Towards Driver Cognitive Load Detection Based on Visual Attention Information

Liu, Cheng Chen

MASc Oral Exam, August 31st, 2017

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

Motivation: Driver Cognitive Load

Increasing amount of technologies incorporated into vehicles

 Engagement into secondary tasks
 Needs for human intervention under complex situations remains

Necessity for monitoring driver **cognitive** states

This research is developing a practical system capable of estimating **driver cognitive load**, with a focus on <u>visual information</u>.

Outline

- Contribution 1: Data Collection
 - Experiment design for modeling three cognitive load levels
 - Implementation and resulted dataset
- Contribution 2: Estimation Method Development
 - Meta-features for capturing visual attention variations
 - Training classification models with five algorithms
 - Develop towards a comprehensive evaluation framework
- Conclusion and Future Work

Data Collection

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

FACULTY OF APPLIED **SCIENCE &** ENGINEERING

4

Contribution 1: Data Collection

- Objective: gather drivers' responses under differing cognitive load.
 - > Necessary to support studies of driver cognitive load
 - Dataset featuring this specific problem was not publicly available
 - The collected data features visual information, as well as a comprehensive set of commonly used measurements from performance, physiological and subjective aspects
- Challenges:
 - > How to effectively control participant's cognitive load under the driving context?
 - Incorporating a large number of sensors
 - Both in terms of design considerations, and during the collecting process

Dataset Overview

- The eDREAM dataset was created to facilitate research on using advanced sensor and/or vision technologies to analyze cognitive loads of drivers.
- eDREAM = "Enhancing Driver Interaction with Digital Media through Cognitive Monitoring"
- 37 participants: experienced drivers, gender-balanced, age under 35
- 3 driving sessions: a different level of cognitive load (modeled by secondary tasks) in each drive.
- Mid-fidelity fixed-base simulator

Modeling Cognitive Load (the n-back Task)

- Each task is an audio recording of 10 letters, participant need to count how many n-back patterns are presented
 - ➤ 1-back: two identical letters appeared in pairs
 - e.g. "C B <u>H</u> <u>H</u> C A C B F B", answer: 1
 - > 2-back: two identical letters appeared in pairs with one letter in between
 - e.g. "C B H H \underline{C} A \underline{C} \underline{B} F \underline{B} ", answer: 2
- The load-factor ("n") controls the number of items the participant is required to maintain and process cognitively
 - ▶ Used extensively in neuroscience and psychology [1,2], adapted for driving in [3].
 - > 3 cognitive load levels: no-task → low, 1-back → medium, 2-back → high

[1] C. H. Chatham, et al., "From an executive network to executive control: a computational model of the n-back task," Journal of cognitive neuroscience, 2011.

[2] S. M. Jaeggi, et al., "The concurrent validity of the n-back task as a working memory measure," Memory, 2010.
[3] B. Mehler et al., "Mit agelab delayed digit recall task (n-back)," Cambridge, Massachusetts Institute of Technology, 2011.

Experimental Design

Focus Periods

- Control of conditions are recorded in driving simulator logs:
 - Primary task: driving conditions
 - Secondary task: presence of n-back task
- Identify "focus periods" where the cognitive load is optimally controlled

Example log of conditions over one driving session (sampling frequency: 60 HZ)

Contribution 1: Data Collection

- Objective: gather drivers' responses under differing cognitive load.
 - > Necessary to support future studies focusing on driver cognitive load
 - ➤ Considers a wide range of measures concurrently (visual, performance, physiological and subjective)
- Outcomes:
 - Design and implementation of a driving experiment with three levels of cognitive load.
 - ➤ Completed a comprehensive dataset consists a total of eight measurements.

Estimation Method Development

FACULTY OF APPLIED SCIENCE & ENGINEERING

11

Contribution 2: Estimation Method Development

• Objective: explore the feasibility of estimating driver cognitive load based on **visual attention information**.

> Explore features and algorithm that could extract predictive information

• Challenges:

> Lack of established features and algorithms from previous studies

- Some of the features might not be compatible
- Inconsistent training/testing procedures when applying machine learning algorithms

Prior Works

Research Focus	Feature	Algorithm	Evaluation Result
Preliminary exploration of using machine learning [1]	Gaze fixation duration, pupil diameter, lane deviation	Decision tree trained with 20- trial boosting	Achieved accuracy (ACC) of 81.2% with 30-sec window
Real-time detection of cognitive distraction [2]	Eye movement pattern, vehicle measures	Support Vector Machines (SVMs)	Average ACC of 83.1%.
Detecting added arithmetic tasks during driving [3]	Mean and SD of gaze rotation, head rotation	AdaBoost with decision stumps, SVMs	Average ACC of 81.6% with AdaBoost, and 77.1% with SVMs.
Classification between higher/lower cognitive distraction (based on continuous rating) [4]	Statistics of Facial action units, visual attention, auditory responses, vehicle measures	KNN, SVMs, Linear Bayes Normal Classifier (LDC)	F-score of 0.794 with LDC, 0.681 with KNN and 0.790 with SVM (linear kernel).

[1] Y. Zhang et al., "Driver cognitive workload estimation: A data-driven perspective", Proc. of ITSC, 2004.

[2] Y. Liang et al, "Real-time detection of driver cognitive distraction using support vector machines", IEEE Transactions on Intelligent Transportation Systems, 2007.

[3] M. Miyaji, H. Kawanaka, and K. Oguri, "Driver's cognitive distraction detection using physiological features by the AdaBoost," in ITSC'09, 2009.

[4] N. Li and C. Busso, "Predicting perceived visual and cognitive distractions of drivers with multimodal features," IEEE Transactions on Intelligent Transportation Systems, 2015

High-level Framework

- Classification of cognitive load level is framed as a supervised learning problem:
 - Estimating the target class (no-task, 1-back, 2-back) based on meta-features extracted from raw signals (eye-tracker recordings).

Meta-Feature Extraction

Prior Knowledge	Proposed Meta-features	Raw signals (from eye-tracker)	
Gaze concentra- tion under high load[1]	Duration and count of off- center glances within 10-sec	GAZE_ROT: a pair of Euler angles for rotations in pitch and yaw (in radians).	Centrar Screen Right Screen X Left Screen Calabateria A X DashSport
Conflict of visual and cognitive attention [2]	Duration and count of large eye closures within 10-sec	EYE_CLOS: The fraction of the iris covered by eye-lids	

[1] J. L. Harbluk et al., "An on-road assessment of cognitive distraction: Impacts on drivers' visual behavior and braking performance," Accident Analysis & Prevention, 2007.

[2] M. A. Recarte et al., "Mental workload and visual impairment: Differences between pupil, blink, and subjective rating," The Spanish journal of psychology, 2008.

Meta-Feature Extraction Process

Example

Note: The sampling frequency is 60 frames per second.

Machine Learning Workflow

- <u>Inputs</u>: four meta-features
- <u>Targets</u>: cognitive load levels
- <u>Algorithms</u>: five candidates
- <u>Evaluation</u>:
 - ≻ Cross Validation (CV) is applied for:
 - Model selection (hyper-parameter)
 - Model evaluation (testing)
 - 5-fold CV with three data grouping methods

Scoring Metric: accuracy (ACC)

$$Accuracy(\hat{y}, y) = \frac{1}{n_{samples}} \sum_{n_{samples}-1}^{0} [\hat{y}_i = y_i],$$

where [] represents the indicator function.

Algorithms and Hyper-Parameters

Algorithm Name	Implementation/ Optimization Details	Hyper-Parameters	Hyper-Parameter Range
K Nearest Neighbors (KNN)	Distance calculation: Minkowski metric.	# of neighbors	1, 5, 10, 20, 50, 100
Logistic Regression (LR)	Optimization algorithm: Newton conjugate gradient	Inverse of regularization strength	$2^{-5}, 2^{-4},, 2^{5}$
Support Vector	Soft margin is applied.	Influence of each training sample	$2^{-5}, 2^{-4},, 2^{5} [1]$
Machines (SVM)	Basis Function (RBF)	Cost of misclassifying samples	$2^{-5}, 2^{-4},, 2^{5} [1]$
AdaBoost	Base classifier is CART	# of estimators	5, 10, 100, 500, 1000
	maximum depth of 3.	Learning Rate	0.001
Random Forest	Same base classifier. The algorithm	# of estimators	5, 10, 50

[1] Y. Liang et al., "Real-time detection of driver cognitive distraction using support vector machines", IEEE Transactions on Intelligent Transportation Systems, 2007.

Evaluation Procedure: Grouping for CV

• Evaluation of the subject-independent model can be performed at three difficulty levels:

Grouping Method	Correspondent Scenario	Implementation	IllustrationColor-code for folds01234
None	Data instances are i.i.d.	Drawing samples into training set or testing set randomly	Classes Subjects
Time-based	Train a model with data from some subjects, and apply the model to predict data of unseen periods from the same subjects	Group the data from the same run into several blocks, and cross validate at the group level	Classes Subjects
Subject- based	Train a model with data from some subjects, and apply the model to predict data from unseen subjects	Always put the data from a subject into one fold	Classes Subjects

Result: Binary

- The grouping method applied in evaluation clearly impacted the results.
 - KNN experienced most significant impact
 - Random Forest and LR are more robust against overfitting.

Result: Ternary

- Better-than-guess performance when the same approach for binary classification is adopted for the ternary case
 - Ensemble of decision trees methods are slightly more optimum when evaluating using grouping.

Contribution 2: Estimation Method Development

- Objective: explore the feasibility of estimating driver cognitive load based on **visual attention information**.
 - > Explore features and algorithm that could extract predictive information
 - Determining the appropriate procedure for evaluating models with practical meanings
- Outcomes:
 - Proposed method to estimate cognitive load levels based on visual attention information
 - Designed more flexible meta-feature based on prior knowledge
 - Applied five classification algorithms for automatic information extraction
 - Discussed the effect of different training/testing data partitioning methods

Conclusions

- Data collection featuring driver cognitive load data:
 - Requires considering both the primary task (driving) and the secondary task.
- Proposed estimation method:
 - Visual attention information carried estimation power as all classifiers achieved better-than-guess performance.
 - ≻ Not sufficient to be relied alone if high accuracy is desired
- Evaluation framework:
 - Explicit grouping based on time or subject would be desired to carry more practical significance
 - The larger the grouping unit is, the more challenging the problem seems to become

Future Work

- Incorporate more observations (e.g. vehicle speed) and consider strategies for combining feature values
- Employ time-series models and more intelligent method for hyperparameter search
- Application to naturalistic dataset collected with instrumented vehicle over larger population and longer time range (e.g. SHRP2 [1])

Thank you very much for your attention.

25

FACULTY OF APPLIED SCIENCE & ENGINEERING

What is Cognitive Load?

Examples for comparing cognitive load with cognitive distraction and high arousal:

High Cognitive Load	Distraction	High Arousal	Possible Driver Situation
0	0	0	Calm, comfortable driving.
0	0	1	Nervous due to bad weather (e.g. snow storm).
0	1	0	Operating air conditioning controls.
0	1	1	Crying baby in the backseats.
1	0	0	Daydreaming, or listening to radio.
1	0	1	Following GPS on unfamiliar routes stressfully.
1	1	0	Attempting to interact with a voice-command system.
1	1	1	Frustrated by an important phone conversation.

Data Collection

- Experimental design: 2015 summer
- Implementation: 2015 fall
- Pilot testing: 2016 spring
- Data collection: 2016 summer-fall
- Data organization: 2016 winter

Modality	Information	Size
EEG	Brain electrical activities recorded from four positions	7 GB
Physiological (ECG, GSR, respiration)	Heart rate, skin conductance and breath depth/rates	1.6 GB
Vehicle	Vehicle, brake pedal and steering wheel states	1.8 GB
Eye-tracking	Head position, gaze position and eye closure information	23 GB
Videos	Recordings from a participant-facing colour camera	33 GB
Subjective Ratings	Perceived task-load level in sub-categories (e.g. mental demand)	<1MB

Experimental Conditions

- Primary task: following a Lead Vehicle (LV) at 40 Mph on a 4-lane urban route
 No turning or merging, but <u>brakes abruptly at specific moments</u>
- Secondary task: completing 6 tasks per n-back drive (none in the no-task drive)
 The ordering of presenting 3 cognitive load is counterbalanced
- Carefully controlling various conditions: route and road, traffic and pedestrian, presence of *n*-back tasks

More about *n*-back Tasks

Implementation of the *n*-back task:

- During specific periods ("focus periods") Participants listen to a sequence of letters and count how many times the current stimuli is identical to the one presented n-steps ago.
- Used extensively in neuroscience and psychology for collecting physiological data or individual performance differences.
- Adapted for driving studies as a surrogate task [1].

n-back involves multiple cognitive processes:

- Perceiving and encoding incoming stimuli
- Maintenance and updating of memory
- Matching/analyzing/selecting of materials

Apparatus

Driving Simulator:

- miniSim by NADS
 - Also records driver operations, and various vehicle measurements (e.g. speed or lane deviation)

Physiological Sensors:

• EEG (Muse headband), ECG, GSR, Respiration

Apparatus

Camera and eye-tracker:

- Participant-facing color cameras
- A pair of Near-Infrared cameras for the faceLAB eye-tracker

Subjective ratings:

Head

• NASA Task Load Index (NASA-TLX)

Background: Cognitive Loads and Visual Attention

- This study exploits the subjects' **visual attention information** for cognitive load assessment.
 - It's been shown significantly impacted by added cognitive tasks.
 - Increased blinking –attention allocated for visual observation is reduced, which could result in increased blinking.
 - Consistently observed in multiple naturalistic or simulator-based studies.
 - Concentrated gaze reduced checking for peripheral environment or devices.
 - More mixed results due to this measure's sensitivity to visual loads
 - It was also used as promising features for prediction models.
 - Detection systems have been proposed

[1] "Effect of pattern recognition features on detection for 32 driver's cognitive distraction", Miyaji et al, 2010

Raw Signals from Eye-tracker

EYE_CLOS: the fraction of the iris covered by eyelids

 $x_{EC} = 1 - \frac{eyelid_distance}{iris_size},$

where *eyelid_distance* is the distance between top and bottom eyelids, and *iris_size* is the iris size, which is 12mm by default.

GAZE_ROT: a pair of Euler angles in radians for rotations around the world x-axis (pitch) and world y-axis (yaw).

$$x_{GD} = [X_{GD,pitch}, X_{GD,yaw}]$$
$$= [arccos(\sqrt{u_x^2 + u_z^2}), arccos(\sqrt{u_y^2})],$$

where $\vec{u} = [u_x, u_y, u_z]$ is the unit vector pointing from pupil center to the object being looked at in World Coordinate .

Each raw signal is measured for right and left eyes independently.

The Head Coordinate Frame shown with the World Coordinate Frame and the Stereo-Head Coordinate Frame

of the gaze direction vector indicates direction in the World Coordinate Frame from the origin of the gaze - the centre of the eye balls for (A) Looking straight ahead (B) looking to the left.

Initial Inputs: Raw Signals (+1)

- The faceLAB eye-tracker can also estimate:
 - The gaze fixation location in the world coordinate (in X, Y,Z) or the plane coordinate (in X, Y).
 - This has been used as the base signal previously [1, 2, 3, 4]
 - However, this value depends largely on the setup of the "world" in faceLAB and in the driving environment.
 - The plane in eDREAM is quite small and does not cover side or rear mirrors, which is quite different then the setup in other studies (e.g. [2]).
 - Therefore, direct analysis of the gaze rotation angle provides better generalization capability.

[1] "Driver cognitive workload estimation: A data-driven perspective", Y. Zhang et al.

- [2] "Real-time detection of driver cognitive distraction using support vector machines", Y. Liang et al.
- [3] "Detecting Cognitive Workload Using Driving Performance and Eye Movement in a Driving Simulator", J. Son, M. Park and H. Oh

[4] "Impact of Cognitive Task Complexity on Drivers' Visual Tunneling", B. Reimer

The multi-screen setup in eDREAM.

The single-screen setup in [2]

34

Proposed Meta-Features

Visual attention was found to be impacted by cognitive load in two ways:

- Reduced checking towards peripheral environment or mirror/speedometer [?]
- Loss of attention towards visual perception [?]

	Notation	Description
Gaze concentration is captured by gaze direction (GD) features	X_{GD_DUR}	Total duration of gaze-off-center: number of frames that the gaze direction (GD) is deviated from the reference direction by more than the threshold $thres_{GD}$.
	X_{GD_CNT}	Count of gaze-off-center times: number of times GD crossed $thres_{GD}$.
		Total duration of eye closure (EC): number of
Loss of visual attention is reflected	X_{EC_DUR}	frames that EC is greater than the threshold
by eve closure (EC) features		$thres_{EC}.$
by cyc closure (LO) realares	Y DO ONT	Count of blinking times: number of times EC
		crossed $thres_{GD}$.

- We propose to compute duration (DUR) and count (CNT) of over-threshold incidents within a 10-second sliding window to capture the interested patterns
 - Better compatibility across different data collection setups

Visual Attention Meta-Features

- Duration and count of large eye closures are for capturing the changes of blinking behaviors, which are hypothesized to indicate **the amount of visual attention demands** [7].
 - > This has also led to use of the following features in previous studies:
 - PERCLOS [5], Mean blink frequency [4, 5]
- Duration and count of off-center glances are for capturing **temporal variation of visual attention direction.**
 - > These are similar to the following features in previous studies:
 - Duration and count of glances to center/off-center regions [1, 2, 3]
 - Gaze fixation/pursuit duration [3, 4]
 - SD of fixation position [4, 6, 8]
 - Also commonly considered in previous studies is the spatial characteristics of visual attention (such as mean of fixation position). It is not captured with proposed features.

[1] "An on-road assessment of cognitive distraction: Impacts on drivers' visual behavior and braking performance", J.L. Harbluk et al.

- [2] "Sensitivity of eye-movement measures to in-vehicle task difficulty", T.W. Victor, J.L Harbluk, J.A. Engstrom.
- [3]"Driver cognitive workload estimation: A data-driven perspective", Y. Zhang et al.
- [4] "Real-time detection of driver cognitive distraction using support vector machines", Y. Liang et al.
- [5] "Driver distraction detection using semi-supervised machine learning", T. Liu et al.
- [6] "Detecting Cognitive Workload Using Driving Performance and Eye Movement in a Driving Simulator", J. Son, M. Park and H. Oh
- [7] "Mental workload and visual impairment: differences between pupil, blink and subjective rating", M. Recarte, et al.
- [8] "Impact of Cognitive Task Complexity on Drivers' Visual Tunneling", B. Reimer

Extraction Process

- To obtain the proposed meta-features from the complicated eye-tracking data, an extraction process of multiple levels is designed:
 - ≻Also involves preprocessing and standardize
 - ≻ The process could be different for each specific meta-features.
 - ≻ They are further explained in the following slides.

Extraction: Reduction and Interpretation

Given the raw signals from a period-of-interests:

- Combine values estimated for left/right eyes into one channel (black)
- Detect blinks from EC, (black-dotted)
 - Mean-removal for the GD signals
- 3. Calculate the frequency and duration based on the thresholded signal (see next slide)

Extraction: Window-level Summarization

- Example of extracted "duration" values (in red) on top of the thresholded signals (in dotted blue), taken from Participant 07.
 - Each row shows a segment of data for a different cognitive load. The feature values' vertical axis are on the right.
- There exists considerable individual differences in the extracted features
 - Subject-level standardization is performed using reference data from the periods near the beginning of each driving sessions.
 - Example for duration of off-center glances shown on the right.

