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ABSTRACT

Face recognition has been employed in various security-
related applications such as surveillance, mugshot identi-
fication, e-passport, and access control. Despite its recent
advancements, privacy concern is one of several issues pre-
venting its wider deployment. In this paper, we address the
privacy concern for a self-exclusion scenario of face recog-
nition, through combining face recognition with a simple
biometric encryption scheme called helper data system. The
combined system is described in detail with focus on the key
binding procedure. Experiments are carried out on the CMU
PIE face database. The experimental results demonstrate that
in the proposed system, the biometric encryption module
tends to significantly reduce the false acceptance rate while
increasing the false rejection rate.

Index Terms— Face recognition, biometric encryption,
security, privacy, watch list.

1. INTRODUCTION

Face recognition has a wide range of applications, such as
surveillance, access control, e-passport, and human-computer
interaction [1]. In particular, face recognition is one of the
three identification methods used in e-passports. Further-
more, facial features scored the highest compatibility among
the six biometric attributes in a machine readable travel doc-
uments (MRTD) system based on several evaluation fac-
tors including enrollment, renewal, machine requirements,
and public perception [2]. This is largely due to the fact
that compared to other popular biometric technologies: face
recognition is non-intrusive and easy to use [3].
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Although face recognition has made tremendous progress
in the past two decades, there have been several concerns
preventing its wider deployment, such as the effectiveness in
field test, the performance under uncontrolled conditions, and
privacy concern. Privacy concern arises when there are large
centralized databases of biometric passwords and there are
risks of identity theft and privacy leaks [4]. Consequently,
biometric encryption has emerged to address this concern.
The objective is to deploy biometrics in a privacy-enhancing
way that minimizes the possibility of abuse, maximizes in-
dividual control, and ensures full functionality of the sys-
tems in which biometrics are used [5]. For face recognition
with biometric encryption, rather than storing one’s facial im-
age in a database, the facial image is used to encrypt (code)
some other information such as a cryptographic key and only
the biometrically-encrypted data is stored. This removes the
need to collect and store actual biometric data in database and
most privacy concerns associated with centralized databases
are eliminated.

There has been several works proposed to construct
privacy-enhancing systems using biometric encryption for
face biometrics. A fuzzy vault based cryptographic key gen-
eration method was introduced by Wang et al. [6]. The
helper data system (HDS) is applied to face recognition in
2005 [4], and the multi-bit quantization using likelihood ratio
method is proposed for privacy-enhancing face recognition in
2007 [7]. In [8], we have investigated a biometric encryption
system based on the quantization index modulation (QIM)
approach [9, 10] for a self-exclusion scenario of face recog-
nition. In this paper, we investigate a biometric encryption
system based on the helper data system in [4] for the same
self-exclusion scenario.

In the HDS approach for face recognition presented in [4],
the fiducial points are extracted from face images. Then, bi-
narized features are constructed based on estimates of the re-
liability statistics. In a general HDS construction, during en-
rollment, these features are used to bind a cryptographic key,
creating one of the helper data. The operation involved is the
binary XOR. Here, the goal of the system is to reject, during
the verification process, an unauthorized subject who does not



possess the original face features used during enrollment. In
contrast, a genuine subject with the correct face features will
be accepted. More importantly, the verification process needs
to be based solely on the helper data, without requiring direct
access to the original face features.

This paper is organized as follows. Section 2 describes
the proposed HDS-based biometric encryption system for the
self-exclusion scenario of face recognition, with emphasis on
the key binding module and bit allocation strategy. Section
3 presents the experimental results and Section 4 draws the
conclusions.

2. HDS-BASED BIOMETRIC ENCRYPTION FOR
THE SELF-EXCLUSION SCENARIO OF FACE

RECOGNITION

This work was motivated by an Ontario Lottery and Gam-
ing Corporation (OLG) initiative to evaluate facial recogni-
tion for its self-exclusion gaming program [8]. In a self-
exclusion program, the system uses facial recognition to au-
tomatically identify voluntarily enrolled subjects who have
entered a gaming facility and contravened the terms of the
program, while protecting the privacy of stored personal in-
formation at the same time. This belongs to the “watch list”
scenario [11], involving one-to-few matches that compare a
query sample against a list of suspects. The size of database
is usually very small compared to the possible queries in this
task, and the identity of the probe subject may not be in the
database. Therefore, the system needs to first detect whether
the query is on the list and if yes, correctly identify it. Due to
the OLG requirement that the system should identify as many
enrolled subjects as possible, the performance requirements
(minimization) in the self-exclusion scenario are placed on
the false rejection rate (FRR), rather than the false acceptance
rate (FAR) [8].

2.1. System overview

The combined face recognition and biometric encryption ap-
proach in [8] is modified for the HDS-based biometric en-
cryption in this paper, as shown in Fig. 1. Figures 1(a) and
1(b) illustrate the general enrollment and watch list identifica-
tion systems, respectively. Subject identification is performed
using a commercial face recognition system and a biometric
encryption module is incorporated to offer privacy protection
of the personal information through a bound cryptographic
key which can be used with conventional cryptographic tech-
niques to encrypt the subject’s personal data for secure appli-
cation.

As shown in the figure, the input during enrollment is the
subject’s facial image as well as a unique identifier (ID). In
enrollment, a helper data is generated as a result of binding
the cryptographic key with the facial features. During watch
list identification, the commercial system attempts to match

(a)

(b)

Fig. 1. Combined face recognition system and HDS-based
biometric encryption for (a) enrollment and key binding, (b)
watch list identification and key release.

input subjects to those in the system database. If a match
is made, the system will output a claimed identity which is
input into the biometric encryption system to release the key.
As in [8], it should be noted that this system is designed under
two constraints: the biometric encryption system is only for
key verification, and the commercial face recognition system
employed for watch list identification cannot be manipulated
internally.

The configuration of the HDS-based biometric encryption
system is shown in Figure 2, which resembles that in [8] and
is a generalization of the system diagram in [4]. As seen from
the figure, facial features are used to verify whether the key
associated with a user should be released or not. If released
(i.e., the user identity is verified), the key can be used for other
secure applications. To support secure applications, other



Fig. 2. The configuration of the HDS-based biometric en-
cryption system for enrollment (key binding) and verification
(key release).

modules need to be constructed around the cryptographic key.
From the cryptographic key module, two diverging paths are
implemented: one is cryptographic hash to generate a hashed
key and the other is error-correcting code (ECC) to protect
against fuzzy variability and other distortions. The data ob-
tained after ECC are then used as input to a key binding mod-
ule. The key binding module utilizes feature vectors to se-
curely embed the encoded key and produce another helper
data to be used during verification. In the following, vari-
ous modules are examined. The focus is on the key binding
module and bit allocation. More detailed discussions on other
modules are available in [8].

2.2. Facial image preprocessing and feature extraction

Facial image preprocessing is a necessary step for each fa-
cial image before feature extraction. The input facial images
need to be normalized against variations which commonly
occur, such as rotation, scaling, and dynamic range of pixel
values. For feature extraction, we choose the principal com-
ponent analysis (PCA) algorithm [12, 13] in experiments for
baseline comparisons, although there are many other more
advanced feature extraction algorithms for face recognition
[1, 14, 15, 16]. PCA computes a projection matrix and retains
the top β bases, where β is usually chosen based on an energy
criterion.

2.3. Cryptographic key module, cryptographic hash
function, and error-correcting code module

The cryptographic key is a binary string to be protected and
it is to be used for a secure application, such as encrypting
other information data. In practice, the usage of AES-128,
AES-192 and AES-256 are prefered[17]. In the self-exclusion

context, AES key selection should consider not only the cryp-
tographic security but also the biometric verification perfor-
mances since if the associated biometric errors are too high,
it would not be meaningful to specify an unachievable key
requirement.

As shown in Fig. 1, instead of storing the actual key,
its hashed version is stored in order to conceal the crypto-
graphic key in a helper data form suitable for storage and to
provide a secure comparison method for key verification. A
hash function accepts a variable-length input and produces a
fixed-length output [18]. In practice, the NIST recommends
to employ at least SHA-256 [18].

In addition, to take into account of the fuzzy variability
in the extracted feature vectors, error-correcting code (ECC)
is needed and we choose the BCH family of codes [19, 20].
These codes are parameterized as (n, k, t): where n denotes
the number of bits in a codeword, k denotes the number of bits
in a message symbol, and t denotes the number of random bit
errors correctable. It should be noted that the characteristics
of the cryptographic keys impose constraints on the subse-
quent schemes to be applied, including the ECC parameters
and the number of feature components to be extracted during
enrollment [8]. For instance, to support an AES key of L bits,
BCH codes with k ≥ L are needed.

2.4. HDS-based key binding module

The objective of the key binding module is to utilize a feature
vector to securely bind the encoded cryptographic key, which
generates a helper data for storage. In this work, each compo-
nent of the PCA feature vector is used to bind one bit of the
cryptographic key (after error-correcting encoding), and we
adopt the HDS-based key binding scheme [4]. In consider-
ing this scheme, which is essentially based on the fuzzy com-
mitment framework, it is useful to separate the process into
two sub-modules: key binding and key release, corresponding
to the enrollment and verification stages, respectively. The
first module performs the biometric binding process, while
the second is responsible for verifying the biometric and un-
binding the cryptographic key.

Figure 3(a) shows the key binding process. First, the cryp-
tographic key is encoded for error tolerance. It is then bound
to the binarized feature vector. The binding is performed us-
ing an XOR operation. This process is analogous to storing
and locking the cryptographic key in a “secure box”, where
the “key” to this box is the biometric feature vector itself.
Without access to the correct physiological features, the cryp-
tographic key cannot be recovered. Thus, an intruder cannot
feasibly produce the feature vector necessary to unlock this
secure box. The theoretical basis of this form of information
concealment is known as a one-time pad (OTP) [18]. Basi-
cally, as long as the mask used for XOR (i.e., the binarized
feature vector) is of random nature, then the “locking” mech-
anism is information-theoretically secure.
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Fig. 3. Illustration of (a) the key binding process, (b) the key
release process.

Figure 3(b) shows the steps for unbinding the key. In
this case, a user claiming some identity submits his or her
facial features for verification, from which a binarized fea-
ture vector is extracted. The unbinding operation is also an
XOR operation. If the two feature vectors, during enrollment
and during verification, match exactly, then the original cryp-
tographic key is unbound successfully. However, in a practi-
cal scenario, there are typically differences in the two vectors.
Due to the XOR operation, the bit differences take the form of
an aggregate “error vector”. This error vector has the equiva-
lent effect of an additive (binary) noise on the received code-
word. It is characterized using the Hamming distance, which
is defined as the number of bit differences between two binary
sequences. The ECC decoding block is responsible for elim-
inating these bit differences, up to some allowed Hamming
distance.

The result of the ECC decoder, the recovered crypto-
graphic key, needs to be tested for authenticity. It should be
noted that the original key is not stored (in plain text) any-
where; instead only its hashed value is available. Therefore,
the hashed value of the recovered key is generated for com-
parison against the stored value. If the two hashed values
match exactly, then the system declares a positive match.
Otherwise, the system rejects this user.

2.5. Bit allocation

Bit allocation refers to the process of assigning an integer
quantity of bits to be embedded into each of the biometric
feature components. In this work, we embed one bit to each
retained PCA feature components. For PCA feature compo-
nents selection, there are two choices to embed L bits: 1)
the first L PCA components (which capture the most varia-
tions) are selected; 2) the most reliable L PCA components
are selected. The following describes how to select the PCA
components that are most reliable for binding, following [4].

Our reliability-based feature component selection scheme
adopts a per-user bit allocation policy, with each user having
a different set of components used for key binding. For a
particular user i, the reliability of the component γ is denoted
as Ri,γ , and is defined as

Ri,γ =
1
2

1 + erf

 |µi,γ − µγ |√
2σ2

i,γ

 , (1)

where µi,γ is the subject mean of component γ, µγ is the pop-
ulation mean of component γ, and σ2

i,γ is the subject variance.
The rationale for the preceding definition is that, assuming a
Gaussian distribution for the feature component, this reliabil-
ity measure is the probability that a new measurement (e.g.,
during verification) from the same subject results in the same
bit which was assigned previously (e.g., during enrollment).
Higher reliability implies higher discriminative power of the
corresponding component. To bind with a secret key ofL bits,
the L components with the highest reliability are selected.

2.6. Gray coding

In a number of the underlying modules, there is a common
operation involved, which requires representing a numerical
quantity as a binary string. This binarization process can po-
tentially have a notable impact on the overall system perfor-
mance, if certain design factors are not considered. For exam-
ple, for binarized feature vectors, even minor environmental
noise may lead to significant changes in the encoded binary
(i.e., large Hamming distance). This is particularly true for a
natural binary mapping, e.g., using a pulse code modulation
(PCM) scheme [20, 21]. Therefore, in this work, a special
type of mapping known as the Gray coding can be applied,
after PCM, to minimize this behavior. While there is an in-
creased cost in system complexity, the encoded binary strings
are less susceptible to dramatic changes in response to noise
variations. For example, in the enrollment stage, incremen-
tal changes in the input features should result in incremental
changes in Hamming distances for the binarized feature vec-
tors. This implies that performance loss due to the binariza-
tion procedure can be reduced.



2.7. Training requirements

Generally, two main components in the biometric encryp-
tion system need training: feature extraction and key bind-
ing/release. The training requirements of the feature extractor
vary depending on the feature extraction algorithm. Never-
theless, the feature extractor should be trained on images that
match the general capturing conditions of the images to be
used in practice. For the key binding and release, the training
generally involves calculation of the statistics for each feature
component across the population and for individual subjects.
Specifically, the mean and variance must be calculated for
each component across the entire enrolled population. In
addition, per subject statistics (again, mean and variance) are
also required. Thus, we need several enrollment images per
subject to allow the accurate estimation of these statistical
parameters.

3. EXPERIMENTAL RESULTS

The experiments were carried out on a subset of the Pose, Il-
lumination, and Expression (PIE) database provided by the
Carnegie Mellon University (CMU) [22]. This database con-
tains 68 subjects with face images captured under varying
pose, illumination and expression. The subset includes three
frontal poses (C07, C09, and C27) under seven illumination
conditions (06, 07, 08, 11, 12, 19, and 20) so there are ap-
proximately 21 (3 × 7) images per subject (with some faces
missing). The images are resized so that there are 70 pixels
between eyes, with 8-bit gray levels per pixel. The experi-
ments are performed using MATLAB v.7.5.0.

The PIE subset is partitioned into a gallery set contain-
ing all except one of the images for each subject, and a probe
set with the single remaining image for each subject. The
gallery set is for training the system and enrollment of the
subjects. The probe set is for testing the recognition perfor-
mance. For the chosen feature extraction algorithm PCA, the
first 154 PCA components are retained for each image.

In experiments, the biometric encryption module is tested
in isolation first to get the verification performance, and then
as part of the whole system to get the performance in the
watch list scenario. In the watch list scenario, the identifi-
cation process generates a ranked list of candidate subjects
for each probe subject tested. This list is then passed to the
biometric encryption module where 1-to-1 verification is per-
formed individually. The length of the list may vary between
0 (i.e., unidentified - no matching subject found in the gallery)
and r (the maximum rank for identification), where r is to be
chosen based on the application requirements.

3.1. Baseline performance without biometric encryption

Since the watch list recognition operation is to be performed,
a baseline level of recognition performance needs to be es-
tablished to evaluate the system with biometric encryption.

Therefore, the baseline performance under the watch list sce-
nario is simulated first.

Using the definitions in [8, 11], each probe subject pj is
compared against each gallery subject gi using a similarity
metric sij . Subject pj is unidentified and rejected if sij is less
than a given threshold ts for all gallery subjects. When there
are gallery subjects for which sij ≥ ts, these subjects are
ranked according to the value sij and the first r are returned.
The similarity metric used is the normalized inner product
defined below:

sij =
〈Xi, Xj〉

‖ Xi ‖ · ‖ Xj ‖
=

∑N
k=1Xi(k) ·Xj(k)√∑N

k=1Xi(k)2 ·
√∑N

k=1Xj(k)2

(2)
where Xi and Xj are the N -component feature vectors for
gi and pj , respectively. This metric sij represents the cosine
of the angle between the two vectors. A greater value of sij
indicates higher similarity between the two compared feature
vectors. The FRR and FAR for the watch list scenario are
calculated respectively as [8, 11]

PFR(ts, r) = 1−
|{pj : sij ≥ ts, rank(pj) ≤ r, id(pj) = id(gi)}|

|PG|
,

∀pj ∈ PG, (3)

where |PG| is the number of gallery subjects, and

PFA(ts, r) =
|{pj : maxi sij ≥ ts|

|PN |
,∀pj ∈ PN ,∀gi ∈ PG,

(4)
where PN denotes a set of imposter subjects. For a particular
r, 1000 (FAR,FRR) value pairs are generated by varying the
threshold ts linearly in the range [−1, 1]. The recognition
performance for r = 5, 10, and 20 are shown in Fig. 4.

It should be pointed out that in this work, the actual per-
formance values (FAR and FRR) are not significant since they
depend on the database, the feature extractor, and the classi-
fier. The significance of these results is to demonstrate the
effect of r on recognition performance as well as the relative
recognition performance compared against the system with
biometric encryption.

In addition, it should be noted that the self-exclusion sce-
nario requires minimal FRR since FRR represents the rate
at which the enrolled self-exclusion subjects would go un-
detected and allowed to enter the gaming premises. Thus, for
each scenario, an operating point is chosen where FRR is min-
imized. These operating points need to be chosen to test the
system with the biometric encryption module since the oper-
ating points determine the identification results (the list) to be
passed to the biometric encryption module. Three operating
points are labeled in Fig. 4, as listed in the left half of Table
1.



Table 1. Full watch list recognition performance for system with and without HDS-based biometric encryption.
Operating Rank Baseline performance Key Code Full system performance

point list (without biometric encryption) length length (with HDS-based biometric encryption)
label length r FAR FRR (bits) (bits) FAR FRR

OP5 5 0.1159 0.3088 16 63 0 0.4706
36 63 0 0.8676

OP10 10 0.1591 0.2794 16 63 0 0.4706
36 63 0 0.8676

OP20 20 0.2801 0.2353 16 63 0 0.4412
36 63 0 0.8529

Fig. 4. Baseline performance using maximum rank r = 5, 10,
and 20. The three chosen operating points for each scenario
are labeled OP5, OP10, and OP20, respectively.

3.2. The performance of the HDS-based biometric en-
cryption system

The recognition performance of the HDS-based biometric en-
cryption system is first tested in isolation as a verification op-
eration. As discussed in Sec. 2.5, the biometric encryption
module has two different modes of operation, based on which
feature components are selected for binding. One is based the
energy (or variance) captured and the other is based on the
reliability computed through (1). The FRR and FAR for the
verification scenario are calculated respectively as [8, 11]

PFR(ts) = 1−|{pj : sij ≥ ts, id(pj) = id(gi)}|
|PG|

,∀pj ∈ PG,

(5)
and

PFA(ts) =
|{pj : sij ≥ ts|

|PN |
,∀pj ∈ PN ,∀gi ∈ PG. (6)

The results are shown in Table 2, where each row indi-

Table 2. The isolated 1-to-1 verification performance of the
HDS-based biometric encryption system.
Achievable # of feature Feature components selection
key length components By PCA energy By reliability

(bits) (code length) FAR FRR FAR FRR

16 63 0 0.8529 0 0.3088
22 127 0 0.9412 0 0.8824

21 255 0 1 0 1

19 511 0 1 0 1

36 63 0 1 0 0.7941
36 127 0 1 0 0.9853

37 255 0 1 0 1

40 511 0 1 0 1

64 127 0 1 0 1

71 255 0 1 0 1

67 511 0 1 0 1

131 255 0 1 0 1

130 511 0 1 0 1

cates a different choice of key length and codeword/feature
length. As can be seen, the FAR is 0 in all cases, i.e., no non-
matching subjects are incorrectly verified. This is because
the Hamming distance between the binarized features of non-
matching subjects is greater than what can be corrected by the
corresponding BCH code for each scenario, which is the de-
sired result. However, in most cases, the FRR is 1, indicating
that the Hamming distance for matching subjects is also too
great to be corrected. This is not desired since it means that
no correct matching subjects can be correctly verified in those
scenarios. Thus, the HDS-based biometric encryption system
is not able to produce binary features similar enough (based
on Hamming distance) except for very short keys.

Based on the results above, two scenarios are chosen for



simulation of the full watch list system. One is the 16-bit
key with 63-bit codeword length using reliability based fea-
ture selection, which achieves (FAR,FRR) of (0,0.3088). The
other is 36-bit key with 63-bit codeword length using reli-
ability based feature selection, which gives (FAR,FRR) of
(0,0.7941). The two choices are shown in bold fonts in Ta-
ble 2. Nonetheless, it should be noted that in practice, 16-bit
and 36-bit keys are considered too short to be used alone in
cryptographic systems.

The full watch list recognition performance is shown in
Table 1. Three operating points are simulated with rank list
length r = 5, 10, and 20. For each operating point, two key
lengths (16 and 36 bits) are tested. As shown in the table,
due to the zero-FAR performance of the HDS-based biomet-
ric encryption module, the system is able to subsequently re-
duce the entire system FAR to zero, which is highly desirable.
On the other hand, in all cases, the FRR is increased due to
the biometric encryption module erroneously rejecting some
correct matching subjects. This increase in FRR is more sig-
nificant with longer keys.

Furthermore, it is observed that the overall performance
at operating points OP5 and OP10 is the same. This indicates
that the increase in length of the candidate identity list from
5 to 10 does not add correct matching subjects to the list that
would be subsequently erroneously rejected by the biometric
encryption module. However, when r is increased to 20, the
FRR is modestly reduced, showing that correct matching sub-
jects may rank low, but will be correctly verified by the bio-
metric encryption module. Hence, as long as the biometric
encryption module is able to maintain zero-FAR, increasing
the length of the rank list r may prove to be a viable approach
to reducing FRR. Nonetheless, the FRR can not be reduced
to be below what the biometric encryption module is able to
achieve in isolation (see Table 2), and a larger r increases the
computational overhead of the biometric encryption system
since up to r separate biometric encryption verification oper-
ations will have to be performed for each test subject.

4. CONCLUSIONS

This paper presents a combination of face recognition and
simple biometric encryption using helper data system (HDS).
The objective is to address the privacy concern in a self-
exclusion scenario of face recognition. The HDS-based bio-
metric encryption system is described in detail, with emphasis
on the key binding module and bit allocation strategy. The
experimental studies employ a subset of the CMU PIE face
database. The HDS-based biometric encryption system has
been simulated both in isolation (1-to-1 verification opera-
tion) and as part of the full watch list system. In isolation, the
HDS-based system exhibited performance allowing the reli-
able binding of short keys. For the full watch list scenario, the
HDS-based biometric encryption system has given improved
FAR results compared to the system without biometric en-

cryption, but with poorer FRR results.
Nonetheless, the HDS-based biometric encryption of-

fers little flexibility and produces only one operating point
((FAR,FRR) pair) with no parameters to tune. In contrast,
the biometric encryption system based on quantization index
modulation (QIM) in [8] offers great flexibility and can gen-
erate a curve of operating points to give system implementers
the freedom to control the operating point.
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