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Abstract

This paper proposes a boosted linear discriminant analysis (LDA) solution on features extracted by the

multilinear principal component analysis (MPCA) to enhance gait recognition performance. Three dimen-

sional gait objects are projected in the MPCA space first to obtain low-dimensional tensorial features. Then,

lower-dimensional vectorial features are obtained through discriminative feature selection. These feature

vectors are then fed into a LDA-style booster, where several regularized and weakened LDA learners

work together to produce a strong learner through a novel feature weighting and sampling process. The

LDA learner employs a simple nearest-neighbor classifier with a weighted angle distance measure for

classification. The experimental results on the NIST/USF “Gait Challenge” data sets shows that the proposed

solution has successfully improved the gait recognition performance and outperformed several state-of-the-

art gait recognition algorithms.

Index Terms

Multilinear principal component analysis, linear discriminant analysis, boosting, gait recognition, biomet-

rics
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1 INTRODUCTION

Automated human identification at a distance is important in visual surveillance and monitoring

applications in security-sensitive environments such as airports, banks, shopping malls, parking

lots and large civic structures [1], [2]. However, many conventional biometrics, such as iris, face

and fingerprint, require the person to be recognized to be in close distance or even in contact

with the capturing device. At a distance, these biometrics are usually not available in high

enough resolution for recognition purposes.

Gait, the style of walking of an individual, is an emerging behavioral biometric that offers

the potential for vision-based recognition at a distance [3]–[6]. In 1975 [7], Johansson used point

light displays to show humans’ ability to distinguish human locomotion from other motion

patterns. Later, experiments demonstrate the capability of identifying familiar individuals or

the gender of a person [8], [9]. Nonetheless, research on gait recognition from video sequences

are only receiving significant attentions recently. Vision-based gait recognition is particularly

attractive in human identification at a distance because gait capture is unobtrusive, requiring

no cooperation or attention of the observed subject, and gait is difficult to hide [5], [10].

There are two approaches to gait recognition: the model-based approach [11]–[13], where hu-

man body structure is explicitly modeled, and the appearance-based approach [5], [6], [10], [14]–

[18], where gait is treated as a sequence of holistic binary patterns (silhouettes)1. The appearance-

based approach has been more successful working on practical data [10]. Appearance-based

approaches take binary gait silhouette sequences extracted from raw gait sequences [19]–[21] as

the input. These gait silhouette sequences are naturally three-dimensional objects, also called

third-order tensors, and the three dimensions are the spatial row, column and the temporal

modes [22]. These tensor objects are in a very high-dimensional tensor space. To apply traditional

linear feature extraction algorithms such as the Principal Component Analysis (PCA) and Linear

Discriminant Analysis (LDA) on these tensorial data, they need to be first reshaped (vectorized)

into vectors in a very high-dimensional space. This reshaping not only results in high computa-

tion and memory demand, but also breaks the structure and correlation in the original data. This

problem has motivated the development of multilinear subspace learning algorithms operating

1. It should be noted that although the EigenGait approach [18] makes use of silhouettes as well, a motion-based

recognition approach is taken where features are extracted from the image self-similarity plots rather than from the

silhouettes directly.

July 10, 2009 DRAFT



EURASIP IVP/713183.V2 3

directly on the gait sequences in their tensorial representation rather than their vectorized forms.

In particular, the multilinear PCA (MPCA) algorithm [22] aims to determine a multilinear

projection that projects the original tensor objects into a lower-dimensional tensor subspace

while preserving the variation in the original data as much as possible. For gait recognition,

a number of discriminative features in the projected tensor space can be selected. The MPCA-

based gait recognition algorithm has achieved better overall performance when compared with

the state-of-the-art gait recognition algorithms.

Although progresses have been made in gait recognition, it remains a very challenging

problem. A person’s gait can be affected by many factors, such as viewing angles, walking

surfaces and shoes. Similar to face patterns, the distribution of gait patterns is expected to be

nonlinear and complex. Furthermore, the gait data in training and those in testing may be

captured under different conditions and this makes generalization very difficult, as studied in

the Gait Challenge problem [10]. There are many methods proposed in the literature to handle

complex and nonlinear patterns. The ensemble-based machine learning method named boosting

is a very promising one that offers good generalization capability. Traditional boosting design

works through the combination of a set of weak classifiers repeatedly trained on weighted

training samples [23], [24], which tends to be an adaptive feature selection process [25]. Feature

extraction is not a concern in these boosters and the requirement of an appropriate weak learner

in boosting has restricted its applicability [24], [26]. A recent work in [27] has broken this

limitation by proposing a boosting algorithm that puts the learning focus on the feature extractor

rather than the classifier so that the new boosting scheme works with LDA-style learners. The

effectiveness of the boosting scheme proposed in [27] has been demonstrated on the problem

of face recognition. A cross-validation mechanism is employed to weaken the LDA learner and

the pairwise class discriminant distribution (PCDD) is introduced for interaction between the

booster and the learner.

In this paper, the boosting work in [27] is enhanced and extended so it can be successfully

applied to the problem of gait recognition through combination with the recent development of

MPCA [22]. It should be noted that, to the best of the authors’ knowledge, this is the first work

that has applied boosting to gait recognition, although boosting has been well studied for face

recognition [27]–[29]. In the proposed processing scheme, MPCA [22] first produces EigenTen-

sorGaits (ETGs) in a lower-dimensional tensor space and then only a number of discriminative

ETGs are selected as the input to the LDA-based booster. There are two main advantages in
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this scheme. On one hand, the MPCA feature extractor applied before the booster reduces

the processing cost greatly (in both training and testing) such that the very-high dimensional

tensorial gait data can be handled efficiently. On the other hand, the number of selected ETGs

provides another way (in addition to the cross-validation mechanism in [27]) to control the

weakness of the LDA learner. In addition, in order to improve the generalization performance

further, a regularization mechanism is incorporated since the within-class scatter of gait patterns

under the capturing conditions in testing is expected to be larger than that of gait patterns in

training. Furthermore, the training sample selection scheme in the original LDA-style boosting

scheme proposed in [27] tends to prevent the inclusion of “difficult” (hard to classify correctly)

samples in subsequent boosting steps. Therefore, a new training sample selection method is

introduced in this paper to include more “difficult” samples in subsequent boosting steps to

get better boosting results.

The rest of the paper is organized as follows. Section 2 briefly reviews the MPCA-based

gait feature extraction method introduced in [22]. Section 3 proposes the LDA-based boosting

algorithm operating on MPCA features for enhancing gait recognition performance. In Section

4, experimental results on the NIST/USF “Gait Challenge” data sets are presented and the

proposed algorithm is compared with the state-of-the-art gait recognition algorithms to illustrate

the effectiveness of the proposed solution. Finally, conclusions are drawn in Section 5.

2 REVIEW OF MPCA-BASED GAIT FEATURE EXTRACTION

MPCA [22] is a multilinear subspace learning method that extracts features directly from ten-

sorial representation of multi-dimensional objects. In this section, the notations are introduced

and the MPCA-based gait feature extraction algorithm is briefly reviewed.

2.1 Notations

In this paper, vectors are denoted by lowercase boldface letters, e.g., x; matrices by uppercase

boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Their elements are denoted with

indices in brackets. Indices are denoted by lowercase letters and span the range from 1 to

the uppercase letter of the index, e.g., n = 1, 2, ..., N . An N th-order tensor is denoted as A ∈

RI1×I2×...×IN . It is addressed by N indices in, n = 1, ..., N , and each in addresses the n-mode of

A. The n-mode product of a tensor A by a matrix U ∈ RJn×In , denoted by A×n U, is a tensor
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with entries [30]–[32]:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑
in

A(i1, ..., iN ) ·U(jn, in). (1)

A rank-1 tensor A equals to the outer product of N vectors:

A = u(1) ◦ u(2) ◦ ... ◦ u(N), (2)

which means that

A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) (3)

for all values of indices [22], [30], [32].

2.2 Gait feature extraction through MPCA

In the MPCA-based gait feature extraction algorithm proposed in [22], a gait sample is a half

cycle of gait silhouette sequences2, represented naturally as a third-order tensor. The procedures

described in [22] are followed to obtain these gait samples, where the foreground pixels in the

lower-half of the silhouettes are counted and the minimums of the foreground pixel number

sequence partition a gait sequence into half cycles. There are two types of gait data sets in a

typical gait recognition problem: the gallery and the probe [10]. Gait samples in the gallery set

are labeled with their identities and they are used as training data, while the probe set contains

the test data, which are gait samples of unknown identities that need to be matched against

those included in the gallery set.

The input to MPCA are third-order gallery gait samples {X1, ..., XM ∈ RI1×I2×I3}, where M is

the total number of gait samples in the gallery set. The MPCA algorithm solves for a multilinear

transformation

{ Ũ(n) ∈ RIn×Pn , n = 1, 2, 3}, (4)

2. Another choice is to use full cycles as gait samples, which results in larger sample size in the time mode but

fewer samples available for both training and test, while asymmetry between two adjacent half cycles could be

potentially useful for discrimination in this case. In addition, half cycles may not always be an appropriate choice

for gait samples. For example, when a luggage is carried on one side, full cycles are more appropriate to be used

as gait samples. Thus, it will be worthwhile to study the effects of this choice on the gait recognition performance.

However, this issue is out of the scope of this paper and it is left for future works since this paper focuses on the

incorporation of the boosting scheme in gait recognition.
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where Pn < In for n = 1, 2, 3, that maps the original gait tensor space RI1
⊗

RI2
⊗

RI3 into a

lower-dimensional tensor subspace RP1
⊗

RP2
⊗

RP3 :

Ym = Xm ×1 Ũ(1)T ×2 Ũ(2)T ×3 Ũ(3)T

,m = 1, ...,M, (5)

such that the total tensor scatter

ΨY =
M∑

m=1

‖ Ym − Ȳ ‖2F , (6)

is maximized, where Ȳ = 1
M

∑M
m=1 Ym is the average of the training samples [22], i.e., the mean

sample. This MPCA problem is solved through an iterative alternating projection method in

[22].

The MPCA projection matrices {Ũ(n), n = 1, 2, 3} can be viewed as
∏3

n=1 Pn so-called

EigenTensorGaits (ETGs) [22]:

Ũp1p2p3 = ũ(1)
p1
◦ ũ(2)

p2
◦ ũ(3)

p3
, (7)

where ũ(n)
pn is the pth

n column of Ũ(n). Since MPCA is unsupervised and the class information is

not considered in feature extraction, not all ETGs are useful for recognition purposes. Therefore,

in [22], a number of discriminative ETGs are selected according to their class discriminability

Γp1p2p3 , where Γp1p2p3 for the eigentensor Ũp1p2p3 is defined as

Γp1p2p3 =
∑C

c=1Mc ·
[
Ȳc(p1, p2, p3)− Ȳ(p1, p2, p3)

]2∑M
m=1

[
Ym(p1, p2, p3)− Ȳcm

(p1, p2, p3)
]2 , (8)

where C denotes the number of classes (subjects), Mc denotes the number of gait samples for

class (subject) c, and cm denotes the class label for the mth gallery gait sample Xm. Ym is the

feature tensor of Xm in the projected MPCA subspace, the mean feature tensor Ȳ = 1
M

∑
m Ym

and the class mean feature tensor Ȳc = 1
Mc

∑
m,cm=c Ym. For the ETG selection, the entries

in Ym are arranged into a feature vector ym according to Γp1p2p3 in descending order. Only

the first Hy entries of ym are kept for subsequent recognition task [22]. It should be noted that

discriminability is only considered in the ETG selection process, while the selected ETG features

are extracted in an unsupervised way by MPCA.

3 BOOSTING LDA-STYLE LEARNERS ON MPCA FEATURES FOR GAIT RECOGNITION

Figure 1 illustrates the proposed new gait recognition method. Input tensorial gait samples are

projected through MPCA and a number of discriminative EigenTensorGaits (ETGs) are selected

to obtain gait feature vectors as in [22]. The extracted discriminative feature vectors are then
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fed into a new LDA-based booster built upon the booster in [27] for learning and classification.

This section presents the proposed LDA-based booster in detail.

Fig. 1. Illustration of gait recognition through LDA-based boosting on MPCA features.

3.1 The boosting scheme

The pseudo-code implementation of the proposed MPCA+boosting scheme is summarized in

Algorithm 1. As in [27], the AdaBoost.M2 algorithm [23] is followed here. AdaBoost.M2 aims to

extend the communication between the boosting algorithm and the weak learner by allowing

the weak learner to generate more expressive hypotheses (a set of “plausible” labels rather than

a single label) indicating a “degree of plausibility”, i.e., a hypothesis h takes a sample y and

a class label c as the inputs and produces a “plausibility” score h(y, c) ∈ [0, 1] as the output.

To achieve its objective, the AdaBoost.M2 introduces a sophisticated error measure pseudo-loss

ε̂t with respect to the mislabel distribution Dt(m, c) in [23]. Thus, Dt is an M × C matrix. A

mislabel is a pair (m, c), where m is the index of a training sample and c is an incorrect label

associated with the sample ym. Let B be the set of all mislabels:

B = {(m, c) : m = 1, ...,M, c 6= cm} . (9)
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The mislabel distribution is initialized as

D1(m, c) =
1

M · (C − 1)
(10)

for (m, c) ∈ B. Accordingly, the weak learner produces a hypothesis

ht : RHy × C → [0, 1], (11)

where h(y, c) measures the degree to which it is believed that c is the correct label for y. The

pseudo-loss ε̂t of the hypothesis ht with respect to Dt(m, c) is defined to measure the goodness

of ht and it is given by [23]:

ε̂t =
1
2

∑
(m,c)∈B

Dt(m, c) (1− ht(ym, cm) + ht(ym, c)) . (12)

The introduction of the mislabel distribution enhances the communication between the learner

and the booster, so that the AdaBoost.M2 can focus the weak learner not only on hard-to-classify

samples, but also on the incorrect labels that are the hardest to discriminate [23].

Another distribution dt(m), named as pseudo sample distribution in [27], is derived from

Dt(m, c) as

dt(m) =
∑
c 6=cm

Dt(m, c). (13)

Thus, dt is an M × 1 vector.

For the communication between the booster and the learner, the following “pairwise class

discriminant distribution” (PCDD) Ât ∈ RC×C was introduced in [27]

Ât(ca, cb) =
1
2

 ∑
m:cm=ca,cmt=cb

dt(m) +
∑

m:cm=cb,cmt=ca

dt(m)

 , (14)

where

cmt
= arg max

c
ht(ym, c) (15)

and the diagonal of Ât is set to zeros.

3.2 The LDA learner

In building the LDA learner, the approach in [27] is adopted with several enhancement:

1) In [27], R samples per class are used as the input to the LDA learner in order to get

weaker but more diverse LDA learners. R random samples per class are taken for the first

boosting step and the hardest R (with the largest d(m)) samples per class are selected for
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Algorithm 1 The pseudo-code implementation of the LDA-based booster.

Input: The gallery gait feature vectors {ym,m = 1, ...,M} with class labels c ∈ RM , the LDA

learner described in Sec. 3.2, the number of samples for LDA training S, the maximum

number of iterations T .

Algorithm:

i. Initialize D1(m, c) = 1
M(C−1) , Â1(ca, cb) = 1

C2 , D1(m, cm) = 0, Â1(ca, ca) = 0,

and S samples are selected to form the initial training set {ys, s = 1, ..., S}1,

with the first bS/Cc or dS/Ce samples from each class, where b·c and d·e are

the floor and ceil functions, respectively.

ii. Do for t=1:T:

1) Get Vt from SBt
and SWt

constructed from {ys, s = 1, ..., S}t and project

{ym} to {zm}.

2) Get hypothesis {ht(ym, c) ∈ [0, 1]} by applying the nearest neighbor classi-

fier with the MAD measure [22] on {zm}.

3) Calculate εt, the pseudo-loss of ht, from (12).

4) Set βt = εt/(1− εt).

5) Update Dt:

Dt+1(m, c) = Dt(m, c)β
1
2
(1+ht(ym,cm)−ht(ym,c))

t ,

and normalize it:

Dt+1(m, c) =
Dt+1(m, c)∑

m

∑
c Dt+1(m, c)

.

6) Update dt+1(m), Ât+1 and {ys}t+1 accordingly.

Output: The final hypothesis:

hfin(y) = arg max
c

T∑
t=1

(
log

1
βt

)
ht(y, c)

subsequent steps. Let {ys, s = 1, ..., S} denote the selected samples, where S = R × C for

the sample selection scheme in [27].

This sample selection scheme has a problem that is against the design principal of boosting,

where the hardest samples should be selected for subsequent learning. Figure 8(a) gives a
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typical example of the average weights of the samples selected according to the method

in [27], denoted as “OldSel”. From the figure, the hardness of the selected samples (i.e.,

the weight) decreases quickly after the first a few boosting steps. The reason is that it

is not true in most cases that the hardest samples will be distributed evenly among all

the classes. In fact, it is common that some classes have more hard samples while some

classes have more easy samples. Therefore, in this paper, a new sample selection scheme

is proposed to enhance the sample selection process in boosting, as described below:

a) For each class, select the hardest sample to result in C samples added to the pool of

training sample for subsequent learning.

b) Select the hardest S−C samples among all the rest samples, regardless of their class

labels so that together with the C samples selected in the previous step, S samples

are chosen for subsequent boosting.

The average weights of the samples selected according to the sample selection scheme

proposed above are shown in Figure 8(a) as well, denoted as “NewSel”. As seen from

the figure, the new sample selection scheme results in samples with much larger weights

selected compared to the scheme in [27].

2) For the between-class scatter matrix SB , the pairwise between-class scatter in [33] is used

instead of that used in [27] in this paper for its simplicity and easy computation:

SB =
C−1∑
ca=1

Mca

M

C∑
cb=ca+1

Mcb

M
Ãt(ca, cb)(ȳca

− ȳcb
)(ȳca

− ȳcb
)T , (16)

where

ȳc =
1
Mc

cs=c∑
s

ys (17)

is the mean for class c.

3) For the within-class scatter matrix, a regularized version of that in [27] is used:

SW =
∑

s

d(s)(ys − ȳcs
)(ys − ȳcs

)T + η · IHy
, (18)

where η is a regularization parameter to increase the estimated within-class scatter and

IHy
is an identity matrix of size Hy × Hy. The regularization term is added because in

the gait recognition problem, the actual within-class scatter of gait sequences captured

under various conditions is expected to be greater than the within-class scatter that can

be estimated from the gallery set, which is captured under a single condition.
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With these definitions, the projection V is then to be solved to maximize the ratio of the

between-class scatter to the within-class scatter. The solution is

V = arg max
V

|VTSBV|
|VTSWV|

= [v1 v2 ... vHz
], (19)

where {vhz
, hz = 1, ...,Hz} is the set of generalized eigenvalues of SB and SW corresponding

to the Hz (≤ C − 1) largest generalized eigenvalues { λhz
, hz = 1, ..., Hz}:

SBvhz
= λhz

SWvhz
, hz = 1, ...,Hz. (20)

Thus, the LDA feature vector zm is obtained as zm = VTym for the input to a classifier.

The nearest neighbor classifier (NNC), which assigns label c to the test sample y if c is the

class label of the sample nearest to y, is used with the modified angle distance (MAD) measure

defined in [22], which is found to have the best performance for MPCA-based algorithms in

gait recognition. The MAD between two feature vectors za and zb is calculated as

d(za, zb) =
−
∑Hz

h=1 za(hz) · zb(hz)√
λhz

∑Hz

hz=1 za(hz)2
∑Hz

hz=1 zb(hz)2
. (21)

The calculated distances between a sample and the C class means are matched to the interval

[0, 1] as required by the AdaBoost.M2 algorithm.

3.3 Discussions

It should be noted that besides the algorithmic difference, the proposed solution has an impor-

tant difference in design with that in [27]. Direct application of the algorithm in [27] on the gait

recognition problem requires the vectorization of the tensorial input {Xm} to {xm}. For a gait

sample of typical size 128× 88× 20, the resulted vectors are of size 225, 280× 1. In contrast, the

LDA-based learners in the proposed booster take the gait feature vectors extracted by MPCA

{ym ∈ RHy ,m = 1, ...,M}, rather than the original data { xm ∈ RI1×I2×I3 , m = 1, ...,M}. The

proposed scheme has two benefits:

1) The number of selected discriminative ETGs, which is the gait feature vector dimension

Hy, gives us one more degree (besides the number of samples used for LDA learners) to

control the weakness of the LDA learners. Similar to the case of PCA+LDA, where the

recognition performance is often affected by the number of principal components for input

to LDA, Hy affects the recognition performance of LDA on the MPCA features as well,

as observed in [22]. Therefore, by choosing a value of Hy that is not optimal for a single
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LDA learner, the obtained LDA learner is weakened. On the other hand, the LDA learner

cannot be made “too weak” either. Otherwise, the boosting scheme will not work.

2) Using feature vectors of dimensionality Hy instead of the original high-dimensional data

as the booster input is computationally advantageous. Since boosting is an iterative algo-

rithm with T rounds, the computational cost is about T times of that of a single learner

with the same input, both in training and testing. When the booster works on lower-

dimensional features extracted by MPCA, it becomes much more efficient since it needs

to deal with low-dimensional vectors only in each round. For instance, the dimension of

the input vectors to the booster is around 200 in this paper, which is much smaller than

the dimension 17, 154 for face data in [27] and the original gait data dimension 225, 280,

Therefore, the computational cost is reduced significantly this way.

4 EXPERIMENTAL RESULTS

This section evaluates the proposed solution of LDA-based boosting on MPCA features (B-LDA-

MPCA) through the following studies:

1) The comparison of gait recognition performance against the state-of-the-art gait recognition

algorithms.

2) The effects of the gait feature vector dimension Hy for input to LDA learners, the LDA

feature vector dimension Hz, the number of LDA training samples for LDA learner input

S, and the regularization parameter η on boosting recognition performance.

3) The effectiveness of the new sample selection scheme proposed in this paper in improving

the booster performance.

4.1 The data sets

The NIST/USF “Gait Challenge” data sets version 1.7 [10], [34] is chosen to carry out the gait

recognition experiments. All the recognition results reported and compared in this paper are

obtained from this database. It consists of 452 sequences from 74 subjects walking in elliptical

paths in front of the camera, with two viewpoints (left or right), two shoe types (A or B) and

July 10, 2009 DRAFT



EURASIP IVP/713183.V2 13

TABLE 1

The characteristics of the gait data from the NIST/USF “Gait Challenge” data set version 1.7.

Gait data set Number of sequences Difference from the gallery

Gallery (GAR) 71 -

A (GAL) 71 View

B(GBR) 41 Shoe

C(GBL) 41 Shoe, view

D(CAR) 70 Surface

E(CBR) 44 Surface, shoe

F(CAL) 70 Surface, view

G(CBL) 44 Surface, shoe, view

two surface types (grass or concrete)3. The gallery set contains 71 sequences (one sequence from

each subject). Seven experiments, corresponding to seven probe sets, are designed for human

identification. Subjects are unique in the gallery and each probe set. There are no common

sequences between the gallery set and any of the probe sets. Also, all the probe sets are

distinct. The number of sequences in each probe set and the difference from the gallery set

are summarized in Table 1. The capturing condition for each probe set is indicated in brackets

after the probe name, where C, G, A, B, L, R, stand for cement surface, grass surface, shoe type

A, shoe type B, left view, and right view, respectively.

The procedures described in [22] are used to obtain the third-order tensorial gait samples

{Xm} of size 128× 88× 20, with five examples shown as unfolded images in Fig. 2. There are

731 gait samples in the Gallery set and each subject has an average of roughly 10 samples

available. MPCA is applied to get the gait feature vectors {ym} for the input to the booster. The

3. There is a newer version 2.1 available, which is of much larger size with two additional differences in briefcase

carrying condition and time (including clothing). Version 1.7 is chosen in this work because this version is widely

used in the research community as well and the performance on it is far from saturated [4], [5], [14], [16], [17], [22]. In

addition, version 1.7 is much smaller than version 2.1 so the computational demand is much lower in experimental

evaluation.
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rank 1 and rank 5 identification rates are used for recognition performance evaluation, where

rank k results report the percentage of probe subjects whose true match in the gallery set was

in the top k matches [10].

Fig. 2. Five gait silhouette samples shown by concatenating the frames.

4.2 Comparison of gait recognition results with the state-of-the-art algorithms

There are several parameters in the proposed B-LDA-MPCA solution: T , Hy, Hz, S and η. As

in other boosting algorithms [27], the optimal determination of these parameters is still open

problem to be solved. The maximum number of iterations is set to T = 60, as in [27]. Several

values of the other four parameters are tested empirically, as listed below:

• Hy: 160, 170, 180, 190, 200, 210, 220.

• Hz: 35, 40, 45, 50, 55, 60, 65, 70.

• S: 142, 165, 188, 213, 234, 257, 284.

• η: 1, 10−1, 10−2, 10−3, 10−4.

For the proposed B-LDA-MPCA algorithm, the parameters producing the highest rank-1

identification rates averaged over all seven probes in the test are Hy = 200, Hz = 55, S = 213,

and η = 10−1, which are considered to be the best performing set of parameters in this paper.

The evolutions of various identification rates over the boosting steps are shown in Fig. 3 with

this set of parameters. In the figure legends, “R1” and “R5” stand for the average rank 1 and

rank 5 identification rates, respectively. The identification rate obtained from the single learner

in each step is denoted as ‘Sgl’ and that obtained from the aggregated learners is denoted by
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‘Bst’. From the figure, the effectiveness of the boosting scheme is observed. There are about 20%

boost in both rank 1 and rank 5 identification rates through the combination of single learners.

Fig. 3. The evolutions of various identification rates over the boosting steps with the best

parameter set tested.

Tables 2 and 3 show the detailed rank 1 and rank 5 gait recognition results, respectively, of

B-LDA-MPCA on each probe set, obtained with the best parameter settings tested. In addition,

the tables also include the results from the baseline algorithm [10], [34] as well as the following

state-of-the-art gait recognition algorithms: the Hidden Markov Model (HMM) framework [4],

the linear time normalization (LTN) algorithm [16], the Gait Energy Image (GEI) algorithm [17],

and the MPCA+LDA algorithm [22]. The average identification rates over the seven probes are

also shown for comparison of the overall performance. The best results for each column are

highlighted by boldface font in the table.

From the results, the B-LDA-MPCA algorithm has achieved the best rank 1 and rank 5

recognition results on all probes except the rank 1 identification rate on probe B and the rank 5

identification rate on probe D, demonstrating its superior recognition performance. Compared to

the MPCA+LDA algorithm, the B-LDA-MPCA algorithm has improved the rank 1 identification

rate by an average of 4% and the rank 5 identification rate by an average of 1%. The greatest

improvement in rank 1 identification rate is 13% on probe F, and the greatest improvement

in rank 5 identification rate is 10% on probe E. In particular, in rank 1 identification rates, the
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TABLE 2

Comparison of the gait recognition results on the NIST/USF “Gait Challenge” data sets version

1.7: the rank 1 identification rate (%).

Probe A B C D E F G Average

Baseline 79 66 56 29 24 30 10 42

HMM 99 89 78 35 29 18 24 53

LTN 94 83 78 33 24 17 21 50

GEI 100 85 80 30 33 21 29 54

MPCA+LDA 99 88 83 36 29 21 21 54

B-LDA-MPCA 100 88 83 39 34 34 30 58

TABLE 3

Comparison of the gait recognition results on the NIST/USF “Gait Challenge” data sets version

1.7: the rank 5 identification rate (%).

Probe A B C D E F G Average

Baseline 96 81 76 61 55 46 33 64

HMM 100 90 90 65 65 60 50 74

LTN 99 85 83 65 67 58 48 72

GEI 100 85 88 55 55 41 48 67

MPCA+LDA 100 93 88 71 60 59 60 76

B-LDA-MPCA 100 93 93 67 70 63 61 77

performance improvement on the more difficult probes, D, E, F and G, are more significant than

the improvement on the easier probes, A, B and C, showing that the B-LDA-MPCA algorithm

indeed generalizes better than the MPCA+LDA algorithm.
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(a) Rank 1 identification rate. (b) Rank 5 identification rate

Fig. 4. The effects of Hy on the gait recognition performance of the proposed method.

(a) Rank 1 identification rate. (b) Rank 5 identification rate

Fig. 5. The effects of Hz on the gait recognition performance of the proposed method.

4.3 The effects of Hy, Hz, S and η on boosting

The effects of Hy, Hz, S and η on the average rank 1 and rank 5 gait recognition performance

of the proposed method are shown in Figs. 4, 5, 6 and 7, respectively. The effects of a parameter

are shown by varying only the parameter of interest while fixing all the other parameters since

it is not possible to show the results of all possible parameter combinations. Only a number

of values are tested for each parameter, as specified in Sec. 4.2. The fixed set of parameters is

chosen to be the best set described in Sec. 4.2.
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(a) Rank 1 identification rate. (b) Rank 5 identification rate

Fig. 6. The effects of S on the gait recognition performance of the proposed method.

(a) Rank 1 identification rate. (b) Rank 5 identification rate

Fig. 7. The effects of η on the gait recognition performance of the proposed method.

The proposed method introduces an additional learner weakness control mechanism by Hy.

From [22], Hy = 170 gives the best gait recognition performance with the MAD measure and

the NNC classifier. From Fig. 4, the weaker learners with Hy = 200 give much better boosting

results than the stronger learners with Hy = 170. This confirms that Hy can improve the boosting

performance through controlling the weakness of the learners.

The dimensionality of the LDA features Hz affects the recognition performance of the pro-

posed solution as well. Since C = 71, the maximum dimensionality of the features extracted by
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LDA learners is C − 1 = 70. Nonetheless, as pointed out in [27], if Hz = 70, the resulted LDA

learner will be very strong, deteriorating the performance of the booster. From Fig. 5, it can

be seen that the value of Hz giving the best performance is a medium value. It is also evident

from the figure that the strong learner with Hz = 70 collapsed around the 30th boosting step,

as expected in boosting [27]. This set of experiments demonstrate that appropriate weakness is

again required and the best boosting performance can not be reached with too strong or too

weak learners.

The value of S determines the number of training samples for the LDA learners. As discussed

in [27], the diversity of the LDA learners is necessary to ensure good boosting performance.

Therefore, by choosing only a subset of the available training samples, the diversity among

learners at different boosting steps is enhanced. On the other hand, S needs to be sufficiently

large to enable learners to achieve a certain classification accuracy. Figure 6 illustrates the effects

of S discussed here, showing that an appropriate choice of S is neither too small nor too large.

The effects of regularization are depicted in Fig. 7, where it is shown that an appropriate

regularization parameter η does result in better generalization. This study confirms that gait

recognizer can benefit from making use of the fact that the within-class scatter of gait patterns

under various capturing conditions is greater than that under the same capturing condition.

4.4 The effectiveness of the proposed sample selection scheme for LDA learners in boost-

ing the recognition performance

Figure 8 demonstrates the effectiveness of the new sample selection scheme proposed in Sec.

3.2. As discussed in Sec. 3.2 and illustrated in Fig. 8(a), the proposed scheme selects samples

with much larger weights for subsequent boosting steps, compared with the scheme in [27].

Thus, the new scheme focuses more on the difficult samples, which agrees the working principle

behind boosting. The effects of the new sample selection scheme on the recognition performance

are shown in Figs. 8(b) and 8(c), where the corresponding average rank 1 and rank 5 identifi-

cation rates are compared, respectively. From the figure, it can be seen that the proposed new

sample selection scheme results in approximately 5% improvement in both rank 1 and rank 5

identification rates.
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(a) The average weights of selected samples.

(b) The rank 1 identification rates (c) The rank 5 identification rates

Fig. 8. Comparison of the proposed sample selection scheme against the sample selection

scheme in [27].

5 CONCLUSIONS

This paper proposes a gait recognition solution through combining the MPCA algorithm [22]

and the ensemble-based discriminant learning method in [27]. The MPCA algorithm in [22] is

used to extract features from tensorial gait data and a subset of the extracted features are fed into

an enhanced LDA-style booster. This scheme gives another way of learner weakness control in

addition to computational efficiency. The LDA learner in [27] is modified by adopting a simpler
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weighted pairwise between-class scatter matrix and introducing a regularization term in the

within-class scatter matrix so that the gait challenge due to various capturing conditions is taken

into account. Furthermore, a new sample selection scheme of the LDA-based booster is proposed

to concentrate more on the “difficult” samples in the boosting process. Experiments carried out

on the gait challenge data sets show that the proposed scheme is effective in boosting the gait

recognition performance and outperforms several state-of-the-art gait recognition algorithms.
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