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ABSTRACT
Biometric signals are mostly multidimensional objects, known as tensors. Recently,
there has been a growing interest in multilinear discriminant analysis (MLDA) so-
lutions operating directly on these tensorial data. However, the relationships among
these algorithms and their connections to linear (vector-based) algorithms are not
clear, and in-depth understanding is needed for further developments and applica-
tions. In this chapter, we introduce the basics needed in understanding existing
MLDA solutions and then categorize them according to the multilinear projection
employed, while pointing out their connections with traditional linear solutions at the
same time. A number of commonly used objective criteria and initialization methods
are discussed. Experiments are carried out on two public face databases to evalu-
ate the performance of the MLDA variants, and the results show that MLDA (and
multilinear learning algorithms in general) is a promising field with great research
potential.

1.1 INTRODUCTION

Many biometric signals, such as fingerprint, palmprint, ear, face images and gait
silhouettes sequences, are naturally multi-dimensional objects, which are formally
referred to as tensor objects. The elements of a tensor are to be addressed by a number
of indices [1]. The number of indices used in the description defines the order of the
tensor object and each index defines one “mode”.
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2 TAXONOMY OF MULTILINEAR DISCRIMINANT ANALYSIS SOLUTIONS

Gray-level biometric images1, such as face images, are naturally second-order
tensors with the column and row modes [2, 3]. Color biometric images are naturally
third-order tensors with the column, row and color modes [4, 5]. Three-dimensional
gray-level faces are naturally third-order tensors with the column, row and depth
modes [6,7], and the popular Gabor faces [8] are third-order tensors with the column,
row and Gabor modes. In many surveillance applications, the (sequential) biometric
signals observed in surveillance video sequences [9] are naturally higher-order ten-
sors. Binary gait silhouette sequences, the input to most if not all gait recognition
algorithms [10–12], as well as other gray-level biometric video sequences can be
viewed as third-order tensors with the column, row and time modes. Naturally, color
biometric video sequences are fourth-order tensors with the addition of a color mode.

For illustration, Figure 1.1 shows the natural representations of three commonly
used biometric signals, a second-order face tensor with the column and row modes in
Fig. 1.1(a), a third-order Gabor face [2,8,13] tensor with the column, row and Gabor
modes in Fig. 1.1(b), and a third-order gait silhouette sequence tensor [14] with the
column, row and time modes in Fig. 1.1(c).

The tensor space where a typical biometric tensor object is specified is often high-
dimensional, and recognition methods operating directly on this space suffer from the
so-called curse of dimensionality [15]. On the other hand, the classes of a particular
biometric signal, such as face images, are usually highly constrained and belong to
a subspace, a manifold of intrinsically low dimension [15, 16]. Feature extraction or
dimensionality reduction is thus an attempt to transform a high-dimensional data set
into a low-dimensional space of equivalent representation while retaining most of the
underlying structure [17]. Traditionally, feature extraction algorithms operate on one-
dimensional objects, i.e., first-order tensors (vectors), and any tensor object with order
greater than one, such as images and videos, have to be reshaped (vectorized) into
vectors first before processing. However, it is well understood that reshaping breaks
the natural structure and correlation in the original data, removing redundancies
and/or higher order dependencies present in the original data set and losing potentially
more compact or useful representations that can be obtained in the original form.

By recognizing the fact that tensor objects are naturally multi-dimensional ob-
jects instead of one-dimensional objects, multilinear feature extraction algorithms
[2, 14, 18–20] operating directly on the tensorial representations rather than their
vectorized versions are emerging, partly due to the recent development in multilinear
algebra [1,21,22]. The multilinear principal component analysis (MPCA) framework
[14] 2 attempts to determine a multilinear projection that projects the original tensor
objects into a lower-dimensional tensor subspace while preserving the variation in
the original data. It can be further extended through the combination with classi-
cal approaches [14, 18, 25] and has achieved good results when applied to the gait
recognition problem. Nonetheless, MPCA is an unsupervised method and the class

1The discussion here applies to images in general, however, since this book is on biometrics, we put
emphasis on biometric signals in this chapter.
2An earlier version with a slightly different approach appears in [23] and a different formulation is in [24].
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(a) (b)

(c)

Fig. 1.1 Biometric data represented naturally as tensors: (a) a 2-D face tensor, (b) a 3-D
Gabor-face tensor, (c) a 3-D gait (silhouette) tensor.

information is not used in the feature extraction process. There has been a growing
interest in the development of supervised multilinear feature extraction algorithms.
A two-dimensional linear discriminant analysis (2DLDA) was proposed in [26], and
later a more general extension, the Discriminant Analysis with Tensor Representa-
tion (DATER)3 was proposed in [2]. They maximize a tensor-based scatter ratio
criterion and the application to the face recognition problem showed better recog-
nition results than linear discriminant analysis (LDA). In [19], a so-called general
tensor discriminant analysis (GTDA) algorithm is proposed by maximizing a scatter
difference criterion and it is used as a preprocessing step in tensorial gait data clas-
sification [19]. All these methodologies are based on the tensor-to-tensor projection
(TTP). The so-called Tensor Rank-one Discriminant Analysis (TR1DA) algorithm
[27, 28], which uses the scatter difference criterion, obtains a number of rank-one
projections from the repeatedly-calculated residues of the original tensor data and
it can be viewed as a tensor-to-vector projection (TVP). This “greedy” approach is
a heuristic method originally proposed in [29] for tensor approximation. In [30],

3Here, we adopt the name that was used when the algorithm was first proposed, which is more commonly
refereed to in the literature.
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an uncorrelated multilinear discriminant analysis (UMLDA) approach is proposed to
extract uncorrelated features through TVP. The extensions of linear graph-embedding
algorithms were also introduced similarly in [31–35].

In this chapter, we focus primarily on the development of supervised multilinear
methodologies, in particular the multilinear discriminant analysis (MLDA) algo-
rithms, the multilinear extensions of the well-known LDA algorithm. The objective
is to answer the following two questions regarding MLDA so that the interested
researchers/practitioners can grasp multilinear concepts with ease and clarity for
practical usage and further research/development:

1. What are the various multilinear projections and how are they related to tradi-
tional linear projection?

2. What are the relationships (similarities and differences) among the existing
MLDA variants?

First in Section 1.2, basic multilinear algebra is reviewed and the commonly used
tensor distance measure is shown to be equivalent to the Euclidean distance for
vectors. Next, Section 1.3 discusses various multilinear projections including linear
projection: from vector to vector, from tensor to tensor and from tensor to vector,
based on which the two general categories of MLDA are introduced. Commonly used
separation criteria and initialization methods are then discussed and the underlying
connections between the LDA and the MLDA variants are revealed. Subsequently, a
taxonomy of the existing MLDA variants is suggested. Finally, empirical studies are
presented in Section 1.4 and conclusions are drawn in Section 1.5.

1.2 MULTILINEAR BASICS

Before discussions on the multilinear discriminant analysis solutions for biomet-
ric signals, it is necessary to review some basic multilinear algebra, including the
notations and some basic multilinear operations. To pursue further in this topic,
[1,21,22,29,36] are excellent references. In addition, the equivalent vector interpre-
tation of a commonly used tensor distance measure is derived.

1.2.1 Notations

The notations in this chapter follow the conventions in the multilinear algebra, pat-
tern recognition and adaptive learning literature. Vectors are denoted by lowercase
boldface letters, e.g., x; matrices by uppercase boldface, e.g., U; and tensors by
calligraphic letters, e.g., A. Their elements are denoted with indices in brackets.
Indices are denoted by lowercase letters and span the range from 1 to the uppercase
letter of the index, e.g., n = 1, 2, ..., N . Throughout this chapter, the discussion is
restricted to real-valued vectors, matrices and tensors since the biometric applications
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that we are interested in involve real data only, such as gray-level/color face images
and binary gait silhouette sequences.

(a) (b) (c) (d)

Fig. 1.2 Illustration of the n-mode vectors: (a) a tensor A ∈ R8×6×4, (b) the 1-mode
vectors, (c) the 2-mode vectors, and (d) the 3-mode vectors.

1.2.2 Basic multilinear algebra

AnN th-order tensor is denoted as: A ∈ RI1×I2×...×IN . It is addressed byN indices
in, n = 1, ..., N , and each in addresses the n-mode of A. The n-mode product of a
tensor A by a matrix U ∈ RJn×In , denoted by A×n U, is a tensor with entries:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑
in

A(i1, ..., iN ) ·U(jn, in). (1.1)

The scalar product of two tensors A,B ∈ RI1×I2×...×IN is defined as:

< A,B >=
∑
i1

∑
i2

...
∑
iN

A(i1, i2, ..., iN ) · B(i1, i2, ..., iN ) (1.2)

and the Frobenius norm of A is defined as ‖ A ‖F =
√
< A,A >. The “n-mode

vectors” of A are defined as the In-dimensional vectors obtained from A by varying
the index in while keeping all the other indices fixed. A rank-1 tensor A equals to
the outer product of N vectors: A = u(1) ◦ u(2) ◦ ... ◦ u(N), which means that

A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) (1.3)

for all values of indices. Unfolding A along the n-mode is denoted as A(n) ∈
RIn×(I1×...×In−1×In+1×...×IN ), and the column vectors of A(n) are the n-mode
vectors of A.

Figures 1.2(b), 1.2(c) and 1.2(d) give visual illustrations of the 1-mode, 2-mode
and 3-mode vectors of the third-order tensor A in Fig. 1.2(a), respectively. Figure
1.3(a) shows the 1-mode unfolding of the tensor A in Fig. 1.2(a) and Fig. 1.3(b)
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demonstrates how the 1-mode multiplicationA×1B is obtained. The productA×1B
is computed as the inner product between the 1-mode vector of A and the rows of
B. In the 1-mode multiplication, each 1-mode vector of A (∈ R8) is projected by
B ∈ R3×8 to obtain a vector (∈ R3), as the differently shaded vectors indicate in
Fig. 1.3(b).

(a)

(b)

Fig. 1.3 Visual illustration of (a) the n-mode (1-mode) unfolding and (b) the n-mode (1-
mode) multiplication.

1.2.3 Tensor distance measure

To measure the distance between tensorsA and B, the Frobenius norm is used in [2]:
dist(A,B) =‖ A − B ‖F . Let vec(A) be the vector representation (vectorization)
of A, then it is straightforward to show that

Proposition 1 dist(A,B) =‖ vec(A)− vec(B) ‖2

I.e.,the Frobenius norm of the difference between two tensors equals to the Euclidean
distance of their vectorized representations, since the Frobenius norm is a point-based
measurement as well [37] and it does not take the structure of a tensor into account.
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1.3 MULTILINEAR DISCRIMINANT ANALYSIS

The linear discriminant analysis (LDA) [38] is a classical algorithm that has been
successfully applied and extended to various biometric signal recognition problems
[15, 39–42]. The recent advancement in multilinear algebra [1, 21] led to a number
of multilinear extensions of the LDA, multilinear discriminant analysis (MLDA),
being proposed for the recognition of biometric signals using their natural tensorial
representation [2, 19, 28, 30].

In general, MLDA seeks a multilinear projection that maps the input data from
one space to another (lower-dimensional, more discriminative) space. Therefore, we
need to understand what is a multilinear projection before proceeding to the MLDA
solutions. In this section, we first propose a categorization of the various multilinear
projections in terms of the input and output of the projection: the traditional vector-
to-vector projection (VVP), the tensor-to-tensor projection (TTP) and the tensor-to-
vector (TVP) projection4. Based on the categorization of multilinear projections, we
discuss two general formulations of MLDA: the MLDA based on the tensor-to-tensor
projection (MLDA-TTP) and the MLDA based on the tensor-to-vector projection
(MLDA-TVP). Commonly used separation criteria and initialization methods are
then presented. Furthermore, the relationships between the LDA, MLDA-TTP and
MLDA-TVP are investigated and a taxonomy of the existing MLDA variants is
suggested.

1.3.1 Vector-to-Vector projection (VVP)

Linear projection is a standard transform used widely in various applications [38,43].
A linear projection takes a vector x ∈ RI and projects it to y ∈ RP using a projection
matrix U ∈ RI×P :

y = UT x. (1.4)

In typical pattern recognition applications, P << I . Therefore, linear projection is a
vector-to-vector projection (VVP) and it requires the vectorization of an input before
projection. Figure 1.4(a) illustrates the VVP of a tensor objectA. The classical LDA
algorithm employs VVP.

1.3.2 Tensor-to-Tensor projection (TTP)

Besides the traditional VVP, we can also project a tensor to another tensor (of the
same order), which is named as tensor-to-tensor projection (TTP) in this chapter. An
N th-order tensor X resides in the tensor (multilinear) space RI1

⊗
RI2 ...

⊗
RIN ,

where
⊗

denotes the Kronecker product [43]. Thus the tensor (multilinear) space

4Multilinear projections are closely related to multilinear/tensor decompositions, which are included in
the appendix for completeness. They share some mathematical similarities but they are from different
perspectives.
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(a)

(b)

(c)

Fig. 1.4 Illustration of (a) vector-to-vector projection (VVP), (b) tensor-to-tensor projection
(TTP), (c) tensor-to-vector projection (TVP).

can be viewed as the Kronecker product of N vector (linear) spaces RI1 , RI2 , ...,
RIN . For the projection of a tensor X in a tensor space RI1

⊗
RI2 ...

⊗
RIN to

another tensor Y in a lower-dimensional tensor space RP1
⊗

RP2 ...
⊗

RPN , where
Pn < In for all n, N projection matrices {U(n) ∈ RIn×Pn , n = 1, ..., N} are used
so that

Y = X ×1 U(1)T

×2 U(2)T

...×N U(N)T

. (1.5)

Figure 1.4(b) demonstrates the TTP of a tensor object A to a smaller tensor of size
P1×P2×P3. How this multilinear projection is carried out can be understood better
by referring to the illustration on the n-mode multiplication in Fig. 1.3(b). Many
multilinear algorithms [2, 14, 19] have been developed through solving such a TTP.
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1.3.3 Tensor-to-Vector projection (TVP)

In our recent work [30], we introduced a multilinear projection from a tensor space
to a vector space, called the tensor-to-vector projection (TVP). The projection from
a tensor to a scalar is considered first. A tensor X ∈ RI1×I2×...×IN is projected to a
point y as:

y = X ×1 u(1)T

×2 u(2)T

...×N u(N)T

, (1.6)

which can also be written as the following inner product:

y =< X ,u(1) ◦ u(2) ◦ ... ◦ u(N) > . (1.7)

Let U = u(1) ◦ u(2) ◦ ... ◦ u(N), then we have y =< X ,U >. Such a multilinear
projection {u(1)T

,u(2)T

, ...,u(N)T }, named an elementary multilinear projection
(EMP), is the projection of a tensor on a single multilinear projection direction, and
it consists of one projection vector in each mode.

The projection of a tensor object X to y ∈ RP in a P -dimensional vector space
consists of P EMPs

{u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p = 1, ..., P, (1.8)

which can be written compactly as {u(n)T

p , n = 1, ..., N}Pp=1. Thus, this TVP is
written as

y = X ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1, (1.9)

where the pth component of y is obtained from the pth EMP as:

y(p) = X ×1 u(1)T

p ×2 u(2)T

p ...×N u(N)T

p . (1.10)

Figure 1.4(c) shows the TVP of a tensor object A to a vector of size P × 1. A
number of recent multilinear algorithms [27, 28, 30, 35] 5 have been proposed with
the objective of solving such a TVP.

1.3.4 MLDA-TTP

The multilinear extension of the LDA using the TTP is named MLDA-TTP hereafter.
To formulate MLDA-TTP, the following definitions are introduced first.

Definition 1 Let {Am,m = 1, ...,M} be a set of M tensor samples in RI1
⊗

RI2 ...
⊗

RIN . The between-class scatter of these tensors is defined as:

ΨBA =
C∑

c=1

Nc ‖ Āc − Ā ‖2F , (1.11)

5TVP is referred to as the Rank-one projections in some works [27, 28, 35].
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and the within-class scatter of these tensors is defined as:

ΨWA =
M∑

m=1

‖ Am − Ācm
‖2F , (1.12)

where C is the number of classes, Nc is the number of samples for class c, cm is the
class label for the mth sample Am, the mean tensor Ā = 1

M

∑
mAm and the class

mean tensor Āc = 1
Nc

∑
m,cm=cAm.

Next, the n-mode scatter matrices are defined accordingly.

Definition 2 The n-mode between-class scatter matrix of these samples is defined
as:

S(n)
BA

=
C∑

c=1

Nc ·
(
Āc(n) − Ā(n)

) (
Āc(n) − Ā(n)

)T
, (1.13)

and the n-mode within-class scatter matrix of these samples is defined as:

S(n)
WA

=
M∑

m=1

(
Am(n) − Ācm(n)

) (
Am(n) − Ācm(n)

)T
, (1.14)

where Āc(n) is the n-mode unfolded matrix of Āc.

From the definitions above, the following properties are derived:

Property 1 Since trace(AAT ) =‖ A ‖2F and ‖ A ‖2F =‖ A(n) ‖2F , trace
(
S(n)

BA

)
=∑C

c=1Nc ‖ Āc(n) − Ā(n) ‖2F = ΨBA and trace
(
S(n)

WA

)
=
∑M

m=1 ‖ Am(n) −
Ācm(n) ‖2F = ΨWA , for all n.

The formal definition of the problem to be solved in MLDA-TTP is then described
below:

A set of M training tensor objects {X1, X2, ..., XM} is available. Each tensor
objectXm ∈ RI1×I2×...×IN assumes values in the tensor space RI1

⊗
RI2 ...

⊗
RIN ,

where In is the n-mode dimension of the tensor. The objective of MLDA-TPP is
to find a multilinear mapping {U(n) ∈ RIn×Pn , n = 1, ..., N} from the original
tensor space RI1

⊗
RI2 ...

⊗
RIN into a tensor subspace RP1

⊗
RP2 ...

⊗
RPN (with

Pn < In, for n = 1, ..., N ):

Ym = Xm ×1 U(1)T

×2 U(2)T

...×N U(N)T

,m = 1, ...,M, (1.15)

based on the optimization of a certain separation criterion, such that an enhanced
separability between different classes is achieved.

The MLDA-TTP objective is to determine the N projection matrices {U(n) ∈
RIn×Pn , n = 1, ..., N} that maximize some class separation criterion, which is often
in terms of ΨBY and ΨWY . By making use of Property 1, the problem can be converted
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to N sub-problems in terms of S(n)
BY

and S(n)
WY

, which employs the commonly-used
alternating projection principal [1, 2, 14]. The pseudo-code implementation of a
general MLDA-TTP algorithm is shown in Fig. 1.5. In each iteration k, for mode
n, the input tensor samples are projected using the current projection matrices in all
modes except n to obtain a set ofN th-order tensor samples, whose n-mode unfolding
matrices are used to obtain S(n)

BY
and S(n)

WY
.

Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M} with class
labels c ∈ RM , Pn for n = 1, ..., N .

Output: Low-dimensional representations {Ym ∈ RP1×P2×...×PN ,m = 1, ...,M}
of the input tensor samples maximizing a separation criterion.

Algorithm:

Step 1: Initialize U(n)
0 for n = 1, ..., N .

Step 2 (Local optimization):

• For k = 1 : K

– For n = 1 : N
∗ Calculate {Ym = Xm ×1 U(1)T

k ... ×n−1 U(n−1)T

k ×n+1

U(n+1)T

k−1 ...×N U(N)T

k−1 ,m = 1, ...,M}.

∗ Calculate S(n)
BY

and S(n)
WY

.

∗ Set the matrix U(n)
k to optimize a separation criterion.

– If k > 2 and U(n)
k converges for all n, set U(n) = U(n)

k and break.

Step 3 (Projection): The feature tensor after projection is obtained as {Ym = Xm×1

U(1)T ×2 U(2)T

...×N U(N)T

,m = 1, ...,M}.

Fig. 1.5 The pseudo-code implementation of a general MLDA-TTP.

1.3.5 MLDA-TVP

The multilinear extension of the LDA using the TVP is named MLDA-TVP and the
formal definition of the problem to be solved in MLDA-TVP is described below:

A set of M training tensor objects {X1, X2, ..., XM} is available. Each tensor
objectXm ∈ RI1×I2×...×IN assumes values in the tensor space RI1

⊗
RI2 ...

⊗
RIN ,

where In is the n-mode dimension of the tensor. The objective of MLDA-TVP is to
find a set of P EMPs {u(n)

p ∈ RIn×1, n = 1, ..., N}Pp=1 mapping from the original
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tensor space RI1
⊗

RI2 ...
⊗

RIN into a vector subspace RP (with P <
∏N

n=1 In):

ym = Xm ×N
n=1 {u(n)T

p , n = 1, ..., N}Pp=1,m = 1, ...,M, (1.16)

based on the optimization of a certain separation criteria, such that an enhanced
separability between different classes is achieved.

The MLDA-TVP objective is to determine the P projection bases in each mode
{u(n)

p ∈ RIn×1, n = 1, ..., N, p = 1, ..., P} that maximize a class separation crite-
rion. In MLDA-TVP, since the projected space is a vector space, the definition of
scatter matrices in classical LDA can be followed. For the samples projected by the
pth EMP {ymp

,m = 1, ...,M}, where ymp
is the projection of the mth sample by

the pth EMP, the between-class scatter matrix and the within-class scatter matrix are
defined as

Sy
Bp

=
C∑

c=1

Nc(ȳcp
− ȳp)2, (1.17)

and

Sy
Wp

=
M∑

m=1

(ymp − ȳcmp
)2, (1.18)

respectively, where ȳp = 1
M

∑
m ymp , ȳcp = 1

Nc

∑
m,cm=c ymp . Figure 1.6 is

the pseudo-code implementation of a general MLDA-TVP algorithm. To solve the
problem, the alternating projection principal is again employed. In each iteration
k, for mode n, the input tensor samples are projected using the current projection
vectors in all modes except n to obtain a set of vector samples and the problem is
then converted to a number of classical LDA problems.

1.3.6 Separation criteria and initialization methods

Both MLDA-TTP and MLDA-TVP need to specify a class separation criterion to
be optimized. One commonly used separation criterion is the ratio of the between-
class scatter ΨBY or Sy

Bp
and the within-class scatter ΨWY or Sy

Wp
:
(

ΨBY
ΨWY

)
for

MLDA-TTP or
(

Sy
Bp

Sy
Wp

)
for MLDA-TVP [39], hereafter named SRatio.

Another separation criterion is the (weighted) difference between the between-
class scatter ΨBY or Sy

Bp
and the within-class scatter ΨWY or Sy

Wp
: (ΨBY − ζΨWY )

for MLDA-TTP or (Sy
Bp
− ζ · Sy

Wp
) for MLDA-TVP [44], hereafter named SDiff,

where ζ is a parameter tuning the weight between the between-class and within-class
scatters.

Since MLDA algorithms rely on the alternating projection principal, they are
generally iterative and there is a need in choosing an initialization method. Commonly
used initialization methods for MLDA-TTP are: pseudo-identity matrices (truncated
identity matrices) and random matrices. Commonly used initialization methods for



MULTILINEAR DISCRIMINANT ANALYSIS 13

Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M} with class
labels c ∈ RM , the projected feature dimension P .

Output: Low-dimensional representations {ym ∈ RP ,m = 1, ...,M} of the input
tensor samples maximizing a separation criterion.

Algorithm:

Step 1 (Stepwise optimization):

For p = 1 : P

• For n = 1, ..., N , initialize u(n)
p ∈ RIn .

• For k = 1 : K

– For n = 1 : N
∗ Calculate {ym = Xmp

×1 u(1)T

pk ... ×n−1 u(n−1)T

pk ×n+1

u(n+1)T

pk−1 ...×N u(N)T

pk−1 ,m = 1, ...,M}.
∗ Calculate the between-class and the within-class scatter matrices

by treating {ym} as the input vector samples, as in classical
LDA.

∗ Compute the vector u(n)
pk that optimizes a separation criterion.

– If k>2 and u(n)
pk converges for all n, set u(n)

p = u(n)
pk and break.

Step 2 (Projection): The feature vector after projection is obtained as {ym(p) =
Xm ×1 u(1)T

p ...×N u(N)T

p , p = 1, ..., P,m = 1, ...,M}.

Fig. 1.6 The pseudo-code implementation of a general MLDA-TVP.

MLDA-TVP are: all ones and random vectors. There are also initialization methods
based on projections obtained from the n-mode vectors of the input tensor samples
[30, 45].

1.3.7 Relationships between the LDA, MLDA-TTP and MLDA-TVP

To study the relationships between the LDA, MLDA-TTP and MLDA-TVP, it is
beneficial to investigate what are the relationships between VVP, TTP and TVP first.
It is easy to verify that VVP is the special case of TTP and TVP with N = 1. On
the other hand, each projected element in TTP can be viewed as the projection of an
EMP formed by taking one column from each of the projection matrices and thus the
projected tensor is obtained through

∏N
n=1 In interdependent EMPs in effect, while

in TVP, the P EMPs obtained sequentially are not interdependent generally.
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Furthermore, recall that the projection using an EMP {u(1)T

,u(2)T

, ...,u(N)T }
can be written as y =< X ,U >, it is then straightforward to show

Proposition 2 y =< X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ).

Thus, an EMP is equivalent to a linear projection of vec(X ), the vectorized repre-
sentation of X , on a vector vec(U). Since U = u(1) ◦u(2) ◦ ... ◦u(N), Proposition 2
indicates that the EMP is in effect a linear projection with constraint on the projection
vector such that it is the vectorized representation of a rank-one tensor. Compared
with a projection vector of size I×1 in VVP specified by I parameters (I =

∏N
n=1 In

for an N th-order tensor), an EMP in TVP can be specified by
∑N

n=1 In parameters.
Hence, to projection a tensor of size

∏N
n=1 In to a vector of size P × 1, the TVP

needs to estimate only P ·
∑N

n=1 In parameters, while the VVP needs to estimate
P ·
∏N

n=1 In parameters. The implication in pattern recognition problem is that the
TVP has fewer parameters to estimate while being more constrained on the solutions,
and the VVP has less constraint on the solutions sought while having more parameters
to estimate.

The connections between the MLDA algorithms and the LDA algorithm can be
revealed through the relationships among VVP, TTP and TVP. From the analysis
above, LDA is a special case of MLDA-TTP and MLDA-TVP whenN = 1, with the
scatter ratio as the separation criterion. On the other hand, the MLDA-TTP is looking
for interdependent EMPs while the EMPs sought sequentially in the MLDA-TVP are
not interdependent generally. Furthermore, for the same projected vector size, the
MLDA-TVP has fewer parameters to estimate while the projection to be solved are
more constrained, and LDA has more parameters to estimate while the projection is
less constrained.

1.3.8 A taxonomy of MLDA variants

With the two general formulations of MLDA, a taxonomy of the existing MLDA
variants is given in Table 1.1, followed by brief descriptions of the four MLDA
variants listed in the view of this taxonomy.

Table 1.1 A taxonomy of MLDA variants.

MLDA Projection Separation Reference

variants type criterion

DATER TTP SRatio [2]

GTDA TTP SDiff [19]

TR1DA TVP SDiff [27, 28]

UMLDA TVP SRatio [30]
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From the taxonomy suggested in Table 1.1, it can been seen that the Discriminant
Analysis with Tensor Representation (DATER) algorithm [2] is a specific realization
of the MLDA-TTP, with the objective of maximizing the scatter ratio and using
the pseudo-identity matrices for initialization. The General Tensor Discriminant
Analysis (GTDA) algorithm [46] is an MLDA-TTP variant maximizing the scatter
difference, where in each step of the iteration and in each mode, the tuning parameter
ζ is determined to be the maximum eigenvalue of a mode-wise scatter ratio (which
means that a different weighting between the between-class and within-class scatter is
used in each mode and each iteration). The initialization in GTDA is done by setting
the initial projection matrix to be all ones. The Tensor Rank-one Discriminant
Analysis (TR1DA) algorithm [27, 28] is an MLDA-TVP variant maximizing the
scatter difference. In each iteration, TR1DA calculates the residues of all tensor
samples using the obtained EMPs, which is a heuristic greedy approach used in tensor
approximation problem [29], and the residues are used as the input tensor samples
in the next iteration. The selection of ζ in TR1DA is not addressed in [27, 28]
and random initialization is employed in this MLDA variant. The uncorrelated
multilinear discriminant analysis (UMLDA) algorithm [30, 47] is an MLDA-TVP
variant maximizing the scatter ratio, while pursuing uncorrelated features, and a
regularization procedure with parameter η was introduced to increase the estimated
within-class scatter, resulting in better generalization. The initialization method used
in [30] is based on the n-mode vectors.

1.4 EMPIRICAL COMPARISON OF MLDA VARIANTS ON FACE
RECOGNITION

In this section, empirical performance comparison of MLDA variants is carried out
on 2-D face images (second-order tensors). For experiments on third-order tensors,
please refer to [14,30] for results on gait silhouette sequences, and [2,19] for results on
the Gabor face/gait images. Two public face databases with a large number of samples
per subject available for testing were used. One is the PIE (Pose, Illumination, and
Expression) database from CMU [48] and the other is the extended Yale face database
B (YaleB) [49, 50].

For the MLDA variants, all the face images are cropped and normalized to 32×32
pixels (represented as second-order tensors), with 256 gray levels per pixel 6. A
random subset with L (=5, 10, 20, 30) samples per subject was taken with labels to
form the training set, and the rest of the database was considered to be the testing
set. For each given L, the results averaged over 20 random splits 7 are reported in
this chapter. The nearest neighbor classifier with the Euclidean distance measure was
employed in classification for simplicity. The MLDA-TTP variants (DATER and

6The 32× 32 face data was obtained from http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.
7The reason for randomly selecting the training set and repeating 20 times is to reduce the dependency of
the performance on a particular set of training data.
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GTDA) produce features in tensor representation, which cannot be handled directly
by the selected classifier. Since from Section 1.2.3, the tensor distance measured
by the Frobenius norm is equivalent to the Euclidean distance between vectorized
representations, the tensor features from MLDA-TTP are rearranged to vectors for
easy classification and comparison, which is described in detail in Section 1.4.1 below.
Besides the four MLDA variants listed in Table 1.1, the Fisherface algorithm [39],
which is a classical LDA approach, and the uncorrelated LDA (ULDA) algorithm
[51] are included for comparison between LDA and MLDA. For LDA and ULDA, a
32× 32 face image is represented as a 1024× 1 vector for input.

In the experiments, the number of iterations for the MLDA variants was set to 10.
For DATER, GTDA and TR1DA, up to 300 features were tested. For UMLDA, up
to 100 features were tested. The maximum number of features tested for LDA and
ULDA was C − 1, where C is the number of subjects (classes) in training. For the
TR1DA algorithm, we tested several values of ζ for each L and the best one for each
L was used: ζ = 2 for L = 5, ζ = 0.8 for L = 10, ζ = 0.6 for L = 20, 30. For
UMLDA, a fixed regularization parameter η = 5× 104 was empirically chosen and
all initial projection vectors are set to all ones (1) for simplicity.

(a)

(b)

Fig. 1.7 Sample face images of one subject from (a) the CMU PIE database and (b) the YaleB
database.

1.4.1 Feature rearrangement for MLDA-TTP

The MLDA-TTP algorithms produce features in tensorial representation. For tensor
distance calculation, the Frobenius norm is commonly used [2]. By Proposition 1,
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it is equivalent to calculate the Euclidean distance of their vectorized representation.
Therefore, in this study, we rearrange the tensor features obtained by MLDA-TTP
to vectors for easy comparison. The MLDA-TTP algorithms obtain the highest-
dimension projection (Pn = In for n = 1, ..., N ) first and then the TTP is viewed as∏N

n=1 In EMPs. The discriminability of each such EMP is calculated on the training
set and the EMPs are arranged in descending discriminability so that a feature vector
is obtained, as in [14] for the MPCA algorithm. The MLDA-TVP algorithms produce
feature vectors directly so there is no such rearrangement necessary.

1.4.2 Face recognition results on PIE database

The CMU PIE database contains 68 individuals with face images captured by 13
synchronized cameras and 21 flashes, under varying pose, illumination and expres-
sion. As in [31,52], we chose the five near frontal poses (C05, C07, C09, C27, C29)
and used all the images under different illumination, lighting and expressions. Thus,
there are about 170 samples per subject and there are a total number of 11,554 face
images. Figure 1.7(a) shows 160 sample face images for a subject in this database.

Figure 1.8 shows the detailed face recognition results on the CMU PIE database
for various values of L. The correct classification rates (CCRs) for each algorithm
in comparison are plotted against the number of features used. To examine the
discriminability of the most discriminative features extracted by each algorithm in
detail, the horizontal axis (the number of features) is shown in log scale. The best
results for each algorithm on the PIE database are reported in Table 1.2, where the
best CCR for each L is highlighted with bold fonts.

From the detailed results, it can be seen that the first a few features extracted by
the UMLDA algorithm consistently outperforms all the other algorithms, although
the number of useful features extracted by UMLDA is limited compared to other
MLDA variants [30]. In contrast, the heuristic TR1DA algorithm, built upon a
greedy approximation approach, performs the worst in most cases, especially when
the number of samples per subject is small (e.g., L = 5, 10). Similarly, the DATER
algorithm outperforms the GTDA greatly on the PIE database. Thus, the MLDA
variants based on scatter ratio have achieved much better results than the MLDA
variants based on the scatter difference in this experiment, with the added benefit that
there is no need to choose a tuning parameter ζ.

For the comparison between MLDA-TTP and MLDA-TVP, we focus on the scatter
ratio-based variants: UMLDA and DATER. As mentioned above, the most discrim-
inative features extracted by UMLDA seem to outperform the most discriminative
features extracted by DATER. However, UMLDA has limited number of useful fea-
tures in comparison. The results in Table 1.2 show that their performances are close
on the PIE database.

Regarding the comparison between LDA and MLDA, we concentrate on the
scatter-ratio-based methods: LDA and ULDA versus DATER and UMLDA. In this
experiment, DATER and UMLDA outperform LDA and ULDA greatly, especially
when L is small. When L = 30, i.e., the number of training samples for each
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subject is large, the performance gap is reduced. This comparison demonstrates that
treating gray-level face images in their natural 2-D representation is advantageous
against vectorized representation, especially when the number of training samples
per subject is small.

(a) (b)

(c) (d)

Fig. 1.8 Detailed face recognition results on the CMU PIE database with (a)L = 5, (b)L =
10, (c)L = 20, (d)L = 30.

1.4.3 Face recognition results on YaleB database

The Extended Yale face database B (YaleB) consists of 2,414 frontal face images
of 38 individuals, which were captured under various laboratory-controlled lighting
conditions. There are about 64 samples per subject and 60 sample face images for a
subject are shown in Fig. 1.7(b).

Figure 1.9 shows the detailed face recognition results on the YaleB database, and
the best results for each algorithm on the YaleB database are reported in Table 1.3,
in a similar way as Section 1.4.2 for various values of L.
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Table 1.2 Face recognition results on PIE database.

L Fisherface(LDA) ULDA DATER GTDA TR1DA UMLDA

5 0.574 0.626 0.651 0.537 0.370 0.639

10 0.708 0.684 0.776 0.684 0.525 0.763

20 0.785 0.774 0.866 0.801 0.672 0.856

30 0.891 0.880 0.906 0.856 0.749 0.894

From the detailed results in Fig. 1.9, it can be seen that the first a few features
extracted by the UMLDA algorithm again consistently outperforms all the other
algorithms. The heuristic TR1DA algorithm performs the worst for L = 5, 10.
From Table 1.3, the DATER algorithm outperforms the GTDA slightly on the YaleB
database but the performance gap is quite small. Overall, the MLDA variants based
on scatter ratio again obtained better results than the MLDA variants based on scatter
difference.

As in Section 1.4.2, we focus on the scatter-ratio-based variants, UMLDA and
DATER, for the comparison between MLDA-TTP and MLDA-TVP. From Figure
1.9 and Table 1.3, UMLDA consistently outperforms DATER significantly on this
database, especially for a smaller L, although the performance of UMLDA deterio-
rates when the number of features exceeds a certain number. Thus, on this database,
the UMLDA, an MLDA-TVP approach extracting uncorrelated features, shows its
advantage against the MLDA-TTP approach, where the features can be viewed to be
extracted through interdependent EMPs.

Regarding the comparison between LDA and MLDA, there is an interesting obser-
vation from this experiment. For the Fisherface (LDA) approach, when L increases
from 20 to 30, the recognition rate ironically decreases, as seen in Table 1.3. For
the ULDA, when L increases from 10 to 20, the recognition rate surprisingly de-
creases too, as in Table 1.3. This is in contrary with our belief that more training
samples should result in better recognition performance. On the other hand, all the
four MLDA variants do not have this problem on this database, with recognition
rate increasing as L increases, showing that MLDA approaches are more stable and
consistent. Furthermore, the UMLDA algorithm outperforms the LDA and ULDA
significantly, especially for a larger L, demonstrating again the benefits of extracting
features directly from the natural 2-D representation of face images rather than from
their vectorized representation.

1.4.4 Discussions

In summary, through the comparison in Figs 1.8 and 1.9, and Tables 1.2 and 1.3,
it can be seen that by treating face images in their natural 2-D representation, the
MLDA solution UMLDA achieves very good recognition results consistently on two
very challenging face databases, for various number of training samples per subjects
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(a) (b)

(c) (d)

Fig. 1.9 Detailed face recognition results on the YaleB database with (a)L = 5, (b)L = 10,
(c)L = 20, (d)L = 30.

Table 1.3 Face recognition results on YaleB database.

L Fisherface(LDA) ULDA DATER GTDA TR1DA UMLDA

5 0.653 0.632 0.685 0.657 0.480 0.720
10 0.783 0.695 0.797 0.777 0.640 0.831
20 0.858 0.628 0.870 0.856 0.758 0.892
30 0.812 0.792 0.900 0.894 0.819 0.921

(L = 5, 10, 20 and 30). It is also observed that the MLDA variants based on scatter
ratio generally outperform the MLDA variants based on scatter difference, and with
scatter ratio as the separation criterion, the overall performance of MLDA-TVP is
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better than that of MLDA-TTP. In addition, MLDA variants are shown to be more
stable and consistent than LDA approaches.

Considering the short period of research and development in multilinear learning
solutions for biometric signal recognition, the empirical evaluation results presented
here are very encouraging and we believe that there is still great potential in further
development of multilinear learning algorithms that operate directly on natural ten-
sorial representations. The materials provided in this chapter is a good starting point
for newcomers to this field and the taxonomy of various multilinear projections and
MLDA variants, together with discussions on their connections, is also beneficial for
researchers already working in this field.

1.5 CONCLUSIONS

This chapter provides a comprehensive introduction to the area of multilinear learning
algorithms, in particular the multilinear discriminant analysis (MLDA) algorithms,
for the recognition of biometric signals, most of which are naturally tensor objects.
Three typical projections are introduced first: the vector-to-vector projections (VVP),
the tensor-to-tensor projections (TTP) and the tensor-to-vector projections (TVP),
and two general MLDA solutions are formulated: the MLDA-TTP and the MLDA-
TVP. The choices of the separation criteria and the initialization methods are then
presented and the relationships between LDA, MLDA-TTP and MLDA-TVP are
discussed. A taxonomy of MLDA variants is subsequently suggested and it not
only helps us to understand the existing mutlilinear algorithms, but also benefits us
in the development of new multilinear algorithms. Finally, the MLDA variants are
experimentally evaluated on the CMU PIE database and the extended Yale database
B to demonstrate their performance on the popular face recognition problem. The
experimental results indicate that the MLDA solutions, and multilinear learning
algorithms in general, are promising emerging areas for research and applications.
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Appendix: Multilinear decompositions

There are two types of decompositions used most in multilinear applications: the
canonical decomposition (CANDECOMP) [21, 22, 53], which is also known as the
parallel factors (PARAFAC) decomposition [21, 22, 54], and the TUCKER decom-
position [21, 22, 55].
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With the CANDECOMP decomposition, a tensor A can be decomposed into a
linear combination of P rank-1 tensors:

A =
P∑

p=1

λpu(1)
p ◦ u(2)

p ◦ ... ◦ u(N)
p , (A.1)

whereP ≤
∏N

n=1 In. With the TUCKER decomposition, a tensorA can be expressed
as the product:

A =
P1∑

p1=1

P2∑
p2=1

...

PN∑
pN =1

S(p1, p2, ..., pN )u(1)
p1
◦ u(2)

p2
◦ ... ◦ u(N)

pN

= S ×1 U(1) ×2 U(2) × ...×N U(N), (A.2)

where Pn ≤ In for n = 1, ..., N , S = A ×1 U(1)T ×2 U(2)T

... ×N U(N)T

,
and U(n) =

(
u(n)

1 u(n)
2 ...u(n)

Pn

)
is an In × Pn matrix with orthonormal column

vectors. The CONDECOMP decomposition is in fact a special case of the TUCKER
decomposition.
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