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Abstract

In this paper, a layered deformable model (LDM) is
proposed for human body pose recovery in gait analysis.
This model is inspired by the manually labeled silhouettes
in [6] and it is designed to closely match them. For fronto-
parallel gait, the introduced LDM model defines the body
part widths and lengths, the position and the joint angles
of human body using 22 parameters. The model consists
of four layers and allows for limb deformation. With this
model, our objective is to recover its parameters (and thus
the human body pose) from automatically extracted silhou-
ettes. LDM recovery algorithm is first developed for man-
ual silhouettes, in order to generate ground truth sequences
for comparison and useful statistics regarding the LDM pa-
rameters. It is then extended for automatically extracted sil-
houettes. The proposed methodologies have been tested on
10005 frames from 285 gait sequences captured under var-
ious conditions and an average error rate of 7% is achieved
for the lower limb joint angles of all the frames, showing
great potential for model-based gait recognition.

1 Introduction

Gait recognition [9], the identification of individuals in
video sequences by the way they walk, has recently gained
significant attention. This interest is strongly motivated by
the need for automated person identification system at a dis-
tance in visual surveillance and monitoring applications in
security-sensitive environments, e.g., banks, parking lots,
and airports, where other biometrics such as fingerprint,
face or iris information are not available at high enough res-
olution for recognition [4]. Furthermore, night vision capa-
bility (an important component in automated surveillance at
a distance) is usually impossible with other biometrics due
to the limited signature in the IR image [4]. Gait, the partic-
ular way one walks, is a complex spatio-temporal biometric
characteristic that can address the problems above. In con-

trast with those physiological biometrics such as face and
iris, it is a behavioral (habitual) biometric with the follow-
ing characteristics: uniqueness, unobtrusiveness and recog-
nition at a distance (in low resolution video) [13].

In [10], Sakar et al. introduced the HumanID Gait Chal-
lenge problem, providing a set of twelve experiments of in-
creasing difficulty, which examine the impact of five covari-
ates on performance. The challenge provided the means to
measure progress in the area and various researchers have
reported results on these data sets [1, 5, 10]. While high
recognition rates have been achieved on the easier sets, the
recognition rates for the more difficult ones remain low. Ar-
ticulated human body models are popular in human pose
recovery and tracking [11, 16]. Gait recognition algorithms
using 2D fronto-parallel body models are also proposed on
some other data sets [3,12–14], but to our knowledge, there
are no studies and no results reported on the Gait Challenge
data sets using articulated human body model.

In this paper, a new articulated human body model is
proposed for gait analysis and model-based gait recogni-
tion. This model is called the layered deformable model
(LDM) and it is inspired by the manually labeled silhouettes
in [6]. The model is introduced in Sec. 2. In Sec. 3, algo-
rithms that can be used to estimate the human body poses
from the manual silhouettes to obtain the “ground truth”
are introduced and analyzed. LDM recovery algorithm for
automatically extracted silhouettes is also discussed in this
section. The recovered parameters from both processes are
smoothed by applying a number of constraints and a mov-
ing average filter, and they are compared to evaluate the
performance, as shown in Fig. 1(b). The experimental re-
sults from processing 10005 frames using 285 Gait Chal-
lenge [10] sequences are reported in Sec. 4. Finally, con-
clusions are drawn in Sec. 5.

2 The Layered Deformable Model

In model-based gait recognition, the desirable model
should be of moderate complexity allowing for fast process-



(a) LDM. (b) LDM human body pose recovery from manual and automatically extracted silhouettes.

Figure 1. The layered deformable model (LDM) and LDM pose recovery.

ing while at the same time provides enough features for dis-
criminant learning. In other words, a trade-off between the
computational complexity (the efficiency) of the model and
the descriptive representation of the human gait (the accu-
racy) is sought. The desirable model is not to be as detailed
as a fully deformable limb model while it must model limbs
individually to enable model-based recognition.

This work introduces a human body model called the
layered deformable model (LDM). While this model can
be designed for gait from various viewing angles, the most
commonly used fronto-parallel gait (side-view) is the main
focus in this paper. Without loss of generality, it is assumed
that the walking direction is from right to left. This model
is inspired by the manually labeled silhouettes in [6].

The proposed LDM is illustrated in Fig. 1(a) and its
close match to the manual silhouettes can be observed in
Fig. 1(b). It consists of ten segments modeling ten body
parts: head (circle), torso (semi-ellipse on top of a rect-
angle), left/right upper arms (rectangles), left/right lower
arms (quadrangles), left/right upper/lower legs (quadran-
gles). Feet and hands are not modeled explicitly because in
gait-based recognition tasks, they are relatively small in size
and difficult to detect consistently due to occlusion. The
model is defined based on a simple skeleton model. The
skeleton is shown as thick lines and black dots in the figure.

The LDM is specified using 22 parameters that define the
lengths, widths, positions and orientations of body parts:

• Lengths: the lengths of various body parts lH (the ra-
dius of head), lT (torso), lUA (upper arm), lLA (lower
arm, including hand), lTh (thigh) and lLL (lower leg,
including feet).

• Widths: the widths (thickness) of body parts wT

(torso, which is equal to the width of the top of thigh),
wK (knee) and wA (arm, assuming the same width for
upper and lower parts).

• Positions: the global position (xG, yG), which is also
the position of the hip joint, and the shoulder displace-
ment (dxSh, dySh).

• Joint angles (body part orientations): θlTh (left thigh),
θrTh (right thigh), θlLL (left lower leg), θrLL (right
lower leg), θlUA (left upper arm), θrUA (right upper
arm), θlLA (left lower arm), θrLA (right lower arm),
and θH (head, neck joint angle).

For fronto-parallel gait, the lengths and widths of body parts
do not vary much. Thus, the length and width parameters
are considered static parameters that are consistent for the
subject in a fronto-parallel gait sequence. The global po-
sition, shoulder displacement parameters and joint angles
are dynamic parameters evolving with time, resulting in 13
degrees of freedom.

Furthermore, to model human body self-occlusion (e.g.,
between legs, arms and torso), the following four layers
are introduced: right arm (layer one); right leg (layer two);
head, torso and left leg (layer three); and left arm (layer
four). Layer four is the closest to the camera (seldom
occluded) and layer one is furthest from the camera (fre-
quently occluded). Each layer and the resulted image are
shown in Fig. 2 and self-occlusion is explained well with
this model.

In addition, the LDM allows for limb deformation and
Fig. 3 depicts an example of leg deformation. This is a sig-
nificant difference from traditional 2D (rectangular) models
and visual comparison with the manual silhouettes shows



Figure 2. The layered representation.

that the LDM matches well with human’s subjective per-
ception of human body (in 2D).

Figure 3. Illustration of the deformation.

In summary, it can be argued that the LDM has a
compact representation comparable to the simple rectan-
gle/cylinder model [13] and its layered structure models
self-occlusion between body parts. It allows for limb de-
formation while being considerably simpler than the de-
formable model of [16]. Moreover, the shoulder displace-
ment parameters model shoulder swing observed in the
manual silhouettes, and they also relate to viewing angles.
On the whole, the LDM is able to model human gait realisti-
cally with moderate complexity and it resembles the manual
silhouettes well.

3 LDM human body pose recovery

With the LDM, human body poses (LDM parameters)
can be recovered for gait analysis. This problem is solved
in two phases. LDM parameter estimation from the man-
ual silhouettes is solved first. The obtained results serve as
the ground truth for evaluating the automatic recovery al-
gorithm. In addition, statistics from these ground truth data
are used in the following task of obtaining the LDM estima-
tions directly from the silhouettes extracted from raw gait
sequences automatically.

3.1 Pose estimation from manual silhou-
ettes

The manual silhouettes are available for a single gait cy-
cle in each gait sequence labeled [6]. LDM parameters for a
manual silhouette are first estimated by processing each in-
dividual body segment one by one. Some parameters, such
as the limb joint angles, are more closely related to the way

one walks and hence they are more important to gait recog-
nition than the others, such as the width parameters. Thus,
limb joint angle parameters are estimated first by employing
robust algorithms to achieve high accuracy.

3.1.1 Estimation of limb joint angles

To reliably extract the limb joint angles (θlTh, θrTh, θlLL,
θrLL , θlUA, θrUA, θlLA and θrLA), we propose to esti-
mate the joint angles and positions of the limbs from re-
liable edge orientation, where they are estimated from ei-
ther front or back edges only, decided by the current stance
(posture). E.g., the front (back) edges are more reliable
when the limbs are in front (at back) of the torso. This
method of estimation through reliable body part informa-
tion extends the leading edge method originally introduced
in [14] so that noise and impairments due to loose cloths
are greatly reduced. The mean-shift algorithm [2], a kernel-
based algorithm for nonparametric mode-seeking, is ap-
plied in the joint spatial-orientation domain, taking care of
different scales in the two domains by using different kernel
sizes for different domains. This algorithm is applied to the
reliable edges of each limb individually, preprocessed by a
Gaussian filter to reduce noise. Let an edge pixel feature
vector pi = [ps

i ;p
o
i ], where ps

i is the spatial coordinate and
po

i is the local orientation. Denote by {pi}i=1:R the R re-
liable edge pixel feature vectors. Their modes {qi,c}i=1:R
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until convergence, where k( · ) is a kernel, and hs and ho

are the kernel bandwidths for the spatial and orientation do-
main, respectively, with the initialization qi,1 = pi. The
modes (points of convergence) are sorted in descending or-
der based on the number of points converged to each mode.
The dominant modes (modes at the top of the list) repre-
sent body part orientations and insignificant modes (modes
at the bottom of the list) are ignored.

3.1.2 Estimation of other parameters

With the limb joint angles estimated, the joint (e.g., elbow,
knee) positions can be determined easily and the lengths
(lUA, lLA, lTh and lLL) and widths (wK and wA) are es-
timated from them. From the bounding box of the torso
segment, wT , lT and (xG, yG) are estimated. For the head,
the “head top” and “front face” points are estimated through
Gaussian filtering and averaging, and they determine the
head size (lH ) and the head center, partly eliminating the
effects of hair styles. θH can then be estimated from the



head center and the neck joint position (estimated from
torso), and (dxSh, dySh) is determined from the difference
between the neck and shoulder joint positions.

3.1.3 Post-processing of the estimation results

Due to the imperfection of manual labeling and the pose re-
covery algorithm above, the estimated LDM parameters are
not varying smoothly and they need to be smoothed within
a gait sequence. Thus, a two-step post-processing is pro-
posed. The first step applies a number of constraints. Inter-
frame parameter variation limits are applied and the head
size (lH ) is fixed to be the median over a cycle. The inter-
dependence between angles of the same limbs are enforced
to realistic values by respecting the following conditions:

θlTh ≤ θlLL, θrTh ≤ θrLL, θlUA ≥ θlLA, θrUA ≥ θrLA.
(2)

In the second step, a moving average filter of window
size n = 2k + 1 is applied to the parameter sequences
by replacing the estimation of a parameter zt with: zt =
1
n

∑k
i=−k zt+i.

3.2 Automatic pose estimation

Automatic pose recovery from a given gait sequence is
discussed in this section. Several background subtraction
algorithms are available to obtain silhouettes automatically
from a video sequence. A coarse-to-fine silhouette extrac-
tion algorithm is developed in this work based on the work
proposed in [8], and it is described in [7].

3.2.1 Estimation of static parameters

Since static parameters are largely affected by cloths and
the silhouette extraction algorithm used, they are not con-
sidered as features useful for model-based gait recognition
and coarse estimations are used for them. The statistics of
their ratios to the silhouette height hS are studied for the
Gallery set of manual silhouettes and the standard devia-
tions in these values are found to be low. Therefore, fixed
ratios to hS are used for the static parameter estimations,
based on the Gallery set of manual silhouettes.

3.2.2 Automatic silhouette information extraction

With help from the ideal proportions of the human (eight-
head-high) figure in drawing [15], the following informa-
tion is extracted for LDM parameter (pose) estimation from
the automatically extracted silhouettes: the silhouette height
hS ; the first row ymin and the last row ymax of the sil-
houette; the center column cH of the first hS/8 rows (for
head position); the center column of the waist cW , which is
the average column position of the rows hS/8 to hS/2 (the

torso portion) with widths within ±0.3 deviation from the
expected torso width 0.169 ·hS ; the joint spatial-orientation
domain modes and the number of points converged to each
mode for the front and back edges of limbs, which are ob-
tained using mean-shift as in Sec. 3.1.3. For the upper arms
(rows hS/8 to 3 · hS/8), due to significant collusion with
the torso, only the front edge of the left upper arm and the
back edge of the right upper arm are used.

3.2.3 Estimation of dynamic parameters

Firstly, the global position (xG, yG) is determined as

xG = cW , yG = ymin + 2 · lH + lT . (3)

θH is then calculated through estimating the neck joint
(xG, yG − lT ) and the head centroid (cH , ymin + lH ). Next,
the joint angles are estimated. The left/right limb angles in
this section refer to the angles estimated for the left/right
limb in the silhouettes, respectively. The angles θlLL, θrLL,
θlLA and θrLA are estimated by examining the difference of
the front and back edge estimations and the variation of the
estimations (compared to those in the last frame). The knee
positions, with row number set to (ymax−hS/4), are deter-
mined using the mean-shift modes of the lower legs. Then,
θlTh and θrTh are calculated from the hip (xG, yG) and knee
joint positions, and θlUA and θrUA are set to the estimations
from Sec. 3.2.2. The left elbow and shoulder positions are
obtained similarly from the left arm and (dxSh, dySh) is de-
termined. The constraints described in the first step of post-
processing in Sec. 3.1.3 are enforced in this estimation pro-
cess and a number of other heuristics/constraints are applied
to improve the results.

3.2.4 Limb switching detection

The correct labeling of left/right limbs needs to be ad-
dressed for accurate pose recovery. Since most gait recogni-
tion algorithms do not differentiate left and right legs, with-
out loss of generality, it is assumed that in the first frame,
the left and right legs are “switched”, i.e., the left leg is on
the right and the right leg is on the left. Next, we attempt
to label the limbs correctly in subsequent frames. When
the thighs switch and when the lower legs switch are deter-
mined by examining the variations of respective joint an-
gles. The arms switch in opposite direction of the thighs
since in normal gait, the arms have the opposite “switch-
ing” mode. In addition, we set the minimum number (11)
of frames between two successive switches.

Finally, the estimated values are smoothed through the
two-step post-processing proposed in Sec. 3.1.3. The per-
formance of the proposed LDM recovery algorithms is pre-
sented in the next section in details.



4 Experimental results

The proposed solutions have been tested on all the man-
ual silhouettes in [6]. There are 285 sequences from five
data sets (Gallery and Probes B, D, H, and K) and each se-
quence consists of one gait cycle (around 36 frames). The
automatic pose estimation algorithm is applied to the corre-
sponding silhouettes automatically extracted. For the mean-
shift, we set hs = 15 and ho = 10 and use the kernel with
Epanechnikov profile [2]. In this case, the mean-shift re-
duces to simple (weighted) average. For the running aver-
age filter, a window size n = 7 is used.

Several examples are shown in Fig. 4 to assist in the
qualitative evaluation of the performance. The first five ex-
amples are successful examples taken from each of the five
sets considered here. The last two are examples of poor es-
timation results. The large estimation error in the sixth ex-
ample is due to silhouette extraction noise, while the incor-
rect labeling of the legs in the last example can be attributed
to both silhouette noise and the limb switching algorithm’s
failure. We are going to investigate algorithms to reduce
such errors in the future, e.g., by providing feedback from
the LDM recovery to the background subtraction process.

(a) The raw image frames.

(b) The LDM recovery for manual silhouettes.

(c) The LDM recovery for automatically extracted silhouettes.

Figure 4. Examples of the recovered poses.

Figure 5 depicts the improvement in joint angle esti-
mation, which can be obtained through the utilization of
a simple average filter. One gait sequence is shown here
with the top and bottom subplot in each sub-figure showing
the left and right thigh joint angles recovered, respectively.
The simple filter appears to provide good smoothing results.
Moreover, similarity between the filtered angles can be ob-
served, which is promising to be used for gait recognition

in our future work.

(a) Angles from the manual sil-
houettes before filtering.

(b) Angles from the manual sil-
houettes after filtering.

(c) Angles from the extracted sil-
houettes before filtering.

(d) Angles from the extracted sil-
houettes after filtering.

Figure 5. Joint angle filtering.

In terms of quantitative analysis, the error rate (in per-
centage) of joint angle estimations is calculated as follow-
ing:

l(θs, θm) = 100 · |θs − θm| / |θm| , (4)

where θs represents the angle recovered from the extracted
silhouettes and θm represents the angle recovered from the
manual silhouettes. Table 1 gives the average error rate for
the joint angle estimations. We are particularly interested
in the estimated lower limb joint angles since they are im-
portant for model-based gait recognition. There are six sub-
figures shown in Fig. 6. The first five sub-figures show the
error rates for the Gallery and Probes B, D, H and K sets.
The last sub-figure shows the average over these five sets.
The x axis represents the left thigh (1), the left lower leg
(2), the right thigh (3) and the right lower leg (4) angles.
An average error rate of 7% is achieved for the lower limb
joint angles and the fifth x value in the last sub-figure shows
this. This encourages us to explore the potential of our al-
gorithms in model-based gait recognition.

5 Conclusions

Recently, gait recognition has attracted much attention
for its potential in surveillance and security applications.
The release of the Gait Challenge data sets provides a com-
mon database for testing and evaluation of gait recogni-
tion algorithms. This paper proposes a layered deformable
model for gait analysis, with 22 parameters defining the
body part lengths, widths, positions and joint angles of hu-
man body. Algorithms are proposed to recover human body



Table 1. The average error rate for the joint angle estimations.

Angles θlTh θlLL θlUA θlLA θrTh θrLL θrUA θrLA θH

l(θs, θm) (%) 7.5237 6.8135 19.125 17.918 7.3876 7.0189 14.26 14.534 10.422

Figure 6. The error rate of model recovery.

poses from the manual silhouettes (the ground truth) and
the automatically extracted silhouettes, and the estimations
from these two sets are compared to evaluate the perfor-
mance. The algorithms work well on the whole though with
some exceptions. Experiments show that an average error
rate of 7% is achieved for the lower limb joint angles, which
are important for model-based gait recognition. Naturally,
we will continue to improve on the estimation algorithms
and work on gait recognition using these estimated angles
in our future.

Acknowledgment

The authors would like to thank Prof. Sarkar from the
University of South Florida (USF) for providing the manual
silhouettes and the Gait Challenge data sets. Support pro-
vided by the Communications and Information Technology
Ontario Partnership Program and the Bell University Labs -
at the University of Toronto is also acknowledged.

References

[1] N. V. Boulgouris, D. Hatzinakos, and K. N. Plataniotis. Gait
recognition: a challenging signal processing technology for
biometrics. IEEE Signal Processing Mag., 22(6):78–90,
Nov. 2005.

[2] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. IEEE Trans. Pattern Anal.
Machine Intell., 24(5):603–619, May 2002.

[3] D. Cunado, M. S. Nixon, and J. N. Carter. Automatic ex-
traction and description of human gait models for recogni-
tion purposes. Computer Vision and Image Understanding,
90(1):1–41, Jan. 2003.

[4] A. Kale, A. N. Rajagopalan, A. Sunderesan, N. Cuntoor,
A. Roy-Chowdhury, V. Krueger, and R. Chellappa. Identifi-
cation of humans using gait. IEEE Trans. Image Processing,
13(9):1163–1173, Sept. 2004.

[5] L. Lee, G. Dalley, and K. Tieu. Learning pedestrian models
for silhouette refinement. In Proc. IEEE Conf. on Computer
Vision, pages 663–670, Oct. 2003.

[6] Z. Liu, L. Malave, and S. Sarkar. Studies on silhouette qual-
ity and gait recognition. In Proc. IEEE Int. Conf. on Com-
puter Vision and Pattern Recognition, volume 2, pages 704–
711, 27 June-2 July 2004.

[7] H. Lu, K. Plataniotis, and A. Venetsanopoulos. Coarse-to-
fine pedestrian localization and silhouette extraction for the
gait challenge data sets. In Proc. IEEE Int. Conf. on Multi-
media & Expo, 2006. submitted.

[8] J. Migdal and W. E. L. Grimson. Background subtraction
using markov thresholds. In IEEE Workshop on Motion and
Video Computing, Jan. 2005.

[9] M. S. Nixon and J. N. Carter. Advances in automatic gait
recognition. In Proc. IEEE Int. Conf. on Automatic Face
and Gesture Recognition, pages 139–144, May 2004.

[10] S. Sarkar, P. J. Phillips, Z. Liu, I. Robledo, P. Grother, and
K. W. Bowyer. The human ID gait challenge problem: Data
sets, performance, and analysis. IEEE Trans. Pattern Anal.
Machine Intell., 27(2):162–177, Feb. 2005.

[11] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic track-
ing of 3d human figures using 2d image motion. In Proc.
European Conference on Computer Vision, pages 702–718,
June 2000.

[12] D. K. Wagg and M. S. Nixon. On automated model-based
extraction and analysis of gait. In Proc. IEEE Int. Conf. on
Automatic Face and Gesture Recognition, pages 11–16, May
2004.

[13] L. Wang, H. Ning, T. Tan, and W. Hu. Fusion of static and
dynamic body biometrics for gait recognition. IEEE Trans.
Circuits Syst. Video Technol., 14(2):149–158, Feb. 2004.

[14] C. Y. Yam, M. S. Nixon, and J. N. Carter. Automated per-
son recognition by walking and running via model-based
approaches. Pattern Recognition, 37(5):1057–1072, May
2004.

[15] A. Zaidenberg. Drawing the figure from top to toe. World
publishing company, 1966.

[16] J. Zhang, R. Collins, and Y. Liu. Representation and match-
ing of articulated shapes. In Proc. IEEE Int. Conf. on Com-
puter Vision and Pattern Recognition, pages 342–349, 27
June-2 July 2004.


