
1 | P a g e

Wireless Multi Input Multi Output
(MIMO) channel simulation package

(Version 1.2)

Ali Tawfiq
Supervisors: Professor Kostas Plataniotis, Amir Aghaei

Multimedia laboratory, The Edward S. Rogers Sr. Dept of Electrical & Computer
Engineering, University of Toronto

2 | P a g e

Contents
1. Overview of the Package .. 4

2. Objects .. 5

2.1 Types of objects .. 5

2.1.1 Signal Parameters object (Fout_sig) ... 5

2.1.2 Transmitted signal object (Fout_tx) ... 6

2.1.3 Channel coefficients and received signal object (Fout_ch) .. 6

2.2 Objects usage ... 7

3. The Main File .. 8

What needs to be changed? ... 8

Compute Time ... 8

Results ... 8

4. Modules... 9

4.1 Create Signal ... 9

• Setting variables ... 9

• Generate signal ... 9

• Partition the signal .. 10

4.2 Mapping .. 11

• Mapping ... 11

Modulation Techniques ... 11

4.3 Pulse Shaping .. 13

• Filter Variables ... 13

• Generating Filter .. 14

4.4 Space-Time Coding ... 15

• Transmitted Sequence for each antenna ... 16

• Applying the filter .. 16

4.5 Channel .. 17

• Generate Channel Coefficients ... 17

• Generate Noise ... 18

• Encode and transmit Signal .. 18

3 | P a g e

4.6 Receiving ... 19

• Applying the filter and down sampling .. 20

• Combiner and Likelihood detector ... 20

• Demodulating ... 20

• Bit Error Calculation .. 20

4.7 Plotting .. 21

• Generating the graph .. 21

5. Directories Explained.. 22

Modules ... 22

Channel .. 22

Modulation .. 23

Output .. 23

Pulse Shaping .. 23

Sample Simulations ... 23

Manual ... 23

6. Performance Comparison .. 24

7. References ... 25

Appendix A: Sample Simulation/ Simulation Workflow ... 26

4 | P a g e

1. Overview of the Package
The package consists of seven modules each of which incorporates an important part of any

simple communication system. The output of each module is cumulative and is used as an input

to the next module in the system. The diagram below briefly shows how these modules are

arranged:

Fig 1: The process in which the modules are used

The ‘main’ file is used to call each module accordingly. If all seven modules (the six above plus

‘Mapping.m’) are to be used in the program then they all must be used according to the process

above, otherwise if the user wishes to exclude any of the modules and replace it with one of their

own, it must be added to the main file accordingly.

Fig 2: How the ‘Main’ file is used to call the different modules

Conceptually, this package implements the following simple communication system that allows

the user to implement and simulate MIMO channels as well (The Transmitter and Receiver

blocks are explained in more detail further in the manual):

Fig 3: Simple communication system

Create
Signal Mapping Space-time

coding
Pulse

Shaping Channel Receiving

Main

Create signal Mapping Space-time
coding Pulse Shaping Channel Receiving

5 | P a g e

2. Objects
In this package the different modules are implemented such that the inputs and outputs are
organized in an ‘object’ oriented style. Each module will be fed with one or two objects, which
includes certain parameters that need to be used in each specific module. The output data of each
module is also generated as an object. This technique makes it easier for the user to locate and
use any of the parameters in each different module. Below is a breakdown of the different
objects and where and how each will be used.

2.1 Types of objects

2.1.1 Signal Parameters object (Fout_sig)
This object is first created in the “CreateSig.m” module, in which the user will get a chance to set
the parameters used in creating the input signal, the pulse shaping filters, etc. Here is the list of
the parameters that will be involved in this object:

Fout.sig Object

System
Parameters

• Mod: Modulating technique
• M: M-ary, binary (2), quad (4) or 2^n
• K: Number of bits per symbol calculated from M
• Block: String for block type (refer to ‘Mapping.m’)
• BlockL: Length of blocks (refer to ‘Mapping.m’)
• Numtx: Number of transmit antennas
• Numrx: Number of receive antennas
• SNR: a vector of SNR values
• Saving: string equal to ‘backup’ to save parameters

Signal
Parameters

• L: Length of signal
• itt: number of iterations
• Px: The power of signal (1 for PSK, different for QAMs)

Filter
Parameters

• r: Roll-off-factor
• T: Bit period
• dur: Duration
• FltrType: Type of filter to be used
• nsamp: oversampling rate
• Delay: Delay of the filter

Data Vectors • Out: a zero vector to store final received signal
• InSig: The input signal in bits
• S: The split InSig, an array of Num_tx column vectors
• InSym: The modulated Signal
• fltr: The generated filter
• BER: a zero vector to store the computed BER

6 | P a g e

2.1.2 Transmitted signal object (Fout_tx)
This object is first created in the “Transmit.m” file, in which the user will be creating the
transmitted signals according to the specific transmit technique. This object will be used later on
in the channel module.

Object Name Data Vectors

Fout_tx:

• tx: Array of Signal to be transmitted from each antenna as
columns
o tx1: Signal to be transmitted from antenna 1
o tx2: Signal to be transmitted from antenna 2

...
o tx[Numtx]: Signal to be transmitted from antenna Numtx

2.1.3 Channel coefficients and received signal object (Fout_ch)
This object is first created in the “Channel.m” file, in which the user will be creating the channel
coefficients and the received signals (after adding noise and channel coefficients) at the receive
antennas.

Object Name Data Vectors

Fout_ch:

• Ch: Array with channel coefficients as column vectors
o ch1: Channel coefficients between Tx1 &Rx1
o ch2: Channel coefficients between Tx1 &Rx2

...
o ch[Numtx * Numrx]: Channel coefficients between

Tx[Numtx] & Rx[Numrx]
• R: A 3-dimensional array of the signals to be received at the

receive antennas. The third dimension represents the number
of the received antenna.

o R1: Array of received signals at Rx1 each column
representing different SNR value.

o R2: Array of received signals at Rx2 each column
representing different SNR value.

...
o R[Numrx]: Array of received signals at Rx[Numrx]

each column representing different SNR value.

7 | P a g e

2.2 Objects usage
The objects described in section 2.1 will be used as follows:

 Fout_sig Fout_tx Fout_ch
CreateSig.m O n/a n/a

Mapping.m I/O n/a n/a

PulseShaping.m I/O n/a n/a

Transmit.m I O n/a

Channel.m I I O

Receive.m I/O n/a I

Plotting.m I n/a n/a

 n/a: Not used I: Input O: Output

8 | P a g e

3. The Main File
As part of the simulation package, the ‘Main’ file is the module responsible for calling the
corresponding modules accordingly. As implemented in this package, the ‘Main.m’ file calls out
the different modules of the package in the appropriate order.

In order to run a simulation, the user must only perform the following command in matlab:

 Main

The ‘Main.m’ file will be initiated and will then start performing the simulation by calling out
the different modules in organized fashion. Within the main file implemented is a loop that will
run for ‘itt’ times. This iterative loop operates to loop around the following three functions;
Transmit, Channel, and Receive. The package is designed to transmit the generated signal in
smaller pieces, due to memory constraints. By doing so the simulation allows for the least
memory usage when running and yields faster output time.

What needs to be changed?
In order to test/ simulate different MIMO transmission schemes the user needs to only edit
‘Transmit.m’ and ‘Receiver.m’ accordingly to reflect the new scheme. These two modules
currently correspond to a 2x2 MIMO system. If the user wishes to change other system
parameters such as Modulation scheme, pulse shaping, etc, the user has complete control of these
features in the ‘CreateSig.m’ module.

Compute Time
The time required for a simulation to complete is depending primarily on the following
parameters: Length, itt, T, and SNR range. While these parameters generally affect compute
time, machine processor and available memory are the two main constraints.

Results
Once the simulation is completed, the main file then saves an output file that includes the
simulation results. The result will be saved in a matlab file uniquely named for each simulation
as follows [Output “Modulation Type”-“Filter Type” (“Length”, “Iteration”).mat]. Thus if the
package is simulating a BPSK with a square root raised cosine filter, length of 1000 and 100
iterations then the output file will be named as follows:
 Output BPSK-sqrtrcos (1000, 100).mat
This will allow the user to review the results once the simulation is complete. The ‘.mat’ file will
be saved in the subdirectory ‘Output’ and will contain the following parameters:

- BER: the bit error rate for all iterations
- InSig: The randomly generated binary signal
- InSym: The modulated input signal
- Output: The resulting received signal once the transmission is complete.

9 | P a g e

4. Modules

4.1 Create Signal
This module is used to set up the different variables needed for the communication system. The
user must change the value of each variable as required in the specific simulation needed to be
run.

Input Output Hierarchy

• n/a

• Fout_sig

Hierarchy explained:

• Setting variables
The different global variables needed within the communication system are set here. The
user must change these values depending on the type of simulation being conducted.
Some important variables such as the length of the signal, number of iterations, number
of transmit and receive antennas, bit period, symbol frequency, etc must be set in order to
have a functioning communication system. The user might also wish to add variables
other than what is already available.

• Generate signal
The input signal is randomly generated here using a random number generator. It
generates a stream of bits (0s and 1s). The size of the signal will be equal to ܮ ൈ ൈ ݐݐ݅ ݇.
The signal generated here will be the parameter ‘InSig’ and can be used later on in the
program. The User can substitute a signal of their own if they desire, the signal must be a
column vector of bits.

CreateSig.m

Setting
Variables

Generate
Signal

partition the
signal

• P
O
te
tr

Partition th
Once the sig
echnique bei
ransmission

e signal
gnal is gen
ing used. Fo
scheme, then

nerated it m
or example i
n the input s

X

X1 X3 X5 …

must be par
if the simula
signal will be

X1 X2 X3 X4X

… Xn-1

rtitioned acc
ation implem
e partitioned

X5 … Xn

X2 X4 X6

cording to
mented is for
d into two sig

… Xn

10 | P

the transmi
r a 2x2 Alam
gnals as follo

a g e

ission
mouti
ows:

11 | P a g e

4.2 Mapping
This module provides various selection of mapping techniques. For this specific MIMO project
only a few modulation techniques are operational, for the complete list of implemented
techniques refer to table on page 12. This module generates the modulated signal and the power
of the signal and saves them to the object ‘Fout_Sig’.

Note: The demodulation must be implemented by the user in the ‘receiver.m’ file.

Input Output Hierarchy

• Fout_sig • Fout_sig

Hierarchy explained:

• Mapping
This function implements a case hierarchy; depending on the input of the modulating
technique ‘Fout_sig.Mod’ the function will modulate the input signal accordingly. The
Function will also return the power of the signal, to be later used in the noise generation.

Notes:
This function has one major loop which allows for the modulation of different partitioned signals
in the ‘InSig’ parameter. Considerable amount of time and memory will be saved by modulating
the two signals without the need to call the function twice.

Modulation Techniques
Apart from the fully implemented modulation techniques, this file contains many other
techniques that are not fully implemented. Each of the cases calls other functions found in the
folder ‘Modulation’; the user can understand how each modulation technique is implemented by
inspecting those functions. Below is a table that lists the fully implemented modulation
techniques that do not require training blocks: [1]

Mapping.m

Mapping

12 | P a g e

Modulating Technique
BPSK
QPSK
8PSK
16PSK
16QAM
64QAM

The table below summarizes the implemented modulating techniques that require training blocks
and their corresponding block string input (to be set in ‘CreateSig.m’): [2]

Modulating Type ‘Block’ Input
DBPSK "0 Symbol" “Every L Symbols”
DQPSK "0 Symbol" “Every L Symbols”
8DPSK "0 Symbol" “Every L Symbols”
16DPSK "0 Symbol" “Every L Symbols”
pi2DBPSK "0 Symbol" “Every L Symbols”
pi4DQPSK "0 Symbol" “Every L Symbols”
Delayed_DBPSK "0 Symbol" “Every L Symbols”
Delayed_DQPSK "0 Symbol" “Every L Symbols”
AsymBPSK - -
AsymQPSK - -
AsymDBPSK "0 Symbol" “Every L Symbols”
AsymDQPSK "0 Symbol" “Every L Symbols”
AsymBPSK_BPSK - “Every L Symbols”
AsymQPSK_QPSK - “Every L Symbols”
AsymDBPSK_DBPSK - “Every L Symbols”
AsymDQPSK_DQPSK - “Every L Symbols”

Note: If using constellations other than Binary, the input signal must be sized accordingly to
generate corresponding symbol size.

Quadrature Input signal must be twice the desired size
8-Mary 3*length(InSig)
16-Mary 4*length(InSig)
64 -Mary 6*length(InSig)

13 | P a g e

4.3 Pulse Shaping
This module is used to create a filter that is later applied to the signal. This module implements
four different types of Square Root Raised Cosine filter. The Filter Parameters are set in
‘CreateSig.m’; the ‘FltrType’ parameter specifies the type of filter to be generated.

Input Output Hierarchy

• Fout_sig • Fout_sig

Hierarchy explained:

• Filter Variables
The filter types implemented in this module require the following basic input parameters:
Duration, dt (1/Fs), Rolloff, and Period (1/Fd)

Fig 4: Pulse Shaping Filter Parameters.

PulseShaping.m

Filter Variables

Generating
Filter

14 | P a g e

The sample filter generated above has duration equal to 0.1, period equal to 0.01, dt
equal to 0.01/5 and rolloff equal to 0.5. Also computed in this module the delay of the
filter, which equals to Duration/dt; which is to be used in the receiver when retrieving
the original message.

• Generating Filter
Implemented in this module a case hierarchy which allows the user to use different types
of pulse shaping filters as required for the simulation. The input parameter ‘FltrType’
initialized in the ‘CreateSig.m’ file is used to decide which of the following filters to be
used for pulse shaping:

- ‘sqrtrcos’: Generates a Square Root Raised Cosine Filter.
- ‘sqrttrrcos’: Generates a Truncated Square Root Raised Cosine Filter.
- ‘sqrtmrcos’: Generates the Modified Square Root Raised Cosine Filter.
- ‘sqrtsfrcos’: Generates a Shifted Square Root Raised Cosine Filter.

The Corresponding functions for generating the filters are located in the ‘Pulse Shaping’
directory. For more information regarding the above filters, refer to the paper titled
"Pulse Shaping for Differential Offset-QPSK." [3] The Generated Filters are then
Normalized and saved in the Data vector ‘fltr’.

15 | P a g e

4.4 Space­Time Coding
This module implements a transmit technique in which the partitioned signal is processed and
filtered. The user can implement any transmit scheme within this module and must
correspondingly implement the same scheme on the receiver. [4] [5] The current file implements
the Alamouti transmit scheme for a 2x2 MIMO system. [6]

Input Output Hierarchy

• Fout_sig
• ii: Iteration

count

• Fout_tx

Fig 5: Transmitter Block Diagram

Transmit.m

Transmitted
sequence for
each antenna

Applying the
filter

16 | P a g e

Hierarchy explained:

• Transmitted Sequence for each antenna
The input signal was partitioned in ‘CreateSig.m’ into ‘Num_tx” parts. This function is
called within the iterative loop in the Main file. The idea behind this is to allow for faster
transmission by transmitting the full signal by parts. Each iteration only transmits ‘L’ bits
simultaneously, thus when ‘itt’ iterations are completed the entire signal would have been
transmitted.

• Applying the filter
Once the signal has been partitioned into the required number of transmit sequences, the
signal is fed through the filter that was created in the ‘PulseShaping.m’ file. The signal is
first upsampled and zeros are added at the end to accommodate for the delay in the filter.
Once that is completed, the sequences are saved in the array ‘tx’ each antenna
representing a column vector to be used in the following modules.

17 | P a g e

4.5 Channel
This module acts as the “transmission medium” for the communication system. This is the center
piece of the package and in this module the user can test/ simulate different coefficient
generation methods, noise structures, encoding and transmitting signal schemes.

Input Output Hierarchy

• Fout_sig
• Fout_tx
• ii: Iteration

count

• Fout_ch

Hierarchy explained:

• Generate Channel Coefficients
First the module generates the channel coefficients that will be used for each transmission
path, ch0, ch1, ch2, and ch3 as shown below:

Fig 6: Transmission Medium

Channel.m

Generate
channel

Coefficients

Generate Noise

Encode and
transmit signal

18 | P a g e

Included in the package are two functions that generate random Rayleigh fading
coefficients using two methods. The first function ‘Rayleigh.m” uses jakes model and the
method of summing sinusoids to generate the Rayleigh fading coefficients. The other file
named ‘ricefad.m’ uses Inverse discrete Fourier transform technique to create Rayleigh
and Rician fading coefficients.

Both files require the user to input the size of the desired number of coefficients; this will
be the length of the signal to be transmitted. As well, the user must input the sampling
frequency and the bit period. The sets of coefficients generated are stored in the channel
object “ch” and will used later on in the receiving algorithm.

• Generate Noise
In this module, random noise (Additive White Gaussian Noise) is generated and added to
our transmitted sequences that are being transmitted from each antenna. According to the
Signal to Noise Ratio (SNR) range that has been provided in ‘CreateSig.m’, the
simulation will run for all the input values of SNR. The SNR value is used to calculate
the noise variable needed to create the random receiver noise. This part of the module
generates a random noise that is 10x larger than the required sequence length, and further
randomly select a vector from this sequence; by doing so we allow for less error within
the MATLAB random generator and minimize the correlation between the coefficients of
the random noise.

• Encode and transmit Signal
The two for loops in the section encode the signals to be received at the receive antennas
by accounting for channel coefficients and noise accordingly. The Final received signals
are saved in the object ‘ch’, variable ‘R’ in order to be used in the next module as
follows:

R1= Ch1*Tx1 + Ch2*Tx2 + ... + Ch (Numtx) *Tx (Numtx)
R2= Ch1 (Numtx+1)*Tx1 + Ch (Numtx+2)*Tx2 + ... + Ch (Numtx*2)*Tx (Numtx*2)

 ...
 R (Numrx) =.....

19 | P a g e

4.6 Receiving
The receiver in a communication system implements a decoding and decryption scheme that is
designed in parallel with the transmit scheme; by doing so the maximum likelihood detector in
the receiver will try to retrieve the original signal with the least error.

Input Output Hierarchy

• Fout_sig
• Fout_ch
• ii: Iteration

count

• Fout_sig

Fig 7: Receiver Block diagram

Receiver.m

Apply Filter
and

downsample

Combiner/
Likelihood

detector

Demodulating

Bit Error
calculation

20 | P a g e

Hierarchy explained:

• Applying the filter and down sampling
The same pulse shaping filter that was used in the transmitter is applied once again to the
received signal (the variable ‘fltr’). For each received signal on each receive antenna we
apply the filter and down sample the received signal to its original length. In order to
account for the delay in the filter, the signal is truncated by an amount 2*Delay (from the
beginning and the end of the signal). At this point the received signal is the same size as
the original unsampled and unfiltered signal.

• Combiner and Likelihood detector
Since this is a MIMO system and depending on the scheme we are using, the signal
received on each antenna need to be rearranged and combined and passed to a maximum
likelihood detector. The likelihood detector implemented in the package decodes for the
Alamouti 2x2 scheme, since this scheme was used in the transmitter module. The user
must change the combiner and the likelihood detector accordingly when simulating
different transmission schemes.

• Demodulating
Once the final signals are rearranged and estimated they need to be demodulated. The
user must implement within this code a demodulating technique that corresponds to the
modulating technique used in ‘Mapping.m’. In the sample simulation, implemented is
MATLAB’s predefined phase shift keying demodulating function since the BPSK
function was used to modulate the input signal.

• Bit Error Calculation
The primary goal of the simulation is to be able to find how efficient and accurate the
scheme, the noise structures and the channel coefficient are in this communication
system. This is done by comparing the input signal to the final received signal on a bit-
by-bit base. This comparison will yield the Bit Error Rate and will save the output in
‘BER’ Accordingly.

21 | P a g e

4.7 Plotting
This module acts like the data processing and assessing. It currently generates a graph that shows
the results of the simulation. The current implemented graph technique takes an average of the
entire Bit Error Rate for all iterations and plots it against the Signal to Noise ratio range. The
user has the ability to use the results as they wish since the output is saved in the ‘.mat’ file
which has stored the input and the output results of the simulation.

Input Output Hierarchy

• Fout_sig

• n/a

Hierarchy explained:

• Generating the graph
The current module generates a semilog of BER Vs SNR and saves the graph in the current
directory for further reference. The graph is saved as a matlab ‘.fig’ format and ‘.eps’ format
uniquely named for each simulation as follows [“Modulation Type”-“Filter Type” (“Length”,
“Iteration”)]. Thus if the package is simulating a BPSK with a square root raised cosine filter,
length of 1000 and 100 iterations then the graph files will be named as follows:

 BPSK-sqrtrcos (1000, 100).fig

BPSK-sqrtrcos (1000, 100).eps

These graphs will be saved in the subdirectory ‘Output’ once the simulation is completed.

Plotting.m

Generating the
Graph

5. Dire

The pack
matter, t
indirectly
are arran

Module
This is t
working

- M
- C
- M
- P
- T
- C
- R
- P
- R

Channe
This dire
module.
below:

- R
- R

F

Chan

ctories Ex

kage include
these files w
y used and d
ged and desc

es
the parent d
directory. T

Main.m
CreateSig.m
Mapping.m
PulseShapin
Transmit.m
Channel.m
Receiver.m
Plotting.m
Readme.txt

el
ectory contai
Currently av

Rayleigh.m:
Ricefad: Thi

ourier Trans

nnel

xplained

es many oth
were arrang
do not requi
cribed as fol

directory, w
his directory

g.m

ins files that
vailable are

This functio
is function
sform. [7]

Modulati

her function
ged in direc
ire any editin
llows:

when runnin
y contains th

t are used to
two method

on is used to
is used to

M

ion

ns and files
tories accor
ng from the

g the simul
he following

o generate th
ds for gener

 generate Ra
generate co

Modules

Output

beyond the
rdingly sinc
e user. The d

lation in M
files:

he channel c
rating the ch

ayleigh fadin
orrelated Ra

Puls
Shapi

Man

e 7 major m
e the major
directories a

MATLAB thi

coefficients
hannel coeff

ng channel c
ayleigh vari

se
ing S

nual

22 | P

modules. For
rity of them

and their con

is should be

in the ‘Cha
ficients expla

coefficients.
ates by Dis

Sample
Simulation

a g e

r that
m are
ntents

e the

annel’
ained

screte

ns

23 | P a g e

Modulation
Included in this directory are all the functions that are used in the ‘Mapping.m’. Since Mapping
implements a case hierarchy, each cases corresponding to a different modulation technique, the
functions here are individually called out when required from ‘Mapping.m’. It is important for
the user to understand how each technique is being implemented, thus reference to these files
will be needed from time to time.

Output
This directory will be used to save the output of the simulations. Each simulation will generate 3
files, two of which are the generated plots; the third is the ‘.mat’ file. The uniquely named files
will be saved in this directory after each simulation.

Pulse Shaping
The directory ‘Pulse Shaping’ contains the functions that are used to generate the pulse shaping
filters. As mentioned in section 4.3, four types of pulse shape filters are implemented and the
files within this directory correspond to these filters.

Sample Simulations
This directory includes a set of plots and output (‘.mat’) files that were generated during the
testing phase of this package. These plots have been provided to give an example of the expected
output from the simulations. The user can open the output files in MATLAB to examine the
contents provided to the user once the simulation is complete.

Manual
Included in this directory is the PDF version of this manual.

24 | P a g e

6. Performance Comparison
In order to demonstrate the possible performance difference between the different pulse shaping
techniques, three sets of simulations were conducted for the following three Square Root raised
Cosine pulse shape filters: sqrtrcos (normal), sqrttrrcos (truncated), and sqrtmrcos (modified).
Alamouti’s 2x2 transmission technique is implemented in the simulation. The three simulations
were conducted with length equal to 5000, iteration count equal to 500, SNR range of 0 to 12 and
BPSK modulation. The filters in the three simulations had period equal to 0.01, duration equal to
0.05, rolloff factor equal to 0.25 and an oversampling rate of 4.

The performance results were plotted and compared as shown below:

 Fig 8: Performance Comparison between Different Pulse shaping Filters

The result shown in Figure 8 indicates that the truncated Raised Cosine and the Modified Raised
Cosine produce similar performance; while the two perform better than the normal Square Root
Raised Cosine. Sqrttrrcos & sqrtmrcos provide a 1dB performance boost than sqrtrcos at Signal
to Noise Ratio (SNR) above 4dB. This comparison is a simple example of how this package can
be used to test and analyze wireless transmission schemes.

25 | P a g e

7. References

[1] Arash Mirbagheri, K.N. Plataniotis, S. Pasupathy, `An enhanced widely linear CDMA
receiver with OQPSK modulation' , IEEE Trans. on Communications, vol. 54, no. 2, pp. 261-
272, February 2006.

[2] S.W.L. Poon, K.N. Plataniotis, S. Pasupathy, `Superimposed asymmetric modulation in
narrow-band fading channels with orthogonal codes' , IEEE Trans. on Wireless
Communications, vol. 5, no. 6, pp. 1260-1265, May 2006.

[3] A.C.C.C. Lam, A. Elkhazin, S. Pasupathy, K.N. Plataniotis, `Pulse shaping for differential
offset-QPSK' , IEEE Trans. on Communications, vol. 54, no. 10, pp. 1731-1734, October 2006.

[4] S. Lam, K.N. Plataniotis, S. Pasupathy, `Self-matching space-time block codes for matrix
Kalman estimator based ML detector in MIMO fading channels' , IEEE Trans. on Vehicular
Technology, vol.56, no 4 II, pp. 2130-2142, July 2007.

[5] A. Elkhazin, K.N. Plataniotis, S. Pasupathy, `Reduced dimension MAP turbo-BLAST
detection' , IEEE Trans. on Communications, vol. 54, no. 1, pp. 108-118, January 2006.

[6] Alamouti, Siavash M, “A Simple Transmit Diversity Technique for Wireless
Communications:, IEEE JOURNAL ON SELECT AREAS IN COMMUNICATIONS, VOL. 16,
NO. 8, OCTOBER 1998, 1451-1458

[7] D.J. Young and N.C. Beaulieu, "The Generation of Correlated Rayleigh Random Variates by
Discrete Fourier Transform", IEEE Transactions on Communications, vol. 48, pp. 1114-1227,
July 2000.

26 | P a g e

L: 5000 K: log2(Fout.M) Numrx: 2 Saving: ’backup’ FltrType: sqrtrcos
itt: 500 Block: ‘0 Symbol’ SNR: [0:14] Out: Zeros nsamp=2^2
Mod:’BPSK’ BlockL: 10 sBER: Zeros T: 0.01 r: 0.5
M: 2 Numtx: 2 BER: Zeros dur: 0.05

InSig: Randomly generated binary signal of size ܮ ൈ ൈ ݐݐ݅ ݇

S: InSig is partitioned into Num_tx signals.

CreateSig.m

Mapping.m

Px: 1 Block: ‘0 Symbol’ Length: length of S
Type: ‘BPSK’ L: 10 (BlockL)

Loop to modulate row vectors of S

InSym: Data Vector corresponding to
the modulated output of input Signal S.

PulseShaping.m
dt: T/nsamp Delay: dur/ dt

Filter: generated Filter. fltr: Final Normalized Filter.

Appendix A: Sample Simulation/ Simulation Workflow

27 | P a g e

Transmit.m

Extract part of signal to be transmitted in the first iteration

Space Time Coding

Apply Pulse Shape Filter Upsample and account for filter delay

Channel.m

Ch: Generate Channel Coefficient values for transmission medium

Generate Random Noise R: Formulate Received Signals at receiver antennas

Receiver.m

Apply Pulse shape filter to received
signals, downsample and account for

Downsample Channel Coefficients
and account for delay

Combiner

Demodulate Received Signal BER: Bit Error Calculation

28 | P a g e

Plotting.m

