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ABSTRACT

This chapter reviews two important biometric recognition technologies that have received significant attention

recently: face and gait recognition, where individuals are recognized by their faces and the way they walk,

respectively. These two technologies are mainly motivated from security-related applications. We first describe

typical face and gait recognition systems and three common recognition scenarios. Then, we present the two

general approaches for solving the problem, the model-based approach and the appearance-based approach, as well

as the fusion of face and gait, followed by discussions on commonly used face and gait databases. Next, a survey

of important recognition algorithms are provided, including linear, nonlinear and multilinear subspace learning

algorithms. Finally, the current state and future directions are summarized.

8.1 INTRODUCTION

For thousands of years, humans have used visually perceived body characteristics such as face and gait to recognize

each other. This remarkable ability of human visual system has inspired researchers to build automated systems to

recognize individuals from digitally captured facial images and gait sequences [1]. Face and gait recognition belong

to the field of biometrics, a very active area of research in the computer vision and pattern recognition society,

and face and gait are two typical physiological and behavioral biometrics, respectively. Compared with other

biometric traits, face and gait have the unique property that they facilitate human recognition at a distance, which

is extremely important in surveillance applications. Moreover, their unintrusive nature leads to high collectability

and acceptability, making them very promising technologies for wide deployments. The collectability refers to the
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ease of acquisition for measurement and the acceptability indicates the extent to which people are willing to accept

the use of a particular biometric identifier in their daily lives [1].

8.1.1 Face recognition

Face recognition has a wide range of applications, such as biometric authentication, surveillance, human-computer

interaction and multimedia management. Table 8.1 lists some of these applications in detail. On the other hand,

the rapid developments in technologies such as digital cameras, the Internet and mobile devices also increase the

popularity of face recognition [2]. A number of commercial face recognition systems have been deployed, such

as Cognitec [3], Eyematic [4], and L-1 Identity Solutions [5]. Face recognition is one of the three identification

methods used in e-passports and it has an important advantage over other popular biometric technologies: it is

non-intrusive and easy to use [2]. Among the six biometric attributes considered in [6], facial features scored the

highest compatibility in a machine readable travel documents (MRTD) system based on a number of evaluation

factors, such as enrollment, renewal, machine requirements, and public perception [6]. In addition, in advanced

human-computer interaction applications, it is very important for robots to be able to identify faces, expressions

and emotions while interacting with humans.

Table 8.1 Applications of face recognition (adapted and expanded from [7] and [8]).

Areas Examples of Applications

Biometrics, Drivers Licenses, Entitlement Programs, Smart Cards

Mugshot Immigration, National ID, Passports, Voter Registration

Identification Welfare Fraud, Airline Industry, Bank Industry

Information Desktop Logon, Secure Trading Terminals, Application Security, Database Security,

Security File Encryption, Intranet Security, Internet Access, Medical Records

Law Enforcement Automated Video Surveillance (e.g., airport security checkpoints),

and Surveillance Portal Control, Postal-Event Analysis, Face Reconstruction from Remain

Shoplifting and Suspect Tracking and Investigation

Access Control Access to Private Buildings, Facility, Personal Computers, PDA and Cell Phone

Others Human-Computer Interaction, Content-based Image Database Management,

Information Retrieval, Multimedia Communication (e.g., generation of synthetic faces)
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8.1.2 Gait recognition

Gait recognition [9, 10], the identification of individuals in video sequences by the way they walk, is strongly

motivated by the need for automated person identification system at a distance in visual surveillance and monitoring

applications in security-sensitive environments, e.g., banks, parking lots, museums, malls, and transportation hubs

such as airports and train stations [11], where other biometrics such as fingerprint, face or iris information are not

available at high enough resolution for recognition [12, 13]. Furthermore, night vision capability (an important

component in surveillance) is usually not possible with other biometrics due to the limited biometric details in an

IR image at large distance [12, 13].

Gait is a complex spatio-temporal biometric [10, 12] that can address the problems above. In 1975 [14],

Johansson used point light displays to demonstrate the ability of humans to rapidly distinguish human locomotion

from other motion patterns. Similar experiments later showed the capability of identifying friends or the gender of

a person [15, 16], and Stevenage et al. show that humans can identify individuals based on their gait signature in

the presence of lighting variations and under brief exposures [17].

Gait is a behavioral (habitual) biometric, in contrast with those physiological biometrics such as face and iris,

and it is viewed as the only true remote biometric [18]. Capturing of gait is unobtrusive, which means that it can

be captured without requiring the prior consent of the observed subject, and gait can be recognized at a distance

(in low resolution video) [19]. In contrast, other biometrics either require physical contact (e.g., fingerprint) or

sufficient proximity (e.g., iris). Furthermore, gait is harder to disguise than static appearance features such as face.

8.1.3 Organization

The problem of face and gait recognition is very challenging. The main challenge in vision-based face or gait

recognition is the presence of a high degree of variability in human face images or gait sequences. For facial

images [20], the intra-subject variations include pose (imaging angle), illumination, facial expression, occlusion,

makeup, glasses, facial hair, time (aging) and imaging parameters such as aperture and exposure time. For gait,

the intra-subject variations include pose (viewing angle), shoes, walking surface, carrying condition, clothing,

time and also imaging device. Therefore, extracting the intrinsic information of a person’s face or gait from their

respective images or gait sequences, respectively, is a demanding task. Despite the difficulties, researchers have

made significant advancement in this area. The rest of this chapter provides a survey on face and gait recognition.

The next section is an overview of the face and gait recognition systems, where the key components are described

and the two common approaches are introduced. The fusion of face and gait for recognition is also discussed in

the next section. In Section 8.3, several commonly used face and gait databases are reviewed. Section 8.4 presents

various feature extraction algorithms for face and gait recognition, ranging from linear, nonlinear to multilinear

subspace learning algorithms. Finally, concluding remarks are drawn in Section 8.5.
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8.2 FACE AND GAIT RECOGNITION SYSTEM OVERVIEW

Figure 8.1 depicts a typical face or gait recognition system. By observing a subject in the view, a digital camera

captures a digital raw facial image or a digital raw gait video. This image or video is then pre-processed (e.g.,

filtered to remove noise) to extract a facial image or a gait sequence for feature extraction. In the feature extraction,

face or gait features are extracted from the input image or image sequence, and these features are passed to the

recognition module, where classifiers are employed to match them with the stored features in the face or gait

database and a person is recognized with his/her ID as the output.

Fig. 8.1 A typical face or gait recognition system.

Face localization and normalization (face detection and alignment) are preprocessing steps before face recog-

nition (facial feature extraction and matching) is performed. Face detection segments the face area from the

background and provides (coarse) information about the location and scale of each detected face. Face alignment

aims to achieve more accurate localization and normalizes faces. Some specific facial components, such as eyes,

nose, mouth and facial outline, are further located, and then the input face image is aligned and normalized in

geometry (such as size and pose) and photometry (such as illumination and gray scale).

For gait recognition, binary gait silhouettes are usually extracted through background subtraction, where a

background model is estimated from the input raw gait sequences and then it is subtracted to get the silhouettes

[21]. The extracted silhouettes are then cropped and resized to a standard size.

After the preprocessing, features useful for discriminating different persons are extracted from the normalized

face or gait sample, and in the recognition stage, the extracted features are matched against those of enrolled ones in

the database. Finally, the system outputs the identity of the input when a match is found with sufficient confidence

or indicates an unknown identity otherwise.

There are three main recognition tasks: verification, identification and watch list [10]. Verification involves a

one-to-one match that compares a query sample against a template of the claimed identity in the database. The

claim is either accepted or rejected. The verification performance is usually measured by the receiver operating

characteristic (ROC), which plots the false accept rates (FAR) versus the false rejection rate (FRR). Identification
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involves one-to-many matches that compares a query sample against all the templates in the database to output

the identity or the possible identity list of the input query. In this scenario, it is often assumed that the query

sample belongs to the persons who are in the database. The identification performance is usually measured by the

cumulative match characteristic (CMC) [22,23], which plots the identification rate against the rank. The watch list

scenario involves one-to-few matches that compares a query sample against a list of suspects. In this task, the size

of database is usually very small compared to the possible queries and the identity of the probe may not be in the

database. Therefore, the recognition system should first detect whether the query is on the list or not and if yes,

correctly identify it. The performance of watch list tasks is usually measured by the detection rate, the identification

rate and the false alarm rate.

Over the past two decades, a large number of face or gait recognition algorithms have been developed. These

algorithms can be categorized into two approaches, the model-based approach and the appearance-based approach

[12, 24]. Although the model-based approach takes advantage of our prior knowledge on human face or gait,

reliable recovery of model parameters from raw facial images or gait sequences is a very hard problem, especially

in unconstrained conditions. Therefore, the appearance-based approach has been the most successful in reported

literature. In the following, we briefly describe these two approaches, with more detailed discussions on the popular

and more successful appearance-based approach in Section 8.4.

8.2.1 Model-based face recognition approach

The model-based face recognition approach aims to construct a model of the human face in order to capture the

facial variations, based on prior knowledge of human faces. Then, the model is fitted to a given face image and

parameters of the fitted model form the feature vector for recognition through similarity calculation between the

query face and stored faces in the database [24].

In the so-called feature-based approach popular in the early days, local facial features such as eyes, nose, mouth,

and chins are first accurately located. Properties of and relations between (such as areas, distances and angles)

the features are used as descriptors for recognition. Typical examples include the Hidden Markov Model methods

[25] and the elastic bunch graph matching algorithm [26]. Another model-based method is the active appearance

models (AAM) [27] where face variations are learned through integrating shape and texture information with a 2-D

morphable face model.

The main advantage of the model-based approach is that the model is based on intrinsic physical relationship

with real faces and it is less sensitive to variations in illumination and viewpoint [24]. However, relatively high

resolution and good quality face images are needed in this approach. Besides, the recognition performance relies

heavily on the exact localization of facial features, but facial feature extraction techniques developed to date are not

reliable enough for accurate recognition. For instance, most eye localization techniques assume some geometric
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and textural models of the eyes and they fail if the eyes are closed. Moreover, such geometric properties alone are

inadequate for face recognition because rich information contained in the facial texture or appearance is discarded.

8.2.2 Model-based gait recognition approach

The model-based gait recognition approach considers a human subject as an articulated object represented by

various body poses. Model-based gait recognition algorithms are usually based on 2-D fronto-parallel body models

[19, 28–30] and target to model human body structure explicitly, with support from the anthropometry and the

biomechanics of human gait [31, 32]. Body model parameters, such as joint angles, are searched in the solution

space through matching edges and region-based information (e.g., silhouettes). The searching methods are either

exhaustive [28, 29] or in a Bayesian hypothesis-and-test fashion [19], where proper dealing with local extrema is

an important problem. The estimated parameters are either used directly as features or fed into a feature extractor

(e.g., frequency analyzer) to obtain gait features.

There are also works on coarser human body models. For instance, the work in [33] fits several ellipses to

different parts (blobs) of the binary silhouettes and the parameters of these ellipses (e.g., location. and orientation)

are used as gait features.

Recently, a full-body layered deformable model (LDM) is proposed in [34], inspired by the manually labeled

body-part-level silhouettes [35]. The LDM has a layered structure to model self-occlusion between body parts and

it is deformable so simple limb deformation is taken into consideration. In addition, it also models shoulder swing.

The LDM parameters can be recovered from automatically extracted silhouettes and then used for recognition [36].

Figure 8.2 shows three examples of the LDM body poses (on the right) recovered from raw image frames (on the

left) for illustration.

(a) (b) (c)

Fig. 8.2 Three examples of the human body poses recovered through the LDM. Left: the raw image frame. Right: the

automatically reconstructed silhouette through the LDM recovery.

D R A F T April 8, 2008, 10:55am D R A F T



FACE AND GAIT RECOGNITION SYSTEM OVERVIEW 7

As in the case of face recognition, model-based gait recognition algorithms utilize our knowledge on gait and

they are expected to be less sensitive to noise due to background clutters, cloths, shadows, etc. However, reliable

estimation of model parameters is a very difficult task.

8.2.3 Appearance-based face recognition approach

In contrast with the model-based approach, the appearance-based face recognition approach operates directly on

2-D facial image and processes them as 2-D holistic patterns to avoid difficulties associated with 3-D modeling, and

shape or landmark detection. Consequently, this class of methods tends to be easier to implement, more practical

and reliable [37]. Furthermore, evidences have been shown in the studies in visual neuroscience that facial features

are processed holistically and facial recognition is dependent on holistic processes involving an interdependency

between featural and configural information [38].

In this approach, the whole face region is the raw input to a recognition system and each face image is commonly

represented by a high-dimensional vector consisting of the pixel intensity values in the image, i.e., a point in a

high-dimensional vector space. Thus, face recognition is transformed to a multivariate statistical pattern recognition

problem. Although the embedding is high-dimensional, the natural constraints of the face data indicate that the

face vectors lie in a lower-dimensional subspace (manifold). The popular subspace learning is such a method to

identify, represent, and parameterize this subspace with some optimality criteria [24].

8.2.4 Appearance-based gait recognition approach

The appearance-based gait recognition approach considers gait as a holistic pattern and uses a full-body repre-

sentation of a human subject as silhouettes or contours. Most of the gait recognition algorithms proposed are

appearance-based [11, 33, 35, 39–49]. Some works use the silhouettes directly as the gait representation [23, 50]

and some others use the average silhouettes as the gait representation [43, 51]. These gait recognition algorithms

extract structural or shape statistics as features from silhouettes, e.g., width [41], contours [11, 40], projections

[44], and motion patterns [39, 52–54]. There are also methods based on dense optical flow [55], which identify

individuals by periodic variations (phase features) in the shape of their motion. In addition, as in face recognition,

a gait subspace can be learnt for gait recognition as well [56].

8.2.5 Fusion of face and gait for recognition

Besides using face or gait for recognition individually, these two biometric characteristics can also be fused to

achieve multi-modal recognition with enhanced results. The fusion can be done either at the feature (or sensor)

level [57] or at the decision (or matching score) level [58, 59]. In [60], face and gait features are integrated

at the feature level, where the face and gait features are extracted separately and then they are normalized and
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concatenated to form a single feature vector for recognition. Improvement due to fusion over recognition with a

single modality is observed in this work. In [61], face and gait cues are derived from multiple simultaneous views

and transformed to the canonical pose, frontal face and profile gait silhouettes. Then view-normalized face and

gait sequences are used individually for recognition and the recognition results are combined using a number of

conventional rules including the MAX, MIN, MEAN, PRODUCT and MAJORITY rules. The results presented in

[61] indicate that the MEAN and PRODUCT rules have better results. In [62], two ways of decision-level face and

gait fusion are explored. The first uses the gait recognition algorithm as a filter to pass on a smaller set of candidates

for face recognition. The second combines similarity scores obtained separately from the face and gait recognition

algorithms, with the SUM, MIN and PRODUCT rules tested. Their results indicate that the second way is more

effective.

8.3 FACE AND GAIT DATA SETS

The development of face or gait recognition algorithms largely depends on the availability of large and representative

public databases of face images or gait sequences so that algorithms can be compared and advancements can be

measured. In this section, we review three widely used face and gait databases: the Pose, Illumination, and

Expression (PIE) database from the Carnegie Mellon University (CMU) [63], the Facial Recognition Technology

(FERET) database [22] and the HumanID Gait Challenge data sets from the University of South Florida (USF)

[23].

In typical pattern recognition problems of face and gait recognition, there are usually two types of data sets:

the gallery and the probe [22, 23]. The gallery set contains the set of data samples with known identities and it is

used for training. The probe set is the testing set where data samples of unknown identity are to be identified and

classified via matching with corresponding entries in the gallery set.

8.3.1 The PIE database

Visually perceived human faces are significant affected by three factors: the pose, which is the angle at they are

viewed from, the illumination/lighting conditions, and the facial expression such as happy, sad and anger. The

collection of the PIE database is motivated by a need for a database with a fairly large number of subjects imaged

a large number of times to cover these three significant factors, i.e., from a variety of different poses, under a wide

range of illumination variation, and with several expressions [63].

This database was collected between October 2000 and December 2000 using the CMU 3D Room and it contains

41,368 face images from 68 individuals. Face images with 13 different poses are captured using 13 synchronized

cameras. For the illumination variation, the 3D Room is augmented with a flash system having 21 flashes. Images

are captured with and without background lighting, resulting in 21× 2 + 1 = 43 different illumination conditions.
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In addition, the subjects were asked to pose with four different expressions. Figure 8.3(a) shows 144 sample face

images for one subject in this database.

The PIE database can be used for a variety of purposes, including evaluating the robustness of face recognition

systems against the three variations and three-dimensional modeling. In particular, this database has a very large

number (around 600 on average) of facial images available for each subject, allowing us to study the effects of the

number of training samples (per subject) on the recognition performance. In practice, a subset is usually selected

with a specific range of pose, illumination and expression for experiments so that data sets with various difficulties

can be obtained where a wider range of the three variations leads to a more difficult recognition task.

(a)

(b)

Fig. 8.3 Examples of one subject from (a) the PIE face database and (b) the FERET database.

8.3.2 The FERET database

The FERET database is a widely used database for face recognition performance evaluation. It was constructed

through the FERET program, which aims to develop automatic face recognition systems to assist security, intel-

ligence, and law enforcement personnel in the performance of their duties [22]. The face images in this database
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cover a wide range of variations in pose (viewpoint), illumination, facial expression, acquisition time, ethnicity and

age.

The FERET database was collected in 15 sessions between August 1993 and July 1996 and it contains a total

of 14,126 images from 1,199 individuals with views ranging from frontal to left and right profiles. The face

images were collected under relatively unconstrained conditions. The same physical setup and location was used

in each session to maintain a degree of consistency throughout the database. However, since the equipment was

reassembled for each session, images collected on different dates have some minor variation. Sometimes, a second

set of images of an individual was captured on a later date, resulting in variations in scale, pose, expression, and

illumination of the face. Furthermore, for some people, over two years elapsed between their first and last capturing

in order to study changes in a subject’s facial appearance over a year. Figure 8.3(b) shows eight sample face images

for one subject in this database. This database has a large number of subjects and it becomes the de facto standard

for evaluating face recognition technologies [64], especially in the small sample size scenario, where a smaller

number of training samples per subject and a larger number of total subjects lead to a more difficult recognition

task [65].

8.3.3 The USF gait database

In the area of gait recognition, the Gait Challenge data sets from the USF captures the variations of a large number of

covariates 1 for a large group of people and it has emerged as a standard testbed for new gait recognition algorithms.

Other databases are limited in size, variations, capturing conditions, or of high resolutions [9, 23].

The Gait Challenge data sets consists of 1870 sequences from 122 subjects and a set of twelve outdoor

experiments are constructed to examine the effects of five covariates on performance. In the collection, the subjects

are asked to walk in elliptical paths in front of the camera. The image frame is of size 720 × 480 and a subject’s

size in the back portion of the ellipse is on average 100 pixels in height. Two sample frames are shown in Fig. 8.4.

The covariates either effect gait or effect the extraction of gait features from images. They are: change in

viewing angle (left or right), change in shoe type (A or B), change in walking surface (Concrete or Grass), carrying

or not carrying a briefcase and temporal (time) differences, where the time covariate implicitly includes other

changes naturally occur between video acquisition sessions such as change of shoes and cloths, change in the

outdoor lighting conditions, and inherent variation in gait over time. These covariates are selected (based on

logistical issues and collection feasibility) from a larger list that was arrived at based on discussions with HumanID

researchers at CMU, Maryland, MIT, Southampton and Georgia Tech about the potentially important covariates for

gait analysis. It is shown in [23] that the shoe type has the least impact on the performance, next is the viewpoint,

the third is briefcase, then surface type (flat concrete surface and typical grass lawn surface), and time (six months)

1Covariates are random variables you treat as concomitants or as other influential variables that also affect the response.
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Fig. 8.4 Two sample frames from the USF Gait Challenge data sets.

difference has the greatest impact. The latter two are the most “difficult” covariates to deal with. In particular,

it was found that the surface covariate impacts the gait period more than other covariates. Since its release, this

database has made significant contributions to the advancement of the gait recognition technology.

8.4 FACE AND GAIT RECOGNITION ALGORITHMS

In this section, we survey popular appearance-based face and gait recognition algorithms, and the focus is on

subspace learning algorithms for feature extraction. We start from the classical linear subspace learning algorithms

in Section 8.4.1. Then, we move on to the nonlinear kernel-based subspace learning algorithms that map the input

to a high-dimensional space for (hopefully) better separation in Section 8.4.2. Next, Section 8.4.3 reviews recent

multilinear subspace learning algorithms that operate directly on tensorial representations.

8.4.1 Linear subspace learning algorithms

The linear algorithms reviewed here include the principal component analysis (PCA), the Bayesian method and the

linear discriminant analysis (LDA). Linear subspace learning algorithms solve for a linear projection with some

optimality criteria, given a set of training samples. The problem can be formulated mathematically as follows.

A set of M vectorial samples {x1, x2, ..., xM} is available for training, where each sample xm is an I × 1

vector in a vector space RI . The linear subspace learning objective is to find a linear transformation (projection)

U ∈ RI×P such that the projected samples (the extracted features) {ym = UTxm} satisfy an optimality criterion,

where ym ∈ RP×1 and P < I . In classification, these features are fed into a classifier, e.g., the nearest neighbor

classifier, and the similarity is usually calculated based on some distance measure.
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8.4.1.1 Principal component analysis The PCA is one of the most influential linear subspace learning methods.

The well-known eigenface method [66] for face recognition, which is built on PCA, started the era of the appearance-

based approach to face recognition, and more generally to visual object recognition. The central idea behind PCA

is to reduce the dimensionality of a data set consisting of a larger number of interrelated variables, while retaining

as much as possible the variation present in the original data set [67]. This is achieved by transforming to a new

set of variables, the so-called principal components (PCs), which are uncorrelated, and ordered so that the first few

retain most of the original data variation. Thus, the PCA aims to derive the most descriptive features.

In practice, the variation to be maximized is measured by the total scatter through the total scatter matrix ST

defined as follows,

ST =
M∑
m=1

(xm − x̄)(xm − x̄)T , (8.1)

where x̄ = 1
M

∑M
m=1 xm is the mean of all the training samples. The PCA projection matrix UPCA is then

composed of the eigenvectors corresponding to the largest P (P < I) eigenvalues of ST . The projection of a test

sample x in the PCA space is obtained as:

y = UT
PCA(x− x̄). (8.2)

The PCA is an unsupervised learning technique that does not take underlying class structure information into

account, even when such information is available for use. In such cases, both intra-subject and inter-subject

variations are maximized in the PCA feature space. For classification purposes, however, large intra-subject

(intra-class) variations have negative impact on classification performance. Figure 8.5(a) shows two classes of

data samples, represented by “◦” and “4”, and the obtained PCA feature basis. It is not difficult to see that by

projecting the data samples onto the PCA basis, these two classes are mixed together and become difficult to be

separated. Therefore, it is generally believed that, for classification purposes, the PCA can not perform as well as

those supervised learning techniques such as the LDA [68].

8.4.1.2 Bayesian method The Bayesian method [69] treats a multi-class recognition problem as a binary pattern

classification problem. First, a feature space of ∆ vectors is defined as the differences between two samples:

∆ = xm1 − xm2 . We can then define two class of variations: the intra-subject variation ΩI (corresponding to

different appearances of the same individual) or an inter-subject variation class ΩE (corresponding to variations

between different subjects). Let {∆I} be the intra-subject difference set consisting of difference vectors between

samples from the same subject and {∆E} be the inter-subject difference set consisting of difference vectors between

samples from different individuals, two feature subspaces denoted as intra-subject space and inter-subject space

are then extracted by performing the PCA on {∆I} and {∆E}, respectively. In the PCA subspace, the class

conditional distributions of the two classes p(∆|ΩI) and p(∆|ΩE) are estimated using a Gaussian model. Thus, to

determine if two samples xi and xj belong to the same individual, their difference ∆ij = xi−xj is first calculated.
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Fig. 8.5 2-D training samples from two classes ◦ and4 and (a) the obtained PCA feature basis; (b) the obtained LDA feature

basis.

The decision is then made according to the maximum-likelihood classification rule, i.e.,

∆ij ∈ ΩI if p(∆ij |ΩI) > p(∆ij |ΩE) (8.3)

or the maximum-a-posteriori rule, i.e.

∆ij ∈ ΩI if P (ΩI)p(∆ij |ΩI) > P (ΩE)p(∆ij |ΩE), (8.4)

where P (ΩI) and P (ΩE) are the priori probabilities.

8.4.1.3 Linear discriminant analysis The LDA is a classical supervised linear subspace learning method that has

been very successful and applied widely in various applications. It aims to derive the most discriminative features

and produces a class-specific feature space based on the maximization of the so-called Fisher’s Discriminant

Criterion, which is defined as the ratio of between-class scatter to within-class scatter:

ULDA = arg max
U

|UTSBU|
|UTSWU|

, (8.5)

where the SB and SW are the between-class and within-class scatter matrices, respectively, and they are defined as

SB =
C∑
c=1

Mc(x̄c − x̄)(x̄c − x̄)T , (8.6)

and

SW =
M∑
m=1

(xm − x̄cm
)(xm − x̄cm

)T . (8.7)
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In the definitions above, C is the number of classes, c is the class index, and cm is the class label for the mth

training sample. Mc is the number of training samples in class c, and the mean for class c is

x̄c =
1
Mc

∑
m,cm=c

xm. (8.8)

The maximization of (8.5) leads to the following generalized eigenvalue problem:

SBup = λpSWup. (8.9)

Thus, ULDA consists of the generalized eigenvectors corresponding to the largest P generalized eigenvalues of

(8.9). When SW is not singular, ULDA can be obtained as the eigenvectors corresponding to the largest P

eigenvalues of S−1
W SB . The projection of a test sample x in the LDA space is then obtained as:

y = UT
LDAx. (8.10)

Figure 8.5(b) shows the LDA feature basis obtained from two classes of data samples (represented by “◦” and “4”

respectively). Obviously, compared to the PCA, the LDA provides a more ideal projection basis for classification

purposes.

Although the LDA, as a class specific solution, is generally believed to be superior to the PCA for classification

purposes, it is more susceptible to the small sample size problem, where the number of training samples per subject

is much smaller than the dimensionality of the input sample space. In such cases, direct optimization of the ratio in

(8.5) becomes impossible as SW is singular. In order to address this problem, the Fisherface method (FLDA) [68]

proposes to apply the PCA as a pre-processing step to remove the null space of SW .

However, by removing the null space of SW , significant discriminatory information may be discarded since the

maximum of (8.5) can be reached when

uTp SWup = 0 and uTp SBup 6= 0. (8.11)

In other words, the null space of SW spanned by up such that uTp SWup = 0, may contain significant discriminatory

information. To avoid the possible loss of discriminatory information residing in the discarded null space of SW ,

a direct linear discriminant analysis (DLDA) [70] was proposed to solve the small sample size problem by

diagonalizing SB and SW directly. The premise behind the DLDA solution is that the discriminatory information

resides in the intersection of the null space of SW , denoted as A, and the complement space of the null space of

SB , denoted as B′, i.e., A
⋂

B′. At the same time, no significant information, in terms of maximization of (8.5),

will be lost if the null space of SB (denoted as B) is discarded. The DLDA can be performed by diagonalizing

either SW first or SB first. Given the fact that under the small sample size scenario, the rank of SB , determined

by rank(SB) = min(I, C − 1) is much smaller than I in most cases, the more attractive option is to diagonalize
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Fig. 8.6 An example to illustrate why, in some cases, the PCA produces better features than the LDA.

SB first. In such cases, B′ is first extracted which is spanned by the C − 1 eigenvectors of SB , denoted as

Vb = [vb1, ...,vb(C−1)], corresponding to the nonzero eigenvalues denoted as [λb1, ..., λb(C−1)]. Following that,

SW is projected to B′ giving UTSWU, where U = VbΛ
−1/2
b is the transformation matrix from the RI to B′,

Λb = diag([λb1, ..., λb(C−1)]) and diag(·) denotes the diagonalization operator. The null space of SW thus can be

easily found by solving an eigenvalue problem of UTSwU in a low dimensional B′ space.

In general, the LDA-based solutions are believed to be superior to the PCA-based solutions in the context of

pattern classification. However, it should be noted that when the number of training samples per subject is small

or the training samples are not representative to those in the test, the superiority of LDA technique can not be

guaranteed and PCA may outperform LDA, as shown in Figure 8.6 (adapted from [71]). There are two classes,

each of which has a Gaussian-like class conditional distribution (represented by two ellipses in the figure). However,

only two samples per class are provided for training. The PCA method calculates the projection basis such that

the variance of the projected training samples is maximized, resulting in a horizontal projection basis as illustrated

in the figure. The LDA method, however, extracts the projection basis such that the between-class variance of the

projected samples is maximized while the within-class variance is minimized. It can be observed from the figure,

in such cases, the projection basis obtained by the PCA solution is more desirable than that obtained by the LDA

method for classification purposes.

8.4.2 Nonlinear kernel-based subspace learning algorithms

The LDA-based methods have been shown to be successful and cost-effective techniques widely used in pattern

recognition applications. However, as the complexity of patterns increases, the performance of the LDA-based
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Table 8.2 Commonly used kernel functions

Kernel name Kernel function

Gaussian k(xi,xj) = exp(−||xi−xj ||2
σ2 ), σ ∈ R

Polynomial k(xi,xj) = (a(xi · xj) + b)d, a, b, d ∈ R

Sigmoidal k(xi,xj) = tanh(a(xi · xj) + b), a, b ∈ R

solutions could deteriorate rapidly. This is due to the linear nature of the LDA-based methods assuming that the

class conditional distribution of patterns is Gaussian with identical covariance structure. In such cases, the resulting

class boundaries are restricted to linear hyper-planes. In appearance-based face and gait recognition, due to the

large variations in the appearance, however, the distribution of patterns is far more complicated than Gaussian,

usually multi-modal and non-convex [2]. To this end, nonlinear, kernel-based algorithms have been developed to

handle complexly distributed data.

Originating from the well-known support vector machine [72], the so-called “kernel machine” technique is

considered an important tool in the design of nonlinear feature extraction techniques. The premise behind the

kernel machine technique is to find a nonlinear mapping from the original input space (RI ) to a higher dimensional

kernel feature space FF by using a nonlinear function φ(·), i.e.,

φ : x ∈ RI → φ(x) ∈ FF I < F ≤ ∞. (8.12)

In the kernel feature space FF , the pattern distribution is expected to be simplified so that better classification

performance can be achieved by applying traditional linear methodologies [73]. In general, the dimensionality of

the kernel space is much larger than that of the original input space, sometimes even infinite. Therefore, an explicit

determination of the nonlinear map φ is difficult or intractable. Fortunately, with the so-called “kernel trick”, the

nonlinear mapping can be performed implicitly in the original input space RI by replacing dot products of the

feature representations in FF with a kernel function defined in RI [73]. Thus, if xi ∈ RI and xj ∈ RI are two

vectors in the original input space, the dot product of their feature representations φ(xi) ∈ FF and φ(xj) ∈ FF

can be computed by a kernel function k(·) defined in RI , i.e.,

φ(xi) · φ(xj) = k(xi,xj). (8.13)

The function selected as the kernel function should satisfy the Mercer’s condition [73]. Some commonly used

kernel functions are summarized in Table 8.2. A toy example [20] is illustrated in Figure 8.7, where a second order
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Fig. 8.7 A two-class classification example showing non-linear and linear decision boundaries. Left: samples in the 2-D input

space; Right: samples in the 3-D kernel feature space

polynomial kernel function is used, i.e.,

k(xi,xj) = (xi · xj)2, φ(x) = [α2
1,
√

2α1α2, α
2
2], (8.14)

where x = [α1, α2]T . It can be easily observed that by mapping the samples into the 3-D kernel space, use of

a linear hyperplane to separate the two classes becomes more efficient than using a nonlinear ellipsoidal decision

boundary in the original space.

The kernel-based solutions have been shown to be effective techniques to handle complicated pattern classifica-

tion problems. However, the performance of the algorithm is significantly affected by the selected kernel functions

and the corresponding kernel parameters. A toy example is given in Figure 8.8 which depicts the data distribution

in different kernel spaces. Figure 8.8(a) shows a 2-D data set of 400 samples drawn from two Gaussian distributions

(denoted as “+” and “o” respectively), i.e., x ∼ N (µi,Σi), i = 1, 2, where x denotes the 2-D data, µ1 = [−2, 0]T ,

µ2 = [2, 0]T , Σ1 = Σ2 = diag([2.25, 1]). Each class contains 200 samples. Figure 8.8(b) shows the projection

of the data in a second order polynomial kernel space, i.e., k(x1,x2) = (x1 · x2)2. For better visual perception,

the projection on the first two significant bases are depicted. Figures 8.8(c) and 8.8(d) illustrate the corresponding

projection in a Gaussian kernel space when a Gaussian kernel function

k(x1,x2) = exp(
−||x1 − x2||2

σ2
) (8.15)

is employed with σ2 = 1000 for Fig. 8.8(c) and σ2 = 10 for Fig. 8.8(d). It is not difficult to observe that different

kernel functions and different kernel parameters significantly affect the geometric structure of the mapped data. If

a polynomial kernel is used as shown in the Figure 8.8(b), the class separability in the kernel space is even worse

than that in the original input space. Therefore, for kernel-based solutions, selecting an appropriate kernel function
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is of vital importance to ensure good classification performance and methods have been proposed to tackle this

problem [74]. The traditional approach is the cross validation framework and there are more systematic approaches

for kernel parameter optimization [74].

Fig. 8.8 An example showing projections of a set of 2-D data points in different kernel spaces. (a): 2-D samples drawn from

two Gaussian distributions; (b): projections in the polynomial kernel space; (c): projections in the Gaussian kernel space with

σ2 = 1000; (d): projections in the Gaussian kernel space with σ2 = 10.

In the context of the kernel trick, the key task of designing a kernelized feature extraction algorithm is to represent

the linear feature extraction procedure using dot product forms. The corresponding kernel version of the algorithm

can then be obtained by replacing the dot product with the kernel function. The kernel principal component

analysis (KPCA) [75], the generalized discriminant analysis (GDA) [76] and the kernel direct discriminant analysis

(KDDA) [77] are typical kernel-based learning algorithms commonly used for feature extraction and they are

described below.

8.4.2.1 Kernel principal component analysis The KPCA [75] is actually an implementation of the traditional

PCA algorithm in the kernel feature space. Let S̃T be the total scatter matrix defined in FF , which could be
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expressed as follows,

S̃T =
M∑
m=1

(φ(xm)− φ̄)(φ(xm)− φ̄)T (8.16)

where

φ̄ =
1
M

M∑
m=1

φ(xm) (8.17)

is the mean of gallery samples in FF . Thus, the KPCA subspace is spanned by the first P significant eigenvectors

of S̃T , denoted as ŨKPCA, corresponding to the P largest eigenvalues. The KPCA feature representation of a

given input x is thus obtained by the dot product,

ỹ = ŨKPCA · (φ(x)− φ̄), (8.18)

computed implicitly through the kernel function k(·) [75].

8.4.2.2 Kernel-based discriminant analysis (KDA) The GDA [76] and the KDDA [77] are two kernel-based

discriminant analysis solutions which produce corresponding subspaces by maximizing the Fisher’s criterion defined

in FF ,

ŨKDA = arg max
Ũ

|ŨT S̃BŨ|
|ŨT S̃W Ũ|

= [ũ1, ..., ũP ], (8.19)

where ũp is the pth generalized eigenvector of

S̃Bũp = λ̃pS̃W ũp, (8.20)

and the corresponding between-class matrix S̃B and within-class scatter matrix S̃W are defined as

S̃B =
C∑
c=1

Mc(φ̄c − φ̄)(φ̄c − φ̄)T (8.21)

and

S̃W =
M∑
m=1

(φ(xm)− φ̄cm
)(φ(xm)− φ̄cm

)T (8.22)

where

φ̄c =
1
Mc

∑
m,cm=c

φ(xm) (8.23)

is the class mean in FF .

As discussed earlier, the LDA-based solutions often suffer from the small sample size problem. When applying

the LDA techniques in the kernel feature space, the problem becomes even more severe due to the extremely

high dimensionality of FF . Therefore, solving the small sample size problem is also a demanding task in the

implementation of kernel-based discriminant analysis solutions. GDA attempts to solve the small sample size
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problem by removing the null space of S̃w with a PCA routine as is done in the FLDA method, while the KDDA

implements the DLDA solution in the kernel space.

8.4.3 Multilinear subspace learning algorithms

The algorithms reviewed so far all take vectorial input. However, gray-level face images (row×column) and binary

gait silhouette sequences (row×column×time) are naturally multidimensional objects, which are formally called

tensor objects. Therefore, the linear and nonlinear algorithms above need to reshape these tensors into vectors in

a very high-dimensional space, which not only results in high computation and memory demand, but also breaks

the natural structure and correlation in the original data. This motivated the recent development of the multilinear

subspace learning algorithms [78–84], which extract features directly from the tensorial representation rather than

the vectorized representation, and it is believed that more compact and useful features can be obtained this way.

Tensors are conventionally denoted by calligraphic letters [85], e.g., A. The elements of a tensor are to be

addressed by N indices, where N (the number of indices used in the description) defines the order of the tensor

object and each index defines one mode [85]. Thus, vectors are first-order tensors (with N = 1) and matrices are

second-order tensors (with N = 2). Tensors with N > 2 can be viewed as a generalization of vectors and matrices

to higher order.

The elements of a tensor are denoted with indices in brackets. Indices are denoted by lowercase letters and

span the range from 1 to the uppercase letter of the index, e.g., n = 1, 2, ..., N . An N th-order tensor is denoted as

A ∈ RI1×I2×...×IN . It is addressed by N indices in, n = 1, ..., N , and each in addresses the n-mode of A. The

n-mode product of a tensor A by a matrix U ∈ RJn×In , denoted by A×n U, is a tensor with entries:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑
in

A(i1, ..., iN ) ·U(jn, in). (8.24)

The scalar product of two tensors A,B ∈ RI1×I2×...×IN is defined as:

< A,B >=
∑
i1

∑
i2

...
∑
iN

A(i1, i2, ..., iN ) · B(i1, i2, ..., iN ) (8.25)

and the Frobenius norm of A is defined as

‖ A ‖F=
√
< A,A >. (8.26)

The “n-mode vectors” of A are defined as the In-dimensional vectors obtained from A by varying the index in

while keeping all the other indices fixed. A rank-1 tensor A equals to the outer product of N vectors:

A = u(1) ◦ u(2) ◦ ... ◦ u(N), (8.27)
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which means that

A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) (8.28)

for all values of indices. Unfolding A along the n-mode is denoted as

A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ), (8.29)

and the column vectors of A(n) are the n-mode vectors of A.

Based on the definitions above, a tensor can be projected to another tensor by N projection matrices U(1),

U(2),...,U(N) as

Y = X ×1 U(1)T

×2 U(2)T

...×N U(N)T

. (8.30)

The projection of an n-mode vector of X by an n-mode projection matrix U(n)T

is computed as the inner product

between the n-mode vector and the rows of U(n)T

. Figure 8.9 illustrate the 1-mode projection of a third-order

tensor X ∈ R10×8×6 in the 1-mode vector space by a projection matrix U(1)T ∈ R5×10, resulting in the projected

tensor X ×1 U(1)T ∈ R5×8×6. In the 1-mode projection, each 1-mode vector of X of length 10 is projected by

U(1)T

to obtain a vector of length 5, as indicated by the differently shaded vectors in Fig. 8.9.

Fig. 8.9 An illustration of the 1-mode projection: X ×1 U(1)T

.

The problem of multilinear subspace learning based on the tensor-to-tensor projection above can be mathemati-

cally defined as follows:

A set ofM N th-order tensorial samples {X1, X2, ..., XM} is available for training, where each sample Xm is an

I1 × I2 × ...× IN tensor in a tensor space RI1×I2×...×IN . The objective of multilinear subspace learning through

tensor-to-tensor projection is to find a tensor-to-tensor projection { Ũ(n) ∈ RIn×Pn , n = 1, ..., N } mapping

from the original tensor space RI1
⊗

RI2 ...
⊗

RIN into a tensor subspace RP1
⊗

RP2 ...
⊗

RPN (with Pn < In,
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for n = 1, ..., N ):

Ym = Xm ×1 Ũ(1)T

×2 Ũ(2)T

...×N Ũ(N)T

,m = 1, ...,M, (8.31)

such that the projected samples (the extracted features) satisfy an optimality criterion, where the dimensionality of

the projected space is much lower than the original tensor space. Here,
⊗

denotes the Kronecker product. This

problem is usually solved in an iterative alternating projection manner. In classification, these tensorial features

can be fed directly into a classifier, e.g., the nearest neighbor classifier, and the similarity is calculated according to

some tensorial distance measure, e.g. based on the Frobenius norm in (8.26), or they can be converted into vectors

before the feeding so that more conventional distance measures and traditional classifiers can be used.

In the following, we describe two multilinear subspace learning algorithms. One is the multilinear principal

component analysis (MPCA) and the other is a multilinear discriminant analysis algorithm.

8.4.3.1 Multilinear principal component analysis The recent MPCA algorithm is a multilinear extension of the

PCA algorithm and it has been applied successfully to gait recognitin [56]. The MPCA maximizes the following

tensor-based scatter measure:

ΨY =
M∑
m=1

‖ Ym − Ȳ ‖2F , (8.32)

named as the total tensor scatter, where

Ȳ =
1
M

M∑
m=1

Ym (8.33)

is the mean sample.

This problem cannot be solved deterministically and it is decomposed into N simpler linear optimization

problems, resulting in an iterative alternating projection procedure. In each subproblem, the following eigenvalue

problem is solved: Given all the other projection matrices Ũ(1), ..., Ũ(n−1), Ũ(n+1),..., Ũ(N), the matrix Ũ(n) that

maximizes ΨY consists of the Pn eigenvectors corresponding to the largest Pn eigenvalues of the matrix

Φ(n) =
M∑
m=1

(
Xm(n) − X̄(n)

)
· ŨΦ(n) · ŨT

Φ(n) ·
(
Xm(n) − X̄(n)

)T
, (8.34)

where

ŨΦ(n) =
(
Ũ(n+1) ⊗ Ũ(n+2) ⊗ ...⊗ Ũ(N) ⊗ Ũ(1) ⊗ Ũ(2) ⊗ ...Ũ(n−1)

)
. (8.35)

The obtained projection matrices {Ũ(n), n = 1, ..., N} can be viewed as
∏N
n=1 Pn EigenTensors: Ũp1p2...pN

=

ũ(1)
p1 ◦ ũ(2)

p2 ◦ ... ◦ ũ(N)
pN , where ũ(n)

pn is the pnth column of Ũ(n). However, not all of them are useful for recognition

and they can be selected according to their class discriminability Γp1p2...pN
, where Γp1p2...pN

for the eigentensor
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Ũp1p2...pN
is defined as

Γp1p2...pN
=
∑C
c=1Mc ·

[
Ȳc(p1, p2, ..., pN )− Ȳ(p1, p2, ..., pN )

]2∑M
m=1

[
Ym(p1, p2, ..., pN )− Ȳcm(p1, p2, ..., pN )

]2 . (8.36)

Ym is the feature tensor of Xm in the projected tensor subspace, and the class mean feature tensor

Ȳc =
1
Mc

∑
m,cm=c

Ym. (8.37)

The entries in Ym are then arranged into a feature vector ym ordered according to Γp1p2...pN
in descending order

and only the first P entries of ym are kept. This feature vector can then be used directly as the input to conventional

classifier or it can be further combined with the LDA (or other vector-based learning algorithms) to produce an

MPCA+LDA algorithm [86].

8.4.3.2 Multilinear discriminant analysis There are also multilinear extensions of the LDA algorithm [79–81].

The Discriminant Analysis with Tensor Representation (DATER) 2 was proposed to perform discriminant analysis

directly on general tensor objects. Like in MPCA, the DATER algorithm solves for a tensor-to-tensor projection

{Ũ(n) ∈ RIn×Pn , Pn < In, n = 1, ..., N} that project a tensor Xm ∈ RI1×...×IN to Ym. The DATER algorithm

maximizes a tensor-based discrimination objective criterion: the tensor-based scatter ratio ΨBY/ΨWY , where the

between-class scatter ΨBY is defined as:

ΨBY =
C∑
c=1

Mc ‖ Ȳc − Ȳ ‖2F , (8.38)

and the within-class scatter ΨWY is defined as:

ΨWY =
M∑
m=1

‖ Ym − Ȳcm
‖2F . (8.39)

Similar to the case of the MPCA, a deterministic solution does not exist either and an iterative alternating projection

procedure is followed. In addition, the method to obtain vectorial features {ym} in MPCA above can also be

applied to this algorithm. In its application to gait recognition [87], it is found that this algorithm does not converge

and it appears to be very sensitive to parameter settings.

2Here, the name that was used when the algorithm was first proposed is adopted as it is more commonly refereed to in the literature.
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8.5 CONCLUDING REMARKS

In this section, we give a summary of this chapter and then discuss the current state and future directions of face

and gait recognition.

8.5.1 Summary

This chapter presents a comprehensive review on the face and gait recognition technologies. The motivations

and applications of face and gait recognition have been described in detail. Face and gait are both biometric

characteristics that can be easily collected and well accepted by the public. Therefore, they have great potential

in various applications. Face and gait recognition systems typically acquire images/videos of a subject through

a digital camera. The acquired images/videos are then preprocessed to either detect facial images or extract gait

silhouettes, from which features are extracted and classified. The two general approaches of model-based and

appearance-based approaches are then reviewed, with their advantages and limitations pointed out. In addition,

existing methods for the fusion of face and gait traits are also discussed. After the system-level overview, we move

on to describe three widely used databases for research in face and gait recognition. Next, the important subspace

learning algorithms for appearance-based recognition are surveyed in detail, including classical linear subspace

learning algorithms such as the PCA and the LDA, and their nonlinear (kernel-based) and multilinear extensions.

The intent here is not to discuss thoroughly all the face and gait recognition algorithms. Instead, we concentrate on

the most representative algorithms in our view.

8.5.2 Current state and future directions of face recognition

Over the past two decades, face recognition has received substantial attention from both research communities and

the market, and the recognition performance has improved significantly. Although progress in face recognition

is encouraging, this task remains to be very challenging for real applications, especially for less constrained

situations (e.g., outdoor) or even unconstrained situations where there are considerable variations in the viewpoint,

illumination, expression and time [2]. Current face recognition technologies may work well for cooperative

frontal faces without exaggerated expressions and under illumination without much shadow, but recognition in

an unconstrained daily life environment without user cooperation, such as identifying persons in crowds and in

surveillance videos, is still a very challenging problem that offers great opportunities for researchers in all related

areas [2]. The following are some new developments and trends in face recognition.

Three-dimensional face recognition [88], where the 3-D geometry of the human face is used, is believed to have

the potential to achieve better accuracy than its 2-D counterpart, which is sensitive to changes in variations like

pose, illumination, and facial expressions. The 3-D face shape is usually extracted by a range camera and the 3-D

D R A F T April 8, 2008, 10:55am D R A F T



CONCLUDING REMARKS 25

model can also be used to improve accuracy of traditional image-based recognition by transforming the head into

a preferred view. Furthermore, most range cameras acquire both a 3-D mesh and the corresponding texture, which

allows the combination of the pure 3-D matcher output with traditional 2-D face recognition algorithms for better

performance [89].

Some researchers believe that the use of video sequences, as opposed to a single image, will lead to much better

recognition rates [12, 90]. Their argument is that integrating the recognition performance over a sequence would

give a better result than considering just one single image from that sequence.

The Face Recognition Grand Challenge (FRGC) [91] is recently designed to advance face recognition by

presenting a six-experiment challenge problem to researchers, along with data corpus of 50,000 images. The data

consists of 3-D scans and high resolution still imagery taken under controlled and uncontrolled conditions. The

experiments can be used to measure performance on controlled images, uncontrolled images, 3-D images, multi-still

images and the matching between 3-D and still images. Having seen the contributions made by the public databases

such as PIE and FERET, it is expected that this FRGC database will further advance the state-of-the-art for face

recognition.

8.5.3 Current state and future directions of gait recognition

Gait is a new biometric characteristics receiving increasing attention. It has the unique advantage over the other

biometrics in surveillance applications, where the recognition needs to be performed at a distance and only low-

resolutions videos can be captured. On one hand, the state-of-the-art gait recognition algorithms have achieved

high recognition rates on gait sequences captured indoors with controlled environment (such as controlled lighting,

background clutter) or sequences captured outdoor under the same surface, with variation in viewing angle and shoe

type. On the other hand, the recognition on sequences captured under uncontrolled environment, such as outdoor

with different surfaces, different carrying conditions, and different time, is still very challenging, thus offering great

opportunities to researchers. In particular, the recent development in multilinear subspace learning algorithms is

encouraging since they can handle natural gait sequences directly.

The uniqueness of gait is lower than the other biometrics such as face and fingerprint. Thus, in practice, a gait

recognition system may not be used alone. Instead, it can be deployed as part of a multi-modal biometric recognition

system. Besides security surveillance applications, studies on gait, especially the model-based approach, can benefit

the entertainment and communication industries, and also the medical field, such as clinical rehabilitation of patients

of stroke or spinal cord injuries and diagnosis of disorders [12, 92].
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