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Abstract

Canonical correlation analysis (CCA) is a useful
technique for measuring relationship between two
sets of vector data. For paired tensor data sets,
we propose a multilinear CCA (MCCA) method.
Unlike existing multilinear variations of CCA,
MCCA extracts uncorrelated features under two ar-
chitectures while maximizing paired correlations.
Through a pair of tensor-to-vector projections, one
architecture enforces zero-correlation within each
set while the other enforces zero-correlation be-
tween different pairs of the two sets. We take a
successive and iterative approach to solve the prob-
lem. Experiments on matching faces of different
poses show that MCCA outperforms CCA and 2D-
CCA, while using much fewer features. In addi-
tion, the fusion of two architectures leads to per-
formance improvement, indicating complementary
information.

1 Introduction
Canonical correlation analysis (CCA) [Hotelling, 1936] is a
well-known method for analyzing the relations between two
sets of vector-valued variables. It assumes that the two data
sets are two views of the same set of objects and projects them
into low dimensional spaces where each pair is maximally
correlated subject to being uncorrelated with other pairs.
CCA has various applications such as information retrieval
[Hardoon et al., 2004], multi-label learning [Sun et al., 2008;
Rai and Daumé III, 2009] and multi-view learning [Chaud-
huri et al., 2009; Dhillon et al., 2011].

Many real-world data are multi-dimensional, represented
as tensors rather than vectors. The number of dimensions is
the order of a tensor. Each dimension is a mode. Second-
order tensors include matrix data such as 2-D images. Ex-
amples of third-order tensors are video sequences, 3-D im-
ages, and web graph mining data organized in three modes
of source, destination and text [Kolda and Bader, 2009;
Kolda and Sun, 2008].

To deal with multi-dimensional data effectively, re-
searchers have attempted to learn features directly from ten-
sors [He et al., 2005]. The motivation is to preserve data

structure in feature extraction, obtain more compact represen-
tation, and process big data more efficiently, without reshap-
ing tensors into vectors. Many multilinear subspace learn-
ing (MSL) algorithms [Lu et al., 2011] generalize linear algo-
rithms such as principal component analysis and linear dis-
criminant analysis to second/higher-order [Ye et al., 2004a;
2004b; Yan et al., 2005; Tao et al., 2007; Lu et al., 2008;
2009a; 2009b]. There have also been efforts to generalize
CCA to tensor data. To the best of our knowledge, there are
two approaches.

One approach analyzes the relationship between two tensor
data sets rather than vector data sets. The two-dimensional
CCA (2D-CCA) [Lee and Choi, 2007] is the first work along
this line to analyze relations between two sets of image data
without reshaping into vectors. It was further extended to
local 2D-CCA [Wang, 2010], sparse 2D-CCA [Yan et al.,
2012], and 3-D CCA (3D-CCA) [Gang et al., 2011]. Un-
der the MSL framework, these CCA extensions are using the
tensor-to-tensor projection (TTP) [Lu et al., 2011].

Another approach studies the correlations between two
data tensors with one or more shared modes because CCA
can be viewed as taking two data matrices as input. This
idea was first introduced in [Harshman, 2006]. Tensor CCA
(TCCA) [Kim and Cipolla, 2009] was proposed later with
two architectures for matching (3-D) video volume data of the
same dimensions. The single-shared-mode and joint-shared-
mode TCCAs can be viewed as transposed versions of 2D-
CCA and classical CCA, respectively. They apply canonical
transformations to the non-shared one/two axes of 3-D data,
which can be considered as partial TTPs under MSL. Follow-
ing TCCA, the multiway CCA in [Zhang et al., 2011] uses
partial projections to find correlations between second-order
and third-order tensors.

However, none of the multilinear extensions above takes
an important property of CCA into account, i.e., CCA ex-
tracts uncorrelated features for different pairs of projections.
To close this gap, we propose a multilinear CCA (MCCA) al-
gorithm for learning canonical correlations of paired tensor
data sets with uncorrelated features under two architectures.
It belongs to the first approach mentioned above.

MCCA uses the tensor-to-vector projection (TVP) [Lu et
al., 2009a], which will be briefly reviewed in Sec. 2. We fol-
low the CCA derivation in [Anderson, 2003] to successively
solve for elementary multilinear projections (EMPs) to maxi-



mize pairwise correlations while enforcing same-set or cross-
set zero-correlation constraint in Sec. 3. Finally, we evaluate
the performance on facial image matching in Sec. 4.

To reduce notation complexity, we present our work here
only for second-order tensors, i.e., matrices, as a special case,
although we have developed MCCA for general tensors of
any order following [Lu et al., 2011].

2 Preliminary of CCA and TVP
2.1 CCA and zero-correlation constraint
CCA captures the correlations between two sets of vector-
valued variables that are assumed to be different represen-
tations of the same set of objects [Hotelling, 1936]. For two
paired data sets xm ∈ RI , ym ∈ RJ ,m = 1, ...,M , I 6= J in
general, CCA finds paired projections {uxp

,uyp
}, uxp

∈ RI ,
uyp ∈ RJ , p = 1, ..., P , such that the canonical variates wp

and zp are maximally correlated. The mth elements of wp

and zp are denoted as wpm and zpm , respectively:

wpm
= u′xp

xm, zpm
= u′yp

ym, (1)

where u′ denotes the transpose of u. In addition, for p 6= q
(p, q = 1, ..., P ), wp and wq , zp and zq , and wp and zq , re-
spectively, are all uncorrelated. Thus, CCA produces uncor-
related features both within each set and between different
pairs of the two sets.

The solutions {uxp ,uyp} for this CCA problem can be ob-
tained as eigenvectors of two related eigenvalue problems.
However, a straightforward generalization of these results to
tensors [Lee and Choi, 2007; Gang et al., 2011] does not
give uncorrelated features while maximizing the paired cor-
relations (to be shown in Figs. 3(b) and 3(c)). Therefore,
we derive MCCA following the more principled approach of
solving CCA in [Anderson, 2003], where CCA projection
pairs are obtained successively through enforcing the zero-
correlation constraints.

2.2 TVP: tensor space to vector subspace
To extract uncorrelated features from tensor data directly, we
use the TVP in [Lu et al., 2009a]. The TVP of a matrix X ∈
RI1×I2 to a vector r ∈ RP consists of P EMPs {up,vp},
up ∈ RI1 , vp ∈ RI2 , p = 1, ..., P . It is a mapping from
the original tensor space RI1

⊗
RI2 into a vector subspace

RP . The pth EMP (up,vp) projects X to a scalar rp, the pth
element of r, as:

rp = u′pXvp. (2)

Define two matrices U = [u1, ...,uP ] ∈ RI1×P and V =
[v1, ...,vP ] ∈ RI2×P , then we have

r = diag (U′XV) , (3)

where diag(·) denotes the main diagonal of a matrix.

3 Multilinear CCA
This section proposes MCCA for analyzing the correlations
between two matrix data sets by first formulating the prob-
lem, and then adopting the successive maximization approach
[Anderson, 2003] and alternating projection method [Lu et
al., 2011] to solve it.

3.1 Problem formulation through TVP
In (second-order) MCCA, we consider two matrix data
sets with M samples each:

{
Xm ∈ RI1×I2

}
and{

Ym ∈ RJ1×J2
}

, m = 1, ...,M . I1 and I2 may not
equal to J1 and J2, respectively. We assume that their
means have been subtracted so that they have zero-mean,
i.e.,

∑M
m=1 Xm = 0 and

∑M
m=1 Ym = 0. We are in-

terested in paired projections {(uxp
,vxp

), (uyp
,vyp

)},
uxp
∈ RI1 , vxp

∈ RI2 , uyp
∈ RJ1 , vyp

∈ RJ2 , p = 1, ..., P ,
for dimensionality reduction to vector spaces to reveal
correlations between them. The P projection pairs form
matrices Ux = [ux1

, ...,uxP
], Vx = [vx1

, ...,vxP
],

Uy = [uy1
, ...,uyP

], and Vy = [vy1
, ...,vyP

]. The matrix
sets {Xm} and {Ym} are projected to {rm ∈ RP } and
{sm ∈ RP }, respectively, through TVP (3) as

rm = diag (U′xXmVx) , sm = diag
(
U′yYmVy

)
. (4)

We can write the projection above according to EMP (2) as

rmp = u′xp
Xmvxp , smp = u′yp

Ymvyp , (5)

where rmp
and smp

are the pth elements of rm and sm, re-
spectively. We then define two coordinate vectors wp ∈ RM

and zp ∈ RM for the pth EMP, where their pth elements
wpm = rmp and zpm = smp . Denote R = [r1, ..., rM ],
S = [s1, ..., sM ], W = [w1, ...,wP ], and Z = [z1, ..., zP ].
We have W = R′ and Z = S′. Here, wp and zp are analo-
gous to the canonical variates in CCA [Anderson, 2003].

We propose MCCA with two architectures. Architecture
I: wp and zp are maximally correlated, while for q 6= p
(p, q = 1, ..., P ), wq and wp, and zq and zp, respectively, are
uncorrelated. Architecture II: wp and zp are maximally cor-
related, while for q 6= p (p, q = 1, ..., P ), wp and zq are un-
correlated. Figure 1 is a schematic diagram showing MCCA
and its two different architectures.

We extend the sample-based estimation of canonical corre-
lations and variates in CCA to the multilinear case for matrix
data using Architecture I.

Definition 1. Canonical correlations and variates for ma-
trix data (Architecture I). For two matrix data sets with
M samples each {Xm ∈ RI1×I2} and {Ym ∈ RJ1×J2},
m = 1, ...,M , the pth pair of canonical variates is the pair
{wpm

= u′xp
Xmvxp

} and {zpm
= u′yp

Ymvyp
}, where

wp and zp have maximum correlation ρp while for q 6= p
(p, q = 1, ..., P ), wq and wp, and zq and zp, respectively, are
uncorrelated. The correlation ρp is the pth canonical corre-
lation.

An analogous definition with Architecture II follows by
changing the constraint accordingly.

3.2 Successive derivation of MCCA algorithm
Here, we derive MCCA with Architecture I (MCCA1).
MCCA with Architecture II (MCCA2) differs from MCCA1
only in the constraints enforced so it can be obtained in an
analogous way by swapping wq and zq (q = 1, ..., p − 1)
below. Following the successive derivation of CCA in [An-
derson, 2003], we consider the canonical correlations one by



Figure 1: Schematic of multilinear CCA for paired tensor data sets with two architectures. EMP stands for elementary multi-
linear projection, which projects a tensor to a scalar. Matrices are viewed as second-order tensors.

one. The MCCA objective function for the pth EMP pair is

{(uxp
,vxp

), (uyp
,vyp

)} = argmax ρp,subject to

w′pwq = 0, z′pzq = 0, for p 6= q, p, q = 1, ..., P, (6)

where the sample Pearson correlation coefficient ρp between
wp and zp is given by1:

ρp =
w′pzp

‖wp‖‖zp‖
. (7)

The P EMP pairs in the MCCA problem are determined
one pair at a time in P steps, with the pth step obtaining the
pth EMP pair:

Step 1: Determine {(ux1
,vx1

), (uy1
,vy1

)} that maximizes
ρ1 without any constraint.

Step p(= 2, ..., P ): Determine {(uxp
,vxp

), (uyp
,vyp

)} that
maximizes ρp subject to the constraint that w′pwq =
z′pzq = 0 for q = 1, ..., p− 1.

To solve for the pth EMP pair, we need to determine four
projection vectors, uxp

,vxp
,uyp

, and vyp
. As their simul-

taneous determination is difficult, we follow the alternating
projection method [Lu et al., 2011] derived from alternat-
ing least squares [Harshman, 1970]. To determine each EMP
pair, we estimate uxp and uyp conditioned on vxp and vyp

first, then we estimate vxp and vyp conditioned on uxp and
uyp

.
Conditional subproblem: To estimate uxp

and uyp
con-

ditioned on vxp
and vyp

, we assume that vxp
and vyp

are
given and they can project input samples to obtain vectors

r̃mp
= Xmvxp

∈ RI1 , s̃mp
= Ymvyp

∈ RJ1 . (8)

The conditional subproblem then becomes to determine uxp

and uyp
that project the samples {r̃mp

} and {s̃mp
} (m =

1Note that the means of wp and zp are both zero since the input
matrix sets are assumed to be zero-mean.

1, ...,M ) to maximize their correlation subject to the zero-
correlation constraint, which is a CCA problem with input
samples {r̃mp

} and {s̃mp
}.

The corresponding maximum likelihood estimator of the
covariance matrices are defined as [Anderson, 2003]

Σ̃rrp =
1

M

M∑
m=1

r̃mp
r̃′mp

, Σ̃ssp =
1

M

M∑
m=1

s̃mp
s̃′mp

, (9)

Σ̃rsp =
1

M

M∑
m=1

r̃mp
s̃′mp

, Σ̃srp =
1

M

M∑
m=1

s̃mp
r̃′mp

, (10)

where Σ̃rsp = Σ̃
′
srp .

For p = 1, we solve for ux1 and uy1 that maximize
the correlation between the projections of {r̃mp} and {s̃mp}
without any constraint. We get ux1 and uy1 as the leading
eigenvectors of the following eigenvalue problems as in CCA
[Hardoon et al., 2004; Dhillon et al., 2011]:

Σ̃
−1
rrpΣ̃rspΣ̃

−1
sspΣ̃srpux1 = λux1 , (11)

Σ̃
−1
sspΣ̃srpΣ̃

−1
rrpΣ̃rspuy1 = λuy1 , (12)

where we assume that Σ̃ssp and Σ̃rrp are nonsingular
throughout this paper.

Constrained optimization for p > 1: Next, we determine
the pth (p > 1) EMP pair given the first (p−1) EMP pairs by
maximizing the correlation ρp, subject to the constraint that
features projected by the pth EMP pair are uncorrelated with
those projected by the first (p − 1) EMP pairs. Due to the
fundamental difference between linear and multilinear pro-
jections, the remaining eigenvectors of (11) and (12), which
are the solutions of CCA for p > 1, are not the solutions for
our MCCA problem. Instead, we have to solve a new con-
strained optimization problem in the multilinear setting.

Let R̃p ∈ RI1×M and S̃p ∈ RJ1×M be matrices with r̃mp

and s̃mp
as their mth columns, respectively, i.e.,

R̃p =
[
r̃1p , r̃2p , ..., r̃Mp

]
, S̃p =

[
s̃1p , s̃2p , ..., s̃Mp

]
, (13)



then the pth coordinate vectors are wp = R̃′puxp and zp =

S̃′puyp . The constraint that wp and zp are uncorrelated with
{wq} and {zq}, respectively, can be written as

u′xp
R̃pwq = 0,u′yp

S̃pzq = 0, q = 1, ..., p− 1. (14)

The coordinate matrices are formed as

Wp−1 = [w1 w2 ...wp−1] ∈ RM×(p−1), (15)

Zp−1 = [z1 z2 ...zp−1] ∈ RM×(p−1). (16)

Thus, we determine uxp
and uyp

(p > 1) by solving the fol-
lowing constrained optimization problem:

{uxp
,uyp
} = argmax ρ̃p, subject to (17)

u′xp
R̃pwq = 0,u′yp

S̃pzq = 0, q = 1, ..., p− 1,

where the pth (sample) canonical correlation

ρ̃p =
u′xp

Σ̃rspuyp√
u′xp

Σ̃rrpuxp
u′yp

Σ̃sspuyp

. (18)

The solution is given by the following theorem:

Theorem 1. For nonsingular Σ̃rrp and Σ̃ssp , the solutions
for uxp and uyp in the problem (17) are the eigenvectors cor-
responding to the largest eigenvalue λ of the following eigen-
value problems:

Σ̃
−1
rrpΦpΣ̃rspΣ̃

−1
sspΨpΣ̃srpuxp

= λuxp
, (19)

Σ̃
−1
sspΨpΣ̃srpΣ̃

−1
rrpΦpΣ̃rspuyp

= λuyp
. (20)

where

Φp = I− R̃pWp−1Θ
−1
p W′

p−1R̃
′
pΣ̃
−1
rrp , (21)

Ψp = I− S̃pZp−1Ω
−1
p Z′p−1S̃

′
pΣ̃
−1
ssp , (22)

Θp = W′
p−1R̃

′
pΣ̃
−1
rrpR̃pWp−1, (23)

Ωp = Z′p−1S̃
′
pΣ̃
−1
ssp S̃pZp−1, (24)

and I is an identity matrix.

Proof. For nonsingular Σ̃rrp and Σ̃ssp , any uxp and uyp can
be normalized such that u′xp

Σ̃rrpuxp
= u′yp

Σ̃sspuyp
= 1

and the ratio ρ̃p keeps unchanged. Therefore, maximizing
ρ̃p is equivalent to maximizing u′xp

Σ̃rspuyp
with these nor-

malization constraints. Lagrange multipliers can be used to
transform the problem (17) to the following to include all the
constraints:

ϕp = u′xp
Σ̃rspuyp

− φ

2

(
u′xp

Σ̃rrpuxp
− 1

)
−ψ
2

(
u′yp

Σ̃sspuyp
− 1

)
−

p−1∑
q=1

θqu
′
xp

R̃pwq

−
p−1∑
q=1

ωqu
′
yp

S̃pzq, (25)

where φ, ψ, {θq}, and {ωq} are Lagrange multipliers. Let
θp−1 = [θ1 θ2 ... θp−1]

′, ωp−1 = [ω1 ω2 ... ωp−1]
′, then

we have the two summations in (25) as
∑p−1

q=1 θqR̃pwq =

R̃pWp−1θp−1 and
∑p−1

q=1 ωqS̃pzq = S̃pZp−1ωp−1.
The vectors of partial derivatives of ϕp with respect to the

elements of uxp
and uyp

are set equal to zeros, giving

∂ϕp

∂uxp

= Σ̃rspuyp
−φΣ̃rrpuxp

−R̃pWp−1θp−1 = 0, (26)

∂ϕp

∂uyp

= Σ̃srpuxp − ψΣ̃sspuyp − S̃pZp−1ωp−1 = 0. (27)

Multiplication of (26) on the left by u′xp
and (27) on the

left by u′yp
results in

u′xp
Σ̃rspuyp

− φu′xp
Σ̃rrpuxp

= 0, (28)

u′yp
Σ̃
′
rspuxp

− ψu′yp
Σ̃sspuyp

= 0. (29)

Since u′xp
Σ̃rrpuxp

= 1 and u′yp
Σ̃sspuyp

= 1, this shows
that φ = ψ = u′xp

Σ̃rspuyp .
Next, we have the following using the definitions in

(23) and (24) through multiplication of (26) on the left by
W′

p−1R̃
′
pΣ̃
−1
rrp and (27) on the left by Z′p−1S̃

′
pΣ̃
−1
ssp :

W′
p−1R̃

′
pΣ̃
−1
rrpΣ̃rspuyp

−Θpθp−1 = 0, (30)

Z′p−1S̃
′
pΣ̃
−1
sspΣ̃srpuxp −Ωpωp−1 = 0. (31)

Solving for θp−1 from (30) and ωp−1 from (31), and substi-
tuting them into (26) and (27), we have the following based
on earlier result φ = ψ and the definitions in (21) and (22):

ΦpΣ̃rspuyp
= φΣ̃rrpuxp

, ΨpΣ̃srpuxp
= φΣ̃sspuyp

. (32)

Let λ = φ2 (then φ =
√
λ), we have two eigenvalue problems

in (19) and (20) from (32). Since φ(=
√
λ) is the criterion to

be maximized, the maximization is achieved by setting uxp

and uyp
to be the eigenvectors corresponding to the largest

eigenvalue of (19) and (20), respectively.

By setting Φ1 = I, Ψ1 = I, we can write (11) and (12)
in the form of (19) and (20) as well. In this way, (19) and
(20) give unified solutions for {(uxp

,vxp
), (uyp

,vyp
)}, p =

1, ..., P . They are unique only up to sign [Anderson, 2003].
Similarly, to estimate vxp and vyp conditioned on uxp and

uyp
, we project input samples to obtain

r̃mp = X′muxp ∈ RI2 , s̃mp
= Y′muyp

∈ RJ2 . (33)

This conditional subproblem can be solved similarly by fol-
lowing the derivation from (9) to (24). Algorithm 1 summa-
rizes the MCCA algorithm for Architecture I2. For simplic-
ity and reproducibility, we adopt the uniform initialization
scheme in [Lu et al., 2009b] where each vector is initialized
to all ones vector 1 and then normalized to unit vector. The it-
eration is terminated by setting a maximum iteration number
K for computational efficiency.

2The MATLAB code for MCCA will be made avail-
able at: http://www.mathworks.com/matlabcentral/
fileexchange/authors/80417



Algorithm 1 Multilinear CCA for matrix sets (Arch. I)
1: Input: Two zero-mean matrix sets:

{
Xm ∈ RI1×I2

}
and

{
Ym ∈ RJ1×J2

}
, m = 1, ...,M , the subspace di-

mension P , and the maximum number of iterations K.
2: for p = 1 to P do
3: Initialize vxp(0)

= 1/ ‖ 1 ‖, vyp(0)
= 1/ ‖ 1 ‖.

4: for k = 1 to K do
5: Mode 1:
6: Calculate {r̃mp

} and {s̃mp
} according to (8) with

vxp(k−1)
and vyp(k−1)

for m = 1, ...,M .

7: Calculate Σ̃rrp , Σ̃ssp , Σ̃rsp and Σ̃srp from (9) and
(10).

8: Form R̃p and S̃p according to (13).
9: Calculate Θp, Ωp, Φp and Ψp according to (23),

(24), (21) and (22), respectively.
10: Set uxp(k)

and uyp(k)
to be the eigenvectors of (19)

and (20), respectively, associated with the largest
eigenvalue.

11: Mode 2:
12: Calculate {r̃mp

} and {s̃mp
} according to (33) with

uxp(k)
and uyp(k)

for m = 1, ...,M .
13: Repeat line 7-10, replacing u with v in line 10.
14: end for
15: Set uxp

= uxp(K)
, uyp

= uyp(K)
, vxp

= vxp(K)
,

vyp
= vyp(K)

.
16: Calculate ρp and form Wp−1 and Zp−1 according to

(15) and (16), respectively.
17: end for
18: Output: {(uxp ,vxp), (uyp ,vyp), ρp}, p = 1, ..., P .

3.3 Discussion

Convergence: In a successive optimization step p, each itera-
tion maximizes the correlation between the pth pair of canon-
ical variates wp and zp subject to zero-correlation constraint.
Thus, the captured canonical correlation ρp is expected to in-
crease monotonically. However, due to its iterative nature,
MCCA can only converge to a local maximum, giving a sub-
optimal solution. We will show empirical results on conver-
gence performance in the next section.

MCCA vs. related works: To the best of our knowledge,
MCCA is the first multilinear extension of CCA producing
same-set/cross-set uncorrelated features. It is also the first
CCA extension using TVP, which projects a tensor to a vec-
tor, making constraint enforcement easier. In contrast, 2D-
CCA [Lee and Choi, 2007] and 3DCCA [Gang et al., 2011]
use TTP to project a tensor to another tensor without enforc-
ing the zero-correlation constraint, resulting in features cor-
related in the same-set and cross-set, as to be shown in Figs.
3(b) and 3(c). On the other hand, TCCA [Kim and Cipolla,
2009] matches two tensors of the same dimension. TCCA in
the joint-shared-mode requires vectorization of two modes,
which is equivalent to classical CCA for vector sets. TCCA
in the single-shared-mode solves for transformations in two
modes, which is equivalent to 2D-CCA on paired sets con-
sisting of slices of the input tensors.

Figure 2: Examples from the selected PIE subset: 54 faces of
a subject (3 poses×18 illuminations).

4 Experimental Evaluation
This section evaluates MCCA on learning mappings between
facial images of different poses as in [Lee and Choi, 2007].

Data: We selected faces from the PIE database [Sim et al.,
2003] to form paired tensor sets of different poses. Three
poses C27, C29 and C05 were selected, corresponding to
Yaw angle of 0, 22.5 and -22.5 degrees, as shown in Fig. 2.
This subset includes faces from 68 subjects captured under
18 illumination conditions (02 to 06 and 10 to 22), where 07
to 09 were excluded due to missing faces. Thus, we have
68 × 3 × 18 = 3, 672 faces for this study. All face images
were cropped, aligned with annotated eye coordinates, and
normalized to 32× 32 pixels with 8-bit depth.

Algorithm settings: We denote MCCA with Architectures
I and II as MCCA1 and MCCA2, respectively. We also exam-
ine their fusion to see whether they contain complementary
information using score level fusion with a simple sum rule,
denoted as MCCA1+2. They are compared against CCA3 and
2D-CCA [Lee and Choi, 2007]. We set the maximum num-
ber of iterations to ten for 2D-CCA and MCCA. We initial-
ize the projection matrices in 2D-CCA to identity matrices,
which gives better performance than random initialization in
our study. We extract the maximum number of features for
each method (32 for MCCA, 1024 for 2D-CCA and CCA).
The extracted features are sorted according to the correlations
captured in descending order. Face images are input directly
as 32 × 32 matrices to 2D-CCA and MCCA. For CCA, they
are reshaped to 1024× 1 vectors as input.

Convergence study: Figure 3(a) depicts an example of the
correlations captured over up to 20 iterations during learning
for the first five canonical variates of MCCA1. Typically, the
correlation captured improves quickly in the first a few itera-
tions and tends to converge over iterations.

Feature correlations: Next, we examine whether the stud-
ied methods produce same-set and cross-set uncorrelated fea-
tures. Figures 3(b) and 3(c) plot the average correlations of
the first 20 features with all the other features in the same set
and in the other set, respectively, excluding correlations be-
tween the same pairs. Correlations are nonzero in both cases
for 2D-CCA. In contrast, CCA features are uncorrelated in
both cases, while MCCA1 and MCCA2 have achieved same-
set and cross-set zero-correlations, respectively, as supported
by derivation in Sec. 3.2. Furthermore, the same-set correla-
tions for MCCA2 and the cross-set correlations for MCCA1
are both low, especially for the first few features. This indi-
cates that they may have similar performance.

Learning and matching: Finally, we investigate how well

3Code by D. Hardoon: http://www.davidroihardoon.
com/Professional/Code_files/cca.m
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Figure 3: Evaluation on mapping faces of different poses. (a) Convergence study: captured correlations over iterations for the
first five MCCA1 features (indexed by p). (b) Validation of same-set zero-correlation for MCCA1 features. (c) Validation of
cross-set zero-correlation for MCCA2 features. (d) Experimental design: the numeric codes associated with each face image
indicate ID-Pose-Illumination. Correct match is enclosed by solid box and incorrect matches are enclosed by dashed boxes. (e)
Matching accuracy comparison, where MCCA1+2 is the fusion of MCCA1 and MCCA2.

MCCA can learn a mapping between face images of different
poses. We divide the PIE subset into training set and test set
and perform 10-fold cross validation with respect to subjects.
Thus, the training set contains Pose1-Pose2 pairs of 61/62
subjects and the test set contains Pose1-Pose2 pairs of the rest
7/6 subjects (no overlapping). We study three pose pairings:
C27-C29, C27-C05, and C29-C05. Figure 3(d) shows the
design of this experiment.

For each Pose1-Pose2 pairing, we evaluate the matching
performance on the test set after training. The gallery con-
sists of G(= 108/126) images of Pose1, projected to {rg},
g = 1, ..., G, through learned Pose1 subspace. The probe
consists of the same number of Pose2 images. Each probe
image is projected to a vector s in learned Pose2 subspace.
With learned canonical correlations {ρp}, we predict the
mapping of s to Pose1 as r̂ ∈ RP , where its pth element
is r̂p = ρpsp [Weenink, 2003]. The best match is then
ĝ = argming dist(r̂, rg), where dist(·) is a distance mea-
sure. We test three measures to find the best results: L1 dis-
tance, L2 distance, and angle between feature vectors [Lu et
al., 2008]. A correct match is found when the probe and
gallery images differ only in pose. The matching is incorrect
even if the probe and gallery images are of the same sub-
ject but of different illuminations, as illustrated in Fig. 3(d).
We report the best results from testing up to 32 features for
MCCA and up to 1024 features for CCA and 2D-CCA.

Figure 3(e) depicts the matching results on three pose pair-

ings. Despite having much fewer features (only 32
1024 =

1
32 ),

MCCA-based methods give the best matching performance
for all three scenarios, showing the effectiveness of uncor-
related features and direct learning of compact representa-
tions from tensors. There is a small improvement by fusing
MCCA1 and MCCA2, implying that they are slightly com-
plementary.

5 Conclusions
We proposed a multilinear CCA method to extract uncorre-
lated features directly from tensors via tensor-to-vector pro-
jection for paired tensor sets. The algorithm successively
maximizes correlation captured by each projection pair while
enforcing the zero-correlation constraint under two architec-
tures. One architecture produces same-set uncorrelated fea-
tures while the other produces cross-set uncorrelated features
(except the paired features). The solution is iterative and
alternates between modes. We evaluated MCCA on learn-
ing the mapping between faces of different poses. The re-
sults show that it outperforms CCA and 2D-CCA using much
fewer features under both architectures. In addition, the two
architectures complement each other slightly.
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label prediction via sparse infinite CCA. In Advances
in Neural Information Processing Systems (NIPS), pages
1518–1526, 2009.

[Sim et al., 2003] T. Sim, S. Baker, and M. Bsat. The CMU
pose, illumination, and expression database. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
25(12):1615–1618, December 2003.

[Sun et al., 2008] L. Sun, S. Ji, and J. Ye. A least squares
formulation for canonical correlation analysis. In Proc.
Int. Conf. on Machine Learning, pages 1024–1031, July
2008.

[Tao et al., 2007] D. Tao, X. Li, X. Wu, and S. J. Maybank.
General tensor discriminant analysis and gabor features
for gait recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 29(10):1700–1715, October
2007.

[Wang, 2010] H. Wang. Local two-dimensional canonical
correlation analysis. IEEE Signal Processing Letters,
17(11):921–924, November 2010.

[Weenink, 2003] D. J. M. Weenink. Canonical correlation
analysis. Proceedings of the Institute of Phonetic Sciences
of the University of Amsterdam, 25:8199, 2003.

[Yan et al., 2005] S. Yan, D. Xu, Q. Yang, L. Zhang,
X. Tang, and H.-J Zhang. Discriminant analysis with ten-
sor representation. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition, pages 526–532, June 2005.

[Yan et al., 2012] J. Yan, W. Zheng, X. Zhou, and Z. Zhao.
Sparse 2-D canonical correlation analysis via low rank ma-
trix approximation for feature extraction. IEEE Signal
Processing Letters, 19(1):5154, January 2012.

[Ye et al., 2004a] J. Ye, R. Janardan, and Q. Li. GPCA: An
efficient dimension reduction scheme for image compres-
sion and retrieval. In ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining, pages 354–363, 2004.

[Ye et al., 2004b] J. Ye, R. Janardan, and Q. Li. Two-
dimensional linear discriminant analysis. In NIPS 17,
pages 1569–1576, 2004.

[Zhang et al., 2011] Y. Zhang, G. Zhou, Q. Zhao, A. Onishi,
J. Jin, X. Wang, and A. Cichocki. Multiway canonical cor-
relation analysis for frequency components recognition in
SSVEP-based BCIs. In Proc. Int. Conf. on Neural Infor-
mation Processing (ICONIP), pages 287–295, 2011.


