (N − 1) modes of a tensor sample.

2.2. PCA with tensor notation

PCA chooses a dimensionality reducing linear projection
that maximizes the scatter (variance) of all projected sam-
ples. It involves the SVD of the centered (mean 0) training
data matrix Xc as following, with tensor notation:

Xc = USVT = U(1)SU(2)T

= S×1 U(1) ×2 U(2). (1)

Here, in conformance with our convention, the columns of
the centered data matrix Xc represent data points (samples)
and each column of Xc represents a data sample (as vec-
tors). Thus, the orthonormal basis vectors (principal com-
ponents) are the columns of U(1) of Xc, i.e., the left singu-
lar vectors of Xc, the variance in each direction is given by
the corresponding singular values σk, lying along the diago-
nals of S. The coordinates of the data in the basis defined by
the principal components are SV

T

= SU(2)T

= S×2U(2).

In PCA-based subspace analysis, U(1) is truncated to
Ũ(1) ∈ RI1×R1 by keeping only the first R1 columns and a
centered input test sample (vector) xc is projected to feature
space as

ỹ = Ũ(1)T

xc = xc ×1 Ũ(1)T

, (2)

where Ũ(1)T

is the projection matrix. ỹ is then classified
by its distances to the columns of Xc ×1 Ũ(1)T

.

2.3. The multilinear PCA formulation

The proposed MPCA formulation is a direct extension
of PCA to the multilinear case: the input data samples to
MPCA are centered as in PCA, the projection is orthonor-
mal and the projected feature is a tensor of the same order
as the sample with reduced dimension.

In PCA, the training data matrix is centered by subtract-
ing the means of the data samples, the proposed MPCA
does the same for the training tensor samples X . X is
centered by subtracting its mode-N mean X̄ (N) from each
mode-N slice (tensor sample) and the mode-N centered
tensor X c is decomposed using HOSVD as:

X c = S ×1 U(1) ×2 U(2)...×N U(N). (3)

The mode-n singular values of X c are ‖ Sin=α ‖ (sym-
bolized by σ

(n)
i ), where the norm is the Frobenius-norm and

the subtensor Sin=α is an n-mode slice of the tensor S, ob-
tained by fixing the nth index to α.

The basis vectors in PCA are contained in a single matrix
after SVD, while it is not obvious what the basis tensors
in MPCA are. Analogous to PCA, the basis tensors should
have the same size as the tensor samples, i.e., order-(N−1)
tensors. As in SVD truncation for PCA, the HOSVD of X c

is truncated by keeping the first Rn (Rn ≤ In) columns for
the basis matrix U(n) in each mode n (1 ≤ n ≤ N − 1),
to produce Ũ(n) ∈ RIn×Rn . From the first (N − 1) basis
matrices Ũ(n) (1 ≤ n ≤ N−1), we obtain

∏N−1
n=1 Rn basis

and each basis is a rank-1 (N−1)th-order tensor formed by
the outer product u(1)

r1 ◦ u(2)
r2 ... ◦ u(N−1)

rN−1 , where rn ranges
from 1 to Rn, and u(n)

rn is the rnth column of U(n) [6]. The
tensor projection using the collection of these

∏N−1
n=1 Rn

basis is denoted as

P̃−N = ×1Ũ(1)T

×2 Ũ(2)T

...×N−1 Ũ(N−1)T

. (4)

We name these basis tensors as eigentensors and for the
modeling of a particular object such as face or gait, we
call these eigentensors as EigenTensorObject (e.g., Eigen-
TensorFace or EigenTensorGait), corresponding to similar
terms in PCA.

In MPCA subspace analysis, a centered input tensor Zc

of order (N − 1) is projected to a lower-dimension feature



tensor as

Ỹ = Zc × P̃−N = Zc ×1 Ũ(1)T

...×N−1 Ũ(N−1)T

. (5)

Ỹ is then classified based on its distances to the projections
of the mode-N slices of X c (the centered tensor samples).

From the above derivation, it is easy to verify that MPCA
with vector samples (N = 2) is equivalent to PCA, i.e.,
MPCA subsumes PCA.

3. EigenTensorGait for gait recognition

The proposed MPCA is a general dimensionality reduc-
tion method for tensor object (multidimensional data) anal-
ysis. As an example, the application to gait recognition
problem is presented here, using a higher-order tensor rep-
resentation of gait silhouette sequences.

While in many recognition problems, a data sample is
clearly defined, such as iris, face or fingerprint images, gait
is a spatial-temporal biometric without obvious definition of
a sample. The proposed method treats each half gait cycle
as a data sample, which is a 3rd-order tensor. The spatial
row space, column space and the time space account for the
3 modes. In turn, a whole data set to be analyzed will be a
4th-order tensor, with the addition of the sample space.

To obtain half gait cycles, a gait silhouette sequence is
partitioned into half cycles in a similar way as in [9]. The
numbers of foreground pixels are counted in the bottom half
of silhouettes. The sequence of numbers are smoothed with
a running average filter and the minimums in this number
sequence partition the sequence into several half gait cycles.

Gait silhouette images are often noisy. A simple
best rank-(R1, R2, R3) approximation [6] of the silhouettes
could reduce noise greatly. Therefore, after partitioning into
half cycles, each half cycle is approximated by its best rank-
(10, 10, 3) approximation (ranks obtained through studying
approximation errors). Figure 1 shows the approximated
silhouettes, which are cleaner through visually comparison
with the original silhouettes.

(a) The original silhouettes.

(b) The best rank-(10, 10, 3) approximation of the silhouettes.

Figure 1. Best rank approximations.

To perform MPCA on gait tensor samples, we need to
normalize the samples to a canonical size of Ic

1 × Ic
2 × Ic

3 .

Conventional image resizing algorithms are applied to nor-
malization in spatial domain. While there are sophisticated
algorithms available for temporal normalization, such as
mapping a gait cycle to a unit circle using nonlinear inter-
polation [7], here we apply conventional image resizing al-
gorithms, which are simple and fast in comparison, to the
temporal domain normalization as well. We consider each
horizontal (or lateral) slice as an image and resize this image
(in mode 3) using conventional image resizing algorithms,
e.g. nearest neighbor, bilinear, or bicubic interpolation.

Centering of all the half cycles obtained from the train-
ing data set results in the training tensor X c. The MPCA
can then be applied for gait recognition. In classification,
the sum of the absolute differences between the projected
tensors is used as the distance measure, which is equivalent
to the L1 norm for vectors.

The basis gait tensors obtained through MPCA are
named here as EigenTensorGait and this approach to gait
analysis is called the EigenTensorGait approach, which can
be extended easily to other recognition problems.

To obtain the matching score of a test sequence with Np

samples against a training sequence with Ng samples, each
of the Np samples is matched against all the Ng samples in
a training sequence and the best matching score (minimum
distance) is kept. The sum of the Np best scores gives the
matching score between the test and training sequences.

4. Experimental results

To evaluate the proposed MPCA method, the EigenTen-
sorGait approach for gait recognition is tested on the USF’s
Gait Challenge data sets version 1.7 [9]. The human gait
sequences in these data sets were captured under different
conditions (walking surfaces, shoe types and viewing an-
gles). The gallery set was used as the training set and the
probe sets were test sequences containing sequences of un-
known subjects to be identified. There are seven probe sets
(A to G) available and 71 subjects in the gallery set. The
capturing conditions of the probe sets are summarized in
brackets in Table 1, where C,G,A,B,L,R, standing for ce-
ment surface, grass surface, shoe type A, shoe type B, left
view, and right view respectively. The capturing condition
of the gallery set is GAR.

The silhouette images are shrunk to half size of 64× 44
and the half cycles are normalized temporally to 20 frames.
Thus, each sample is a 64 × 44 × 20 tensor, which is of
size 56, 320 if vector representation is used. To find the
combination of (R1, R2, R3) in HOSVD truncation with the
best performance, an exhaustive testing is not practical. The
parameter space is sampled sparsely first and regions with
good performance are then sampled densely. The best re-
sults obtained are with R1 = 19, R2 = 11 and R3 = 1, and
the projected feature is a 19× 11× 1 third-order tensor.



The cumulative match characteristics (CMCs) [9] are
used for performance measurement. The identification rates
(PI ) at rank 1 and rank 5 are listed in Table 1 in comparison
to the baseline algorithm. Rank k results report the percent-
age of probe subjects whose true match in the gallery set
was in the top k matches. The CMC curves are depicted in
Fig. 2. Comparison to the baseline results shows that the
MPCA-based algorithm, called EigenTensorGait approach,
achieves better overall recognition rate.

Table 1. MPCA identification performance.
PI (%) at Rank 1 PI (%) at Rank 5

Probe Baseline MPCA Baseline MPCA
A (GAL) 79 94 96 99
B (GBR) 66 76 81 83
C (GBL) 56 66 76 81
D (CAR) 29 27 61 64
E (CBR) 24 36 55 52
F (CAL) 30 15 46 53
G (CBL) 10 19 33 48
Average 42 48 64 68

Figure 2. MPCA CMC curves.

5. Conclusions and future work

This paper proposes a new Multilinear Principal Com-
ponent Analysis algorithm that is a natural multilinear ex-
tension of PCA, where multidimensional objects are repre-
sented naturally as higher-order tensors. MPCA subsumes
PCA, which can be viewed as MPCA with N = 2.

By using a natural and simple representation for gait
silhouettes as 3rd-order tensors, MPCA is applied to gait
recognition as an example, called the EigenTensorGait ap-
proach. Gait silhouette sequences are partitioned into half-
cycles, each of which is treated as a data sample. The

best rank approximation is used to reduce noise and half
cycles are normalized spatially and temporally for recog-
nition. Experimental results show that this approach out-
performs the baseline algorithm on the Gait Challenge data
sets.

The proposed tensor representation of half gait cycles as
data samples allows us to apply techniques popular in other
recognition tasks, such as face recognition, to gait recogni-
tion. Future work also includes applying MPCA to other
problems and exploring more multilinear extension of tra-
ditional pattern recognition methods.
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