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ABSTRACT

This paper solves the gait recognition problem in a multilin-
ear principal component analysis (MPCA) framework. Gait
sequences are naturally described as tensor objects and fea-
ture extraction for tensor objects is important in computer vi-
sion and pattern recognition applications. Classical principal
component analysis (PCA) operates on vectors and it is not di-
rectly applicable to gait sequences. This work introduces an
MPCA framework for feature extraction from gait sequences
by seeking a multilinear projection onto a tensor subspace of
lower dimensionality which captures most of the variance of
the original gait samples. A subset of the extracted eigen-
tensors are selected and the classical LDA is then applied.
In experiments, gait recognition results are reported on the
Gait Challenge data sets using the proposed solution. The
results indicate that with a simple design, the proposed algo-
rithm outperforms the state-of-the-art algorithms.

1. INTRODUCTION

Gait recognition [1,2], the identification of individuals in video
sequences by the way they walk, has recently gained signifi-
cant attention. This interest is strongly motivated by the need
for automated person identification system at a distance in
visual surveillance and monitoring applications in security-
sensitive environments, e.g., banks, parking lots, and airports,
where other biometrics such as fingerprint, face or iris infor-
mation are not available at high enough resolution for recog-
nition [3]. Furthermore, night vision capability is usually im-
possible with other biometrics due to the limited signature in
the IR image [3]. Gait is a complex spatio-temporal biometric
characteristic that can address the problems above.

Most of the gait recognition algorithms proposed in the
literature take gait silhouette sequences as the input, which
are three-dimensional objects naturally represented as third-
order tensors, with the spatial row, column and the temporal
modes for the three dimensions. They are specified in a very
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high-dimensional tensor space and recognition methods op-
erating directly on this space suffer from the curse of dimen-
sionality [4]. However, the entries of gait silhouette sequences
are often highly correlated with surrounding entries and these
gait sequences are highly constrained. They will in fact be
confined to a gait (tensor) subspace.

Dimensionality reduction is commonly used to transform
a high-dimensional data set into a low-dimensional subspace
while retaining most of the underlying structure in the data
[5]. Principal Component Analysis (PCA) is a classical lin-
ear technique for dimensionality reduction but for direct ap-
plication on gait sequences, it needs to reshape (vectorize)
these tensor objects into vectors in a very high-dimensional
space, resulting in high computation and memory demand.
Furthermore, the reshaping breaks the structure and correla-
tion in the original data and thus the redundancy and struc-
ture in the original data is not fully preserved. Therefore, a
dimensionality reduction algorithm operating directly on the
gait sequences in their tensor representation rather than their
vectorized versions is desirable. Nevertheless, this approach
is not well researched and most of the gait recognition algo-
rithms in the literature extract features based on frame-by-
frame processing and they are not fully utilizing the spatial
and temporal correlations in the data [1, 3, 6]. Recently, an
attempt has been made to solve the gait recognition problem
by extending PCA to the multilinear case [7], where higher
order SVD (HOSVD) [8] truncation has been used.

In this paper, as a further development of [7], a new mul-
tilinear principal component analysis (MPCA) formulation is
proposed for dimensionality reduction and feature extraction
in gait recognition. Operating directly on the original gait
data in their tensorial representation, the proposed MPCA is
a multilinear algorithm performing dimensionality reduction
in all modes by seeking a number of bases in each mode that
allows most of the variations in the original gait samples to
be captured by the projected features. Section 2 presents the
new MPCA framework and in Section 3, an MPCA-based gait
recognition system that performs LDA on selected gait fea-
tures obtained directly from gait samples represented as ten-
sor objects is described. Experimental results on gait recog-
nition are presented in Section 4 and it is shown that the pro-
posed algorithm outperforms the state-of-the-art gait recogni-



tion algorithms. Finally, Section 5 concludes the paper and
discusses future works.

2. THE MPCA FRAMEWORK

An N th-order tensor X is in the tensor (multilinear) space
RI1

⊗
RI2 ...

⊗
RIN , where

⊗
denotes the Kronecker prod-

uct and RI1 , RI2 , ..., RIN are the N vector (linear) spaces. For
gait sequences, the corresponding tensor space is very high-
dimensional and a class of gait sequences typically are em-
bedded in a tensor subspace (or manifold). Thus, a tensor sub-
space can be found so that it captures most of the variations in
the collection of the original gait samples and it can be used
to extract features for applications such as gait recognition.
To achieve this objective, Pn < In orthonormal basis vectors
(principle axes) of the n-mode linear space RIn are sought for
each n and a tensor subspace RP1

⊗
RP2 ...

⊗
RPN is formed

by these linear subspaces. Let Ũ(n) denote the In×Pn matrix
containing the Pn orthornormal n-mode basis vectors. The
projection ofX onto the tensor subspace RP1

⊗
RP2 ...

⊗
RPN

is defined as Y = X ×1 Ũ(1)T ×2 Ũ(2)T

...×N Ũ(N)T

.

2.1. The MPCA algorithm

In this section, a multilinear principal component analysis
(MPCA) solution to the problem of dimensionality reduction
for gait sequences is introduced based on the analysis intro-
duced in [9]. The problem to be solved is formally stated as
follows:

A set of M training gait samples {X1, X2, ..., XM} is
available. Each gait sample Xm ∈ RI1×I2×...×IN assumes
values in the tensor space RI1

⊗
RI2 ...

⊗
RIN , where In

is the n-mode dimension of the gait tensor. The objective
of MPCA is to find a multilinear transformation {Ũ(n) ∈
RIn×Pn , n = 1, ..., N} mapping from the original gait tensor
space RI1

⊗
RI2 ...

⊗
RIN into a tensor subspace RP1

⊗
RP2

...
⊗

RPN (with Pn < In, for n = 1, ..., N ): Ym = Xm ×1

Ũ(1)T×2Ũ(2)T

...×NŨ(N)T

,m = 1, ...,M , such that {Ym ∈
RP1

⊗
RP2 ...

⊗
RPN ,m = 1, ...,M} captures as much as

possible the variations in the original gait samples, where the
variations are measured by the total scatter defined below.

Definition 1. Let {Am,m = 1, ...,M} be a set of M gait
samples in RI1

⊗
RI2 ...

⊗
RIN . The total scatter of these

samples is defined as: ΨA =
∑M

m=1 ‖ Am − Ā ‖2
F , where

Ā is the mean sample calculated as Ā = 1
M

∑M
m=1Am.

Based on Definition 1, the objective function of MPCA is
to determine the N projection matrices {Ũ(n) ∈ RIn×Pn , n =
1, ..., N} that maximize the total tensor scatter ΨY :

{Ũ(n), n = 1, ..., N} = arg max
Ũ(1),Ũ(2),...,Ũ(N)

ΨY . (1)

Here, the dimensionality Pn for each mode is assumed to be
known or pre-determined. Discussions on how to determine
Pn when it is not given will be presented later.

Unfortunately, there is no known optimal solution to si-
multaneously optimize the N projection matrices. Since the
projection to an N th-order tensor subspace can be decom-
posed into N projections to N vector subspaces, N optimiza-
tion subproblems can be obtained by finding each Ũ(n) max-
imizing the scatter in the n-mode vector subspaces.

The following theorem provides the theoretical fundamen-
tals for the framework introduced. The proof of the theorem
and additional information, such as the relationship with PCA
and 2DPCA, can be found in [9].

Theorem 1. Let {Ũ(n), n = 1, ..., N} be the solution to
Equation (1). Then, for given Ũ(1), ..., Ũ(n−1), Ũ(n+1),...,
Ũ(N), the matrix Ũ(n) consists of the Pn eigenvectors corre-
sponding to the largest Pn eigenvalues of the matrix

Φ(n) =

MX

m=1

�
Xm(n) − X̄(n)

�
·ŨΦ(n) ·ŨT

Φ(n) ·
�
Xm(n) − X̄(n)

�T
,

(2)

where ŨΦ(n) =
(
Ũ(n+1) ⊗ ...⊗ Ũ(N) ⊗ Ũ(1) ⊗ ...Ũ(n−1)

)
.

Since ŨΦ(n) ·ŨT
Φ(n) depends on Ũ(1), ..., Ũ(n−1), Ũ(n+1),

..., Ũ(N), the optimization of Ũ(n) depends on the projec-
tions in other modes and there is no closed form solution to
this maximization problem. Instead, an iterative solution was
introduced by Theorem 1: The input gait samples (as tensors)
are centered and properly initialized, the projection matrices
are computed one by one with all the others fixed (local op-
timization) according to Theorem 1. The local optimization
procedure can be repeated until convergence with each iter-
ation guaranteeing an improvement of the objective function
ΨY , in a similar fashion as the alternating least-squares (ALS)
method [10].

In the following, several issues related to the application
of the MPCA algorithm to the problem of gait feature ex-
traction are discussed: the initialization, the termination cri-
teria, the determination of the subspace dimensionality and
the computational complexity.

2.2. Initialization and termination

Full projection truncation (FPT) is used to initialize the MPCA
iteration. Here, the term full projection refers to the multilin-
ear projection for MPCA with Pn = In for n = 1, ..., N , and
in this case, UΦ(n) ·UT

Φ(n) is an identity matrix and Φ(n) is re-

duced to Φ(n)∗ =
∑M

m=1

(
Xm(n) − X̄(n)

)
·
(
Xm(n) − X̄(n)

)T
.

Now Φ(n)∗ is determined by the input gait samples only and is
independent on other projection matrices. The optimal Ũ(n) =
U(n) is then obtained as the eigenvectors of Φ(n)∗ directly
without iteration, and the total scatter ΨX in the original data
is fully captured but dimensionality is not reduced. By writ-
ing the projection in the form of (4), each gait sample in the
class can then be written as a linear combination of P1×P2×
...× PN rank-1 tensors Ũp1p2...pN

= ũ(1)
p1 ◦ ũ(2)

p2 ◦ ... ◦ ũ(N)
pN ,

which are named as eigentensors in this paper.



Keeping the first Pn columns of the full projection matrix
U(n) in n-mode for all n gives an initial projection matrix
Ũ(n). This solution is close to the (local) optimal solution and
it is a good point to start the iterations in MPCA. This initial-
ization is equivalent to the MPCA solution based on HOSVD
truncation in [7].

The termination criterion is to be determined using the
objective function ΨY . In particular, the iterative procedure is
terminated if (ΨYk

−ΨYk−1) < η, where ΨYk
and ΨYk−1 are

the results from the kth and (k− 1)th iterations, respectively.
In addition, the maximum number of iterations allowed is set
to K for computational consideration.

2.3. Determination of the subspace dimensionality

When Pn for each n is not specified, a method named Q-
based method is proposed to determine them. From the def-
inition of the Frobenius norm, ‖ A ‖F =‖ A(n) ‖F . Thus,
the total scatter for full projection Ψ∗

Y = ΨX =
∑M

m=1 ‖
Ym(n)− Ȳ(n) ‖2

F =
∑In

in=1 λ
(n)∗
in

, n = 1, ..., N , where λ
(n)∗
in

is the ithn n-mode eigenvalue (thus
∑I1

i1=1 λ
(1)∗
i1

=
∑I2

i2=1 λ
(2)∗
i2

= ... =
∑IN

iN=1 λ
(N)∗
iN

= ΨX ). Truncation of the n-mode

eigenvectors after Pn discards a portion of
PIn

in=Pn+1 λ
(n)∗
inPIn

in=1 λ
(n)
in

∗
of

the total scatter in the n-th mode. Define the ratio of vari-
ations kept in the n-mode as Q(n) =

PPn
in=1 λ

(n)∗
inPIn

in=1 λ
(n)∗
in

. In the

proposed method, the first Pn eigenvectors are kept in each
mode so that the same (or similar) amount of variances (en-
ergy) is kept in each mode: Q(1) = Q(2) = ... = Q(N) = Q.
This strategy is an extension of the dimensionality selection
strategy in PCA to the multilinear case. The reason behind
this choice is that the loss of variations due to dimensionality
reduction is approximately proportional to the sum of the cor-
responding eigenvalues of the discarded eigenvectors. Thus,
the variation loss resulted from discarding the least signifi-
cant eigenvectors in each mode is low and truncation of least
significant eigenvectors in all modes is advantageous.

2.4. Discussion on computational complexity

The time complexity for one iteration is studied. It is assumed

that I1 = I2 = ... = IN =
(∏N

n=1 In

) 1
n

= I for sim-
plicity. The most time-consuming steps are the formation of
the matrices Φ(n), the eigen-decomposition of Φ(n), and the
computation of the multilinear projection Ym. Φ(n) is more
efficiently computed using multilinear multiplication rather
than Kronecker products. The computations of Φ(n), the Pn

eigenvectors of Φ(n) and Ym take O(MN · I(N+1)) (upper
bounded), O(I3) and O(N · I(N+1)), respectively. The total
complexity is O((N + 1) ·MN · I(N+1) + N ∗ I3).

In MPCA, X̄ and Φ(n) can be computed incrementally
by reading Xm or X̃m sequentially without loss of informa-

tion. Hence, memory requirements for the MPCA algorithm
can be as low as O(

∏N
n=1 In) and MPCA computes the solu-

tion without requiring all gait samples in the memory. This is
a major advantage of MPCA, especially for large databases,
compared with approaches forming an (N + 1)th-order ten-
sor for N th-order tensor gait samples to perform HOSVD [7],
which imposes very high memory requirement and increases
the time complexity as well.

3. GAIT RECOGNITION USING MPCA PLUS LDA

In the problem of gait recognition, the input data are gait im-
age sequences with very high-dimensionality. The projection
matrices {Ũ(n), n = 1, ..., N} obtained through maximizing
ΨY of a set of training gait samples {Xm,m = 1, ...,M}
through MPCA can be used on these sequences in their natu-
ral tensor representation for dimensionality reduction and fea-
ture extraction. The gait recognition system through MPCA
plus LDA is depicted in Fig. 1. As in other biometric recogni-
tion problems, such as human identification using fingerprints
or faces, there are two types of gait data sets: the gallery and
the probe [1]. The gallery set contains the set of gait sam-
ples with known identities and it is used as the training set.
The probe set is the testing set with gait samples of unknown
identities to be identified through matching against the gallery
set.

Fig. 1. MPCA plus LDA for gait recognition.

An input gait sequence is firstly partitioned into a num-
ber of gait samples. As in [7], each half gait cycle is treated
as a gait sample (3rd-order tensor) in this paper, which is ob-
tained through counting the number of foreground pixels in
the bottom half of each silhouette. This number sequence is
smoothed with a running average filter and the minimums in
this sequence partition the sequence into several half gait cy-
cles.



Since MPCA takes samples of the same dimensions in all
the modes for feature extraction, the input gait samples (half
cycles) need to be normalized to standard dimensions first.
The spatial (row and column) modes normalization is through
image resizing and the time mode normalization is through
temporal interpolation as in [7]. The normalized tensor sam-
ples are then centered by subtracting the mean obtained from
the gallery samples.

From the gallery set, a set of eigentensors are obtained,
with Pn determined by a user-specified Q. For the task of gait
recognition, it should be noted that although with Pn < In,
some of the small variations and noise are removed but the re-
maining eigentensors encode not only the inter-subject vari-
ations but also the intra-subject variations in the gallery set.
Clearly not all of them are useful for recognition and a fea-
ture selection strategy is proposed to select eigentensors ac-
cording to their class discriminability [11], which is defined
as the ratio of the between-class and within-class scatter, fol-
lowing the framework of [9]:

Definition 2. The class discriminability Γp1p2...pN
for the

eigentensor Ũp1p2...pN
is defined as

Γp1p2...pN =

PC
c=1 Nc ·

�
Ȳc(p1, p2, ..., pN )− Ȳ(p1, p2, ..., pN )

�2
PM

m=1

�
Ym(p1, p2, ..., pN )− Ȳcm(p1, p2, ..., pN )

�2 ,

(3)
where C is the number of classes (subjects), M is the total
number of gait samples in the gallery set, Nc is the number of
gait samples for class (subject) c and cm is the class label for
the mth gallery gait sample Xm. Ym is the feature tensor of
Xm in the projected tensor subspace, the mean feature tensor
Ȳ = 1

M

∑
m Ym and the class mean feature tensor Ȳc =

1
Nc

∑
m,cm=c Ym.

For the selection, the entries inYm are arranged into a fea-
ture vector ym ordered according to Γp1p2...pN

in descending
order and only the first Hy entries of ym are kept for classifi-
cation, with Hy determined empirically or user-specified.

A classical linear discriminant analysis (LDA) is then ap-
plied to obtain an MPCA+LDA approach for recognition, sim-
ilar to the popular approach of PCA+LDA [12]. LDA seeks a
projection V to maximize the ratio of the between-class scat-
ter matrix SB to the within-class scatter matrix SW , where
SW =

∑
m(ym−ȳcm

)(ym−ȳcm
)T and ȳc = 1

Nc

∑cm=c
m ym,

SB =
∑C

c=1 Nc(ȳc−ȳ)(ȳc−ȳ)T , and ȳ = 1
M

∑
m ym. The

solution Vlda = arg maxV
|VT SBV|
|VT SW V| = [v1v2...vHz ], where

{vhz , hz = 1, ...,Hz} is the set of generalized eigenvalues
of SB and SW corresponding to the Hz (≤ C − 1) largest
generalized eigenvalues {λhz , hz = 1, ...,Hz}: SBvhz =
λhzSW vhz , hz = 1, ...,Hz. Thus, the discriminant feature
vector zm is obtained as: zm = VT

ldaym, and a classifier can
then be applied.

4. EXPERIMENTAL RESULTS

To evaluate the proposed framework, gait recognition experi-
ments are carried out on the USF HumanID “Gait Challenge”
data sets version 1.7 [1] for preliminary evaluation. The hu-
man gait sequences in these data sets were captured under
different conditions (walking surfaces, shoe types and view-
ing angles). The gallery set contains 71 sequences (subjects)
and seven experiments (probe sets) are designed for human
identification. The capturing condition for each probe set
is summarized in brackets after the probe name in Table 1,
where C,G,A,B,L,R, standing for cement surface, grass sur-
face, shoe type A, shoe type B, left view, and right view, re-
spectively. The capturing condition of the gallery set is GAR.
The silhouette data extracted by the baseline algorithm [1]
is the input to the proposed algorithm for fair comparison
against other gait recognition algorithms.

There are 731 gait samples obtained in the Gallery set and
each subject has an average of roughly 10 samples available.
The samples are normalized to a canonical size of I1 × I2 ×
I3 = 128×88×20. MPCA is then applied to extract features
from the half cycles ({Xm,m = 1, ...,M}) obtained from the
gallery set, with K = 1. The number of eigenvectors kept in
each mode is: P1 = 61, P2 = 42 and P3 = 17, determined
by setting Q(1) = Q(2) = Q(3) = Q = 0.97, which captures
approximately 92% of the total variations of the gallery gait
samples in the projected tensor subspace. The 1-mode unfold-
ing, i.e., concatenating the frames of a sequence sequentially
in a row, of two gait samples and the mean gallery gait sam-
ple, are shown in Figs. 2(a) and 2(b), respectively.

The eigentensors obtained from the gallery gait sequences
through MPCA are named EigenTensorGaits as in [7] and
LDA is applied on selected EigenTensorGaits to extract fea-
tures for recognition. The results reported below are obtained
with Hy = 170, determined through empirical study. Fig-
ure 2(c) shows the 1-mode unfolding of seven discriminative
EigenTensorGaits for illustration. From the figure, it is ob-
served that the EigenTensorGaits act as a set of multireso-
lution filters, and the projection using them is very similar
to applying a filter bank in multiresolution analysis. Each
EigenTensorGait can be viewed as a filter and the projection
is similar to a filtering process.

To measure the similarity of one test sample feature z
against Nc sample features znc

of a subject c, the principle of
nearest neighbor classifier is applied. The matching score of
z with subject c is obtained as S(z, c) = −minnc d(z, znc).
Such a simple classifier is selected to study the performance
mainly contributed by the MPCA+LDA feature extraction al-
gorithm although better classifiers can be investigated. The
seven distance measures for vectors in [13] are tested and the
best results are obtained with the Mahalanobis+angle distance

(MAD) measure: d(a,b) =
PHz

hz=1 a(hz)·b(hz)q
λhz

PHz
hz=1 a(hz)2

PHz
hz=1 b(hz)2

,

where Hz = C − 1 = 70 and λhz is the generalized eigen-



(a) 1-mode unfolding of two gait silhouette samples.

(b) 1-mode unfolding of the mean of the gallery gait silhouette samples.

(c) The 1st, 15th, 30th, 45th, 60th, 75th & 90th discriminative Eigen-
TensorGaits.

Fig. 2. Illustration of gait samples and EigenTensorGaits.

value defined in previous section.
To obtain the matching score of a probe sequence p with

Np samples against a gallery sequence g with Ng samples,
the approach in [6] is adopted, which proposed that the dis-
tance calculation process should be symmetric with respect
to probe and gallery sequences. If the probe and gallery se-
quences were interchanged, the computed distance would be
identical. The details are described as follows: each probe
sample feature znp is matched against the gallery sequence
to obtain S(znp

, g) and each gallery sample feature zng
is

matched against the probe sequence to obtain S(zng
, p). The

matching score between the probe sequence p and the gallery
sequence g is the sum of the mean matching score of p against
g and that of g against p: S(p, g) = 1

Np

∑Np

np=1 S(znp
, g) +

1
Ng

∑Ng

ng=1 S(zng , p). The identity of the gallery sequence
with the highest matching score S(p, g) is assigned to the
probe sequence p.

The proposed algorithm is compared against the state-
of-the-art gait recognition algorithms: the Hidden Markov
Model (HMM) framework [3], the linear time normalization
(LTN) algorithm [6], the Gait Energy Image (GEI) algorithm
[14] and the MPCA-based algorithm using HOSVD trunca-
tion (MPCA-HT) [7]. The baseline (BL) algorithm [1] is also
included for the sake of completeness. For the HMM algo-
rithm, the direct approach is chosen for comparison. For the
LTN algorithm, the LTN using the silhouette feature (LTN-
S) is chosen for comparison. For the GEI method, the re-
sults involving the synthetic templates are not included for

fair comparison. The identification performance is measured
by the Cumulative Match Characteristic (CMC) [1], which
plots identification rates PI within a given rank k (rank k re-
sults report the percentage of probe subjects whose true match
in the gallery set was in the top k matches). The detailed re-
sults are depicted using the CMCs in Fig. 4, and the compar-
ison with the state-of-the-art algorithms is in Table 1, where
the rank 1 and rank 5 identification rates are listed for each
probe (A to G) together with their averages. The best re-
sults for all the probe and rank combinations are highlighted
by boldface font in the table. From the table, MPCA+LDA
has achieved the best overall performance in both rank 1 and
rank 5, compared against all the other algorithms, although
with simple preprocessing, cycle partition and matching al-
gorithms. A detailed discussion and further analysis can be
found in [9].

Fig. 3. CMC curves up to rank 20 for MPCA+LDA.

5. CONCLUSIONS AND FUTURE WORKS

This paper proposes a gait recognition algorithm using MPCA
plus LDA. The new multilinear principal component analysis
(MPCA) framework looks for a multilinear projection onto a
tensor subspace of lower dimensionality that captures most of
the variances in the original gait samples. MPCA is used to
extract gait features from gait sequences in their natural tensor
representation directly and LDA is applied on selected eigen-
tensors afterwards for recognition. This MPCA+LDA ap-
proach for gait recognition is tested in the experiments and the
results show that with a simple classifier (and simple prepro-
cessing and cycle partition algorithms), the proposed method
outperforms the state-of-the-art gait recognition algorithms.
This MPCA-based approach is very promising for gait recog-
nition and other tensor object recognition, and it can be gener-
alized to the development of other tensor subspace algorithms
in the future.



Table 1. Comparison of gait recognition through MPCA+LDA and the state-of-the-art gait recognition algorithms.
PI (%) at Rank 1 PI (%) at Rank 5

Probe BL HMM LTN GEI MPCA-HT MPCA+LDA BL HMM LTN GEI MPCA-HT MPCA+LDA
A (GAL) 79 99 94 100 94 99 96 100 99 100 99 100
B (GBR) 66 89 83 85 76 88 81 90 85 85 83 93
C (GBL) 56 78 78 80 66 83 76 90 83 88 81 88
D (CAR) 29 35 33 30 27 36 61 65 65 55 64 71
E (CBR) 24 29 24 33 36 29 55 65 67 55 52 60
F (CAL) 30 18 17 21 15 21 46 60 58 41 53 59
G (CBL) 10 24 21 29 19 21 33 50 48 48 48 60
Average 42 53 50 54 48 54 64 74 72 67 68 76

APPENDIX: NOTATIONS AND BASIC MULTILINEAR
ALGEBRA

This work denotes vectors by lowercase boldface letters, e.g.,
x; matrices by uppercase boldface, e.g., U; and tensors by
calligraphic letters, e.g., A. Their elements are denoted with
indices in brackets. Indices are denoted by lowercase letters
and span the range from 1 to the uppercase letter of the index,
e.g., n = 1, 2, ..., N . Throughout this paper, the discussion
is restricted to real-valued vectors, matrices and tensors since
the gait recognition application involves real data only.

An N th-order tensor is denoted as: A ∈ RI1×I2×...×IN .
It is addressed by N indices in, n = 1, ..., N , and each in
addresses the n-mode of A. The n-mode product of a tensor
A by a matrix U ∈ RJn×In , denoted by A ×n U, is a ten-
sor with entries: (A ×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =∑

in
A(i1, ..., iN ) ·U(jn, in). The scalar product of two ten-

sors A,B ∈ RI1×I2×...×IN is defined as: < A, B >=∑
i1

∑
i2

...
∑

iN
A(i1, i2, ..., iN ) · B(i1, i2, ..., iN ) and the

Frobenius norm of A is defined as ‖ A ‖F =
√

< A,A >.
The “n-mode vectors” ofA are defined as the In-dimensional
vectors obtained from A by varying the index in and keeping
the other indices fixed. A rank-1 tensor A equals to the outer
product of N vectors: A = u(1)◦u(2)◦...◦u(N), which means
that A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) for
all values of indices. Unfolding A along n-mode is denoted
as A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ), and the column
vectors of A(n) are the n-mode vectors of A.

Any tensor A can be expressed as the product: A = S ×1

U(1) ×2 U(2) × ... ×N U(N), where S = A ×1 U(1)T ×2

U(2)T

... ×N U(N)T

, and U(n) =
(
u(n)

1 u(n)
2 ...u(n)

In

)
is an

orthogonal In × In matrix. The decomposition can also be
written as the sum of

∏N
n=1 In rank-1 tensors:

A =
I1∑

i1=1

...

IN∑
iN=1

S(i1, ..., iN )u(1)
i1

◦ ... ◦ u(N)
iN

. (4)
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