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ABSTRACT

In this paper, we present a boosted linear discriminant anal-
ysis (LDA) solution with regularization on features extracted
by the multilinear principal component analysis (MPCA) for
the gait recognition problem. This work is an extension of a
recent LDA-based boosting approach and the MPCA is em-
ployed to project tensorial gait samples on a number of dis-
criminative EigenTensorGaits (ETGs) to produce gait feature
vectors for the base learners in boosting. This new scheme of-
fers one more way to control the learner weakness while being
very computationally efficient. Furthermore, the LDA learn-
ers are modified through regularization for protection against
overfitting on the gallery set. Promising experimental results
obtained on the Gait Challenge data sets indicate that the pro-
posed algorithm is an efficient and effective solution con-
sistently enhancing the gait recognition results on the seven
probe sets by MPCA+LDA.

1. INTRODUCTION

The demand for automated person identification system and
visual surveillance at a distance is growing considerably in
security-sensitive environments such as banks, parking lots,
airports and large civic structures, where the verification and
identification of subjects is essential. However, in this set-
ting of human recognition at a distance, many conventional
biometrics such as fingerprint, face or iris information are not
available at high enough resolution for recognition and gait
recognition, the identification of individuals through the way
they walk, has emerged as a promising solution with the ad-
vantages of unobtrusiveness, hard-to-hide, and recognition at
a distance [1–3].

Model-based approaches [4, 5] and appearance-based ap-
proaches [1, 2] for gait recognition have been studied in the
literature, with the latter being more successful. Appearance-
based approaches take binary gait silhouette sequences ex-
tracted from the raw gait sequences [6] as the input. Gait
silhouette sequences are naturally third-order tensors and the
three dimensions are the spatial row, column and the tem-
poral modes. To deal directly with these tensor objects in

a very high-dimensional tensor space, traditional linear fea-
ture extraction algorithms based on vector input such as the
Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) first reshape (vectorize) the input tensor
objects into vectors in a very high-dimensional space, result-
ing in high computation and memory demand. Furthermore,
the structure and correlation in the original data are broken
by this input reshaping and the redundancy and structure in
the original data is not fully utilized. This motivated the re-
cent development of multilinear subspace algorithms operat-
ing directly on the gait sequences in their tensor representa-
tion, rather than their vectorized versions. The multilinear
PCA (MPCA) algorithm proposed in [7] aims to determine
a multilinear projection that projects the original tensor ob-
jects into a lower-dimensional tensor subspace while preserv-
ing the variation in the original data. A number of discrim-
inative features in the projected tensor space have been used
for gait recognition and good results have been achieved.

However, many factors, such as viewing angles, walk-
ing surfaces and shoes, may affect a person’s gait and as in
the case of face patterns, the gait patterns are expected to be
nonlinear and complex. Moreover, the gait data available for
training and testing may be captured under different condi-
tions and good generalization is very difficult, as studied in
the Gait Challenge problem [2]. There are many methods
proposed in the literature to handle complex and nonlinear
patterns and the emerging ensemble-based machine learning
method called boosting is a very promising one offering good
generalization capability through combining a set of (weak)
base learners repeatedly trained on weighted training sam-
ples [8, 9]. Boosting requires an appropriate weak learner to
work, which has restricted its applicability [9, 10] and a re-
cent work in [11] has broken this limitation by proposing a
boosting algorithm that works with LDA-style learners, ap-
plied on the problem of face recognition. A cross-validation
mechanism is employed to weaken the LDA learner and the
pairwise class discriminant distribution is introduced for in-
teraction between the booster and the learner.

This paper extends the boosting work in [11] for gait recog-
nition by making use of the recent development of MPCA in



[7]. It should be noted that, to the best of the authors’ knowl-
edge, this is the first work combining ensemble-based learn-
ing with tensorial subspace solutions. In this novel processing
scheme, the MPCA of [7] is first used to generate EigenTen-
sorGaits (ETGs) in a lower-dimensional tensor space and then
only a number of discriminative ETGs are selected as the in-
put to the LDA-based booster. This ETG number provides us
another way (besides the cross-validation mechanism in [11])
to control the weakness of the LDA learner, and the MPCA
feature extractor before the booster greatly reduces the pro-
cessing cost (in both training and testing) so that the very-high
dimensional tensorial gait data can be handled efficiently. In
addition, a novel regularization control mechanism is added to
improve the generalization as the within-class scatter of gait
patterns under various capturing conditions is expected to be
larger than that of gait patterns captured under a single condi-
tion. In the following section, the proposed algorithm will be
discussed in detail. Experimental results and conclusions are
presented in Sec. 3 and Sec. 4, respectively.

2. BOOSTING LDA WITH REGULARIZATION ON
MPCA FEATURES FOR GAIT RECOGNITION

The block diagram of the proposed method for gait recogni-
tion is shown in Figure 1. Input tensorial gait samples are
projected on a number of discriminative EigenTensorGaits
(ETGs) to obtain gait feature vectors 1 and these vectors are
fed into the LDA-based booster for learning and classifica-
tion. In this section, after the introduction of the notations,
the MPCA-based feature extraction from tensorial gait data
is briefly reviewed and then the adopted LDA-based boosting
solution is presented.

Fig. 1. Illustration of gait recognition through boosting LDA
with regularization on MPCA features.

1The generation of ETGs are not included in the figure and it is briefly
described in Sec. 2.2.

2.1. Notations

In this paper, vectors are denoted by lowercase boldface let-
ters, e.g., x; matrices by uppercase boldface, e.g., U; and
tensors by calligraphic letters, e.g., A. Their elements are
denoted with indices in brackets. Indices are denoted by low-
ercase letters and span the range from 1 to the uppercase let-
ter of the index, e.g., n = 1, 2, ..., N . An N th-order ten-
sor is denoted as A ∈ RI1×I2×...×IN . It is addressed by
N indices in, n = 1, ..., N , and each in addresses the n-
mode of A. The n-mode product of a tensor A by a matrix
U ∈ RJn×In , denoted by A ×n U, is a tensor with entries:
(A×nU)(i1, ..., in−1, jn, in+1, ..., iN ) =

∑
in
A(i1, ..., iN )·

U(jn, in). A rank-1 tensor A equals to the outer product of
N vectors: A = u(1) ◦ u(2) ◦ ... ◦ u(N), which means that
A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) for all
values of indices.

2.2. Review of MPCA-based gait feature extraction

In MPCA-based gait feature extraction, each half gait cycle is
treated as a gait sample (3rd-order tensor), obtained as in [7].
In a typical gait recognition problem, there are two types of
gait data sets: the gallery and the probe [2]. The gallery set
contains the set of gait samples with known identities and it
is used as the training set. The probe set is the testing set with
gait samples of unknown identities to be identified through
matching against the gallery set.

TheM gallery gait samples {X1, ...,XM ∈ RI1×I2×...×IN }
are used as the input to MPCA. The objective of MPCA is
to find a multilinear transformation { Ũ(n) ∈ RIn×Pn , n =
1, ..., N } mapping from the original gait tensor space
RI1

⊗
RI2 ...

⊗
RIN into a tensor subspace RP1

⊗
RP2 ...⊗

RPN (with Pn < In, for n = 1, ..., N ): Ym = Xm ×1

Ũ(1)T ×2 Ũ(2)T

...×N Ũ(N)T

,m = 1, ...,M , such that ΨY =∑M
m=1 ‖ Ym − Ȳ ‖2F , the total tensor scatter, is maximized,

where Ȳ = 1
M

∑M
m=1 Ym is the mean sample. This problem

is solved in an iterative alternating projection manner.
The obtained projection matrices {Ũ(n), n = 1, ..., N}

can be viewed as
∏N

n=1 Pn EigenTensorGaits (ETGs):
Ũp1p2...pN

= ũ(1)
p1 ◦ ũ(2)

p2 ◦ ... ◦ ũ(N)
pN , where ũ(n)

pn is the pth
n

column of Ũ(n). However, not all of them are useful for
recognition and they are selected according to their class dis-
criminability Γp1p2...pN

, where Γp1p2...pN
for the eigentensor

Ũp1p2...pN
is defined as

Γp1p2...pN =

∑C
c=1 Nc ·

[
Ȳc(p1, p2, ..., pN )− Ȳ(p1, p2, ..., pN )

]2∑M
m=1

[
Ym(p1, p2, ..., pN )− Ȳcm(p1, p2, ..., pN )

]2 ,

(1)
where C is the number of classes (subjects), M is the total
number of gait samples in the gallery set, Nc is the number
of gait samples for class (subject) c and cm is the class la-
bel for the mth gallery gait sample Xm. Ym is the feature
tensor of Xm in the projected tensor subspace, the mean fea-



ture tensor Ȳ = 1
M

∑
m Ym and the class mean feature tensor

Ȳc = 1
Nc

∑
m,cm=c Ym. For the selection, the entries in Ym

are arranged into a feature vector ym ordered according to
Γp1p2...pN

in descending order and only the first Hy entries
of ym are kept.

2.3. Boosting regularized LDA on MPCA features

The boosting scheme in the proposed approach is summa-
rized in Fig. 2, with details below. It should be noted that the
booster proposed here has an important difference with that in
[11]. The LDA-style base learners in our booster take {ym ∈
RHy ,m = 1, ...,M}, the gait feature vectors extracted by
MPCA, rather than the original data { xm ∈ RI1×I2× ...×IN ,
m = 1, ...,M} as in [11] 2. There are two benefits from the
proposed scheme:

1. The gait feature vector dimension Hy, which is the
number of discriminative ETGs selected, gives us one
more degree (besides R, the number of samples per
class used for LDA learners) to control the weakness
of the LDA learners. Similar to the case of PCA+LDA,
where the performance is often affected by the number
of principal components selected for LDA, Hy affects
the performance of LDA on the MPCA features as well,
as observed in [7]. Therefore, by choosing a Hy that is
not optimal for a single LDA learner, the obtained LDA
learner is weakened. Of course, the LDA learner can-
not be made “too weak” either. Otherwise, the boosting
scheme will not work.

2. Using feature vectors of dimension Hy instead of the
original data as the booster input is computationally ad-
vantageous. Since boosting is an iterative algorithm,
the computational cost is about T times of that of a sin-
gle learner with the same input, both in training and
testing. By making the booster to work on lower di-
mensional features extracted by MPCA, the booster be-
comes very efficient since it only needs to deal with
low-dimensional vectors. For instance, the dimension
of the input vectors to the booster is 180 in this paper,
which is much smaller than the dimension 17154 for
face data in [11] and the original gait data dimension
225280, therefore, the computational cost is reduced
significantly.

As in [11], the boosting algorithm in Fig. 2 follows the so-
called AdaBoost.M2 algorithm [8]. AdaBoost.M2 is a multi-
class extension of the original AdaBoost algorithm (for bi-
nary class) [9] and it aims to extend communication between
the boosting algorithm and the weak learner by allowing the
weak learner to generate more expressive hypotheses (a set
of “plausible” labels rather than a single label) indicating a

2Direct application of [11] on the gait recognition problem requires the
vectorization of the tensorial input {Xm} to {xm}.

“degree of plausibility”, i.e., a hypothesis h takes a sample
y and a class label c as the inputs and produces a “plausibil-
ity” score h(y, c) ∈ [0, 1] as the output (rather than a binary
output). To achieve this objective, a more sophisticated er-
ror measure pseudo-loss εt is introduced with respect to the
so-called mislabel distribution Dt(m, c) in [8], where t is the
boosting step index. A mislabel is a pair (m, c) where m is
the index of a training sample and c is an incorrect label asso-
ciated with the sample m. Let B be the set of all mislabels:

B = {(m, c) : m = 1, ...,M, c 6= cm} . (2)

The pseudo-loss εt of the tth hypothesis ht with respect to
Dt(m, c) is given by [8]:

εt =
1
2

∑
(m,c)∈B

Dt(m, c) (1− ht(ym, cm) + ht(ym, c)) .

(3)
Another distribution dt(m), named as pseudo sample distri-
bution in [11], is derived from Dt(m, c) as

dt(m) =
∑

c6=cm

Dt(m, c). (4)

For the communication between the booster and the learner,
the modified “pairwise class discriminant distribution” (PCDD)
Ât ∈ RC×C introduced in [11] is employed as

Ât(ca, cb) =
1
2

 ∑
cm=ca,cmt=cb

dt(m) +
∑

cm=cb,cmt=ca

dt(m)

 ,

(5)
where cmt

= arg maxc ht(ym, c) and the diagonal of Ât is
set to zeros. This version of PCDD results in more indepen-
dence and diversity between learners, which tends to achieve
a low generalization error.

In building the LDA learner, the approach in [11] is adopted
with several modifications. Firstly, only R samples per class
are used as the input to the LDA learner in order to get weaker
but more diverse LDA learners. The first R samples are taken
for the first boosting step and the hardest R (with the largest
d(m)) samples are selected for subsequent steps. Let {ys, s =
1, ..., S} denote the selected samples, where S = R × C.
Next, for the between-class scatter matrix SB , the pairwise
between-class scatter in [12] is used instead of that used in
[11] in this paper for its simplicity and easy computation:

SB =
C−1∑
ca=1

C∑
cb=ca+1

Ât(ca, cb)(ȳca
− ȳcb

)(ȳca
− ȳcb

)T , (6)

where ȳc = 1
R

∑cs=c
s ys. There is no need to include the

priors in SB since the number of training samples in each
class is the same. Finally, for the within-class scatter matrix,
a regularized version of that in [11] is used:

SW =
∑

s

d(s)(ys − ȳcs)(ys − ȳcs)T + η · IHy , (7)



Input: The gallery gait feature vectors {ym,m = 1, ...,M}
with class labels c ∈ RM , the LDA learner described
in Sec. 2.3, the number of samples per class for LDA
training R, the maximum number of iterations T .

Algorithm:

Initialize D1(m, c) = 1
M(C−1) , Â1(ca, cb) = 1

C2 ,

D1(m, cm) = 0, Â1(ca, ca) = 0, and the first R sam-
ples from each class is selected to form the initial train-
ing set {ys, s = 1, ..., S}1.

Do for t=1:T:

1. Get Vt from SBt and SWt constructed from
{ys, s = 1, ..., S}t and project {ym} to {zm}.

2. Get hypothesis {ht(ym, c) ∈ [0, 1]} by applying
the nearest mean classifier on {zm}.

3. Calculate εt, the pseudo-loss of ht, from (3).

4. Set βt = εt/(1− εt).

5. Update Dt:

Dt+1(m, c) = Dt(m, c)β
1
2 (1+ht(ym,cm)−ht(ym,c))
t ,

and normalize it:

Dt+1(m, c) =
Dt+1(m, c)∑

m

∑
c Dt+1(m, c)

.

6. Update dt+1(m), Ât+1 and {ys}t+1 accordingly.

Output: The final hypothesis:

hfin(y) = arg max
c

T∑
t=1

(
log

1
βt

)
ht(y, c)

Fig. 2. The pseudo-code implementation of the LDA-based
booster.

where η is a regularization parameter to increase the esti-
mated within-class scatter and IHy is an identity matrix of
size Hy × Hy. The regularization term is added because in
the gait recognition problem, the actual within-class scatter of
gait sequences captured under various conditions is expected
to be greater than the within-class scatter that can be estimated
from the gallery set, which is captured under a single condi-
tion. With these definitions, the projection V is then to be
solved to maximize the ratio of the between-class scatter to
the within-class scatter. The solution is

V = arg max
V

|VT SBV|
|VT SW V|

= [v1 v2 ... vHz ], (8)

where {vhz , hz = 1, ...,Hz} is the set of generalized eigen-
values of SB and SW corresponding to the Hz (≤ C − 1)
largest generalized eigenvalues { λhz , hz = 1, ..., Hz}:
SBvhz = λhzSW vhz , hz = 1, ...,Hz. Thus, the LDA fea-
ture vector zm is obtained as zm = VT ym for the input to a
classifier.

The nearest mean classifier (NMC), which assigns label
c to the test sample y if ȳc is the class mean nearest to y, is
used with the angle distance measure which is found to signif-
icantly outperform the commonly used L1 and L2 measures
in gait recognition in [7]. The angle distance between two
vectors a and b is calculated as d(a,b) = − a·b

‖a‖‖b‖ . The cal-
culated distances between a sample and theC class means are
matched to the interval [0, 1] as required by the AdaBoost.M2
algorithm.

3. EXPERIMENTAL RESULTS

In this section, the proposed solution of boosting LDA on
MPCA features (B-LDA-MPCA) is evaluated. In particular,
the effects of the gait feature vector dimension Hy and the
regularization parameter η are studied, in addition to R, the
number of LDA training samples per class. The gait recogni-
tion experiments are carried out on the USF HumanID “Gait
Challenge” data sets version 1.7 [2]. The human gait se-
quences in these data sets were captured under different con-
ditions (walking surfaces, shoe types and viewing angles).
The gallery set contains 71 sequences (subjects) and seven ex-
periments (probe sets) are designed for human identification.
The capturing condition for each probe set is summarized in
brackets after the probe name in Table 1, where C,G,A,B,L,R,
standing for cement surface, grass surface, shoe type A, shoe
type B, left view, and right view, respectively. The capturing
condition of the gallery set is GAR. The (third order) tensorial
gait samples {Xm} are obtained in the same way as [7] and
two examples are shown as unfolded images in Fig. 3. There
are 731 gait samples in the Gallery set and each subject has an
average of roughly 10 samples available. MPCA is applied to
get the gait feature vectors {ym} for the input to the booster.
As in [11], the output dimension Hz of the LDA learner is
fixed at 35, which is not optimized, and the maximum num-
ber of iterations is set to T = 60. The correct classification
rate (CCR) is used for recognition performance evaluation.

Fig. 3. Two gait silhouette samples (unfolded).

The best performing set of parameters for the B-LDA-
MPCA algorithm is R = 3, Hy = 180 and η = 10−2 in
our test. The evolutions of various CCRs over the boosting
steps are shown in Fig. 4 with this set of parameters. In the



Fig. 4. The evolutions of various CCRs over the boosting
steps with the best parameter set.

figure legends, ‘Gal’ means CCRs for the gallery set and ‘Prb’
denotes the average CCRs of the seven probe sets. The CCRs
for individual gait samples and gait sequences 3 are denoted
by ‘Ind’ and ‘Seq’, respectively. The CCRs obtained from the
single learner in each step is denoted as ‘Sgl’ and the CCRs
obtained from the aggregated learners is denoted by ‘Bst’.
For instance, ‘PrbSeqBst’ is the average CCR of all probe
sequences obtained from the combined learners. From the
figure, the effectiveness of the boosting scheme is observed.
The CCRs for the probe samples (sequences) produced by the
single learners are around 20% (below 40%), while the CCRs
by the boosted learners is around 40% (near 60%), which is a
boost of about 20% in the CCR.

Table 1 shows the detailed gait recognition results of B-
LDA-MPCA on each probe set and their average with the best
parameter set above and for T = 24, measured in CCRs on
the gait sequences. The results from the baseline algorithm
[2] and the best results from the MPCA+LDA algorithm [7]
withHy = 200, obtained using the same NMC and angle dis-
tance measure, are included in the table for comparison. The
best results for each row are highlighted by boldface font in
the table. While both the MPCA+LDA and B-LDA-MPCA
algorithms outperform the baseline algorithm significantly,
the B-LDA-MPCA has improved over the MPCA+LDA con-
sistently on each probe set, with the smallest improvement
of 1% on probe A (from 99% to 100%) and the greatest im-
provement of 5% on probes E and F. The improvement in
average CCR is 4%. The consistent improvement shown over
both easy probes (A, B, C) and difficult probes (D, E, F, G)
4 clearly demonstrates the effectiveness of the proposed solu-
tion.

3The hypothesis for a sequence is obtained as the average of the hypothe-
ses for its samples.

4The probes D, E, F, G are captured on a different surface from the gallery
and they are considered to be more challenging sets for the recognition task.

Table 1. Comparison of the (sequence) correct classification
rates of the baseline, MPCA+LDA and B-LDA-MPCA algo-
rithms on gait recognition.

Probe Baseline MPCA+LDA B-LDA-MPCA
A (GAL) 79 99 100
B (GBR) 66 85 88
C (GBL) 56 81 85
D (CAR) 29 36 39
E (CBR) 24 29 34
F (CAL) 30 21 26
G (CBL) 10 26 32
Average 42 54 58

The effects of R, Hy and η on the gait recognition per-
formance of the proposed method are shown in Fig. 5. Since
it is not possible to show the results of all possible parameter
combinations, the effects of a parameter is shown by fixing all
the others. None of these parameters is optimized. The fixed
set of parameters is chosen to be the best set above: R = 3,
Hy = 180 and η = 10−2. In the following, only the results
‘PrbSeqBst’ will be shown.

The minimum number of samples in a class is 7 for the
gallery set. Therefore, we tested R ranging from 2 to 6 and
the results are shown in Fig. 5(a). Similar results as in [11]
have been observed here. It shows that the learner cannot be
too weak or too strong for the booster to have a positive effect.

This work introduces an additional control of learner weak-
ness by Hy and its effects are shown in Fig. 5(b). As men-
tioned above, the optimal Hy for a single LDA learner is
200, while the figure shows that the weakened learners with
Hy = 180 give a much better boosting result than the stronger
learners with Hy = 200. Hence, Hy affects the booster in a
similar way as R.

Finally, the effects of the regularization are shown in Fig.
5(c). This figure shows that an appropriate regularization pa-
rameter η does result in better generalization. This study con-
firms our belief that gait recognizer can benefit from making
use of the fact that the within-class scatter of gait patterns un-
der various capturing conditions is greater than that under the
same capturing condition. It is a promising working direction
to train the same booster with different η for recognition in a
different capturing condition, with the value η optimized for
that particular condition.

4. CONCLUSIONS

This paper proposes a gait recognition solution through the
MPCA [7] and the ensemble-based discriminant learning [11].
The MPCA in [7] is used to extract features from tensorial gait
data and a subset of the extracted features are fed into a LDA-
style booster. This scheme gives another way of learner weak-
ness control in addition to computational efficiency. The LDA



(a) The effects of R.

(b) The effects of Hy

(c) The effects of η

Fig. 5. The effects of R, Hy and η on the gait recognition
performance of the proposed method.

learner in [11] is modified by adopting a simpler weighted
pairwise between-class scatter matrix and introducing a regu-

larization term in the within-class scatter matrix so that the
gait challenge due to various capturing conditions is taken
into account. Experiments carried out on the gait challenge
data sets show that the proposed scheme is effective in boost-
ing the gait recognition performance.
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