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Motivation: Driver Cognitive Load

Increasing amount of 1. Engagement into .

technolo ggl es secondary tasks Nece.ssrfy for .

incornorated into » 1 2. Needs for human » monitoring driver
b intervention under complex cognitive states

vehicles

~ situations remains

This research is developing a practical system capable of estimating
driver cognitive load, with a focus on visual information.




Outline

« Contribution 1: Data Collection
— Experiment design for modeling three cognitive load levels
— Implementation and resulted dataset
 Contribution 2: Estimation Method Development

— Meta-features for capturing visual attention variations
— Training classification models with five algorithms

— Develop towards a comprehensive evaluation framework

e Conclusion and Future Work
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Contribution 1: Data Collection

« Objective: gather drivers’ responses under differing cognitive load.
» Necessary to support studies of driver cognitive load
— Dataset featuring this specific problem was not publicly available

> The collected data features visual information, as well as a comprehensive set of
commonly used measurements from performance, physiological and subjective

aspects

 Challenges:

> How to effectively control participant’s cognitive load under the driving context?

> Incorporating a large number of sensors

— Both in terms of design considerations, and during the collecting process



Dataset Overview

The eDREAM dataset was created to facilitate research on using

advanced sensor and/or vision technologies to analyze cognitive loads
of drivers.

« eDREAM = “Enhancing Driver Interaction with Digital Media through Cognitive Monitoring”

° 37 partiCipantS: eXperienced driVerS, C 0 ® www.dsp.utoronto.ca/projects/eDREAM/
gender-balanced, age under 35 ¢DREAM Dataset

(o |38 Data Description Download Ethics Review Protocol Software Conf

« 3driving sessions: a different level of &
cognitive load (modeled by secondary
tasks) in each drive.

« Mid-fidelity fixed-base simulator

Dataset Webpage



Modeling Cognitive Load gthe n-back Task)

« Each task is an audio recording of 10 letters, participant need to count how
many n-back patterns are presented
» 1-back: two identical letters appeared in pairs
— eg. “CBHHCACBFB?, answer: 1
» 2-back: two identical letters appeared in pairs with one letter in between

— eg. “CBHHCACBFB”, answer: 2

« The load-factor (“n”) controls the number of items the participant is

required to maintain and process cognitively
> Used extensively in neuroscience and psychology [1,2], adapted for driving in [3].

> 3 cognitive load levels: no-task - low, 1-back - medium, 2-back - high

[1] C. H. Chatham, et al., “From an executive network to executive control: a computational model of the n-back task,”
Journal of cognitive neuroscience, 2011.

[2] S. M. Jaeggi, et al., “The concurrent validity of the n-back task as a working memory measure,” Memory, 2010.

[3] B. Mehler et al., “Mit agelab delayed digit recall task (n-back),” Cambridge, Massachusetts Institute of Technology, 2011.



Experimental Design
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Focus Periods
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Contribution 1: Data Collection

« Objective: gather drivers’ responses under differing
cognitive load.

» Necessary to support future studies focusing on driver cognitive load

» Considers a wide range of measures concurrently (visual,
performance, physiological and subjective)

e Outcomes:

» Design and implementation of a driving experiment with three levels
of cognitive load.

» Completed a comprehensive dataset consists a total of eight
measurements.



Estimation Method Development
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Contribution 2: Estimation Method Development

« Objective: explore the feasibility of estimating driver cognitive

load based on visual attention information.
» Explore features and algorithm that could extract predictive information
 Challenges:

» Lack of established features and algorithms from previous studies

— Some of the features might not be compatible

» Inconsistent training/testing procedures when applying machine

learning algorithms



Prior Works

Research Focus

Feature

Algorithm

Evaluation Result

Preliminary

exploration of using
machine learning [1]

Gaze fixation duration,
pupil diameter, lane
deviation

Decision tree
trained with 20-
trial boosting

Achieved accuracy
(ACC) of 81.2% with
30-sec window

driving [3]

arithmetic tasks during

rotation, head rotation

decision stumps,
SVMs

Real-time detection of | Eye movement Support Vector | Average ACC of 83.1%.
cognitive distraction [2]| pattern, vehicle Machines

measures (SVMs)
Detecting added Mean and SD of gaze | AdaBoost with | Average ACC of 81.6%

with AdaBoost, and
77.1% with SVMs.

Classification between
higher/lower cognitive
distraction (based on
continuous rating) [4]

Statistics of Facial
action units, visual
attention, auditory
responses, vehicle
measures

KNN, SVMs,
Linear Bayes
Normal
Classifier (LDC)

F-score of 0.794 with
LDC, 0.681 with KNN
and 0.790 with SVM
(linear kernel).

[1] Y. Zhang et al., “Driver cognitive workload estimation: A data-driven perspective”, Proc. of ITSC, 2004.
[2] Y. Liang et al, “Real-time detection of driver cognitive distraction using support vector machines”, IEEE Transactions on
Intelligent Transportation Systems, 2007.

[3] M. Miyaji, H. Kawanaka, and K. Oguri, “Driver’s cognitive distraction detection using physiological features by the AdaBoost,

in ITSC’ 09, 2009.

”»

[4] N. Li and C. Busso, “Predicting perceived visual and cognitive distractions of drivers with multimodal features,” IEEE
Transactions on Intelligent Transportation Systems, 2015




High-level Framework
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Machine Learning Application

« Classification of cognitive load level is framed as a supervised learning problem:

> Estimating the target class (no-task, 1-back, 2-back) based on meta-features extracted from raw
signals (eye-tracker recordings).



Meta-Feature Extraction

Prior Proposed Raw signals
Knowledge Meta-features (from eye-tracker)
Gaze Duration and GAZE_ROT: a pair of
concentra- count of off-

, Euler angles for
tion under center glances

high load[1]  within 10-sec rotations in pitch and

yaw (in radians).

Conflict of Duration and EYE CLOS: The
visual and count of large fraction of the iris
cognitive eye closures covered by eye-lids
attention [2] within 10-sec

[1] J. L. Harbluk et al., “An on-road assessment of cognitive distraction: Impacts on drivers’ visual behavior and braking
performance,” Accident Analysis & Prevention, 2007.

[2] M. A . Recarte et al., “Mental workload and visual impairment: Differences between pupil, blink, and subjective rating,”
The Spanish journal of psychology, 2008.



Meta-Feature Extraction Process
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Machine Learning Workflow

Inputs: four meta-features
Targets: cognitive load levels

Algorithms: five candidates

Evaluation:

» Cross Validation (CV) is applied for:
— Model selection (hyper-parameter)
— Model evaluation (testing)
— 5-fold CV with three data grouping methods
» Scoring Metric: accuracy (ACC)

1 0

A

[?Ji = %]

Accuracy(y,y) =

Nsamples 1
Nsamples —

where [] represents the indicator function.

Model Evaluation Loop

Split all data into
“available”/testing

data.
v

Train/validation split
on “available” data

v

Fit model with training

data
v

Model Selection Loop

Evaluation with
validation data

v

Refit with best hyper-
parameters and all
“Available” data

v

Evaluation of best
model with Testing
data




Algorithms and Hyper-Parameters

Algorithm Implementation/ Hvper-Parameters Hyper-Parameter
Name Optimization Details yp Range
K Nearest . .
. Distance calculation: . 1, 5, 10, 20, 50, 100
Neighbors Minkowski metric # of neighbors
(KNN) :
Loglstlc. Oyttt aior el Inverse of regularization o
Regression . . strength 275,074, .. 25
Newton conjugate gradient
(LR)
Influence of each training L
Support Soft margin is applied. sample 275,274, ..., 25 [1]
Vector : \ p
Machines Transfer kerneli Rad;al Cost of misclassifyi
Basis Function (RBF OSt O M1SClass1tying 5 -4 5
(SVM) samples 275 274, ..., 25[1]
Base classifier is CART # of estimators 5,10, 100, 500, 1000
AdaBoost decision tree with
maximum depth of 3. Learning Rate 0.001
Random Same base classifier. The # of estimators 10. =0
Forest algorithm 5 10,5

[1] Y. Liang et al., “Real-time detection of driver cognitive distraction using support vector machines”, IEEE
Transactions on Intelligent Transportation Systems, 2007.




Evaluation Procedure: Grouping for CV

- Evaluation of the subject-independent model can be performed at three difficulty levels:

Grouping : : : Color-code for folds
Method Correspondent Scenario | Implementation lllustration 0[1]2]34]
|Illllllllllllll |
Drawing samples QS\S‘@ | | | | | | | | | |
None Data instances are i.i.d. into training set or S
testing set randomly 90000
Subjects
Train a model with data | Group the data from [ | | | | | | | | | | | | | | | o
from some subjects, and | the same run into ‘9@% TTTTTTT1T]
Time-based apply the model to predict | several blocks, and S
data of unseen periods cross validate at the OOOOO
from the same subjects group level Subjects
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: from some subjects, and | Always put the data O TTTTTTTTT]
Subject- . L
based apply the model to predict | from a subject into

data from unseen
subjects

one fold
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Result: Binary

« The grouping method applied in evaluation clearly impacted the results.

— KNN experienced most significant impact

— Random Forest and LR are more robust against overfitting.

Evaluation Results with Different Data Grouping
(no-task vs. 2-back)

0.850
S 0.800
(g°)
5 0.750
8 0.700
g o
g)o 0.650
o 0.600
Q
Z 0550
0.500
KNN LR SVM AdaBoost RandomForest
O a
No- 0.813% 0.660 0.744 0.784 0.719
grouping
B Time-
ime 0.665 0.658 0.681 0.703 * 0.703 *
based
Subject-
ubjec 0.594 0.638 0.615 0.631 0.652 *

based



Result: Ternary

 Better-than-guess performance when the same approach for binary

classification is adopted for the ternary case

— Ensemble of decision trees methods are slightly more optimum when evaluating using

grouping.
Evaluation Results with Different Data Grouping
(no-task vs. 1-back vs. 2-back)
0.7
) 0.65
0
S 0.6
g 0.55
g’n 0.5
o 0.45
g
z o -
0.35
KNN AdaBoost RandomForest

“  No- 0.679" 0.433 0.570 0.599 0.520

grouping

M Time- *
0.464 0.424 0.480 0.496 0.474
based
Subject- 0.377 0.409 0.396 0.410 0.419%

based
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Contribution 2: Estimation Method Development

« Objective: explore the feasibility of estimating driver cognitive
load based on visual attention information.
> Explore features and algorithm that could extract predictive information

» Determining the appropriate procedure for evaluating models with
practical meanings

e Outcomes:

» Proposed method to estimate cognitive load levels based on visual
attention information

— Designed more flexible meta-feature based on prior knowledge
— Applied five classification algorithms for automatic information extraction

» Discussed the effect of different training/testing data partitioning
methods

22



Conclusions

« Data collection featuring driver cognitive load data:

» Requires considering both the primary task (driving) and the secondary
task.

» Proposed estimation method:

» Visual attention information carried estimation power as all classifiers
achieved better-than-guess performance.

» Not sufficient to be relied alone if high accuracy is desired
« Evaluation framework:

» Explicit grouping based on time or subject would be desired to carry
more practical significance

» The larger the grouping unit is, the more challenging the problem seems
to become

23



Future Work

 Incorporate more observations (e.g. vehicle speed) and consider

strategies for combining feature values

« Employ time-series models and more intelligent method for hyper-

parameter search

« Application to naturalistic dataset collected with instrumented vehicle

over larger population and longer time range (e.g. SHRP2 [1])

[1] Campbell, Kenneth L. “The SHRP 2 naturalistic driving study: Addressing driver performance and behavior in traffic
safety.” TR News , 2012.

24



Thank you very much for your attention.

25

## The Edward S. Rogers Sr. Department
W of Electrical & Computer Engineering
&% UNIVERSITY OF TORONTO




What is Cognitive Load?

Examples for comparing cognitive load with cognitive distraction and
high arousal:

High High
Cognitive | Distraction & Possible Driver Situation
Arousal

Load
0 0 0 Calm, comfortable driving.
0 0 1 Nervous due to bad weather (e.g. snow storm).
0 1 0 Operating air conditioning controls.
0 1 1 Crying baby in the backseats.
1 0 0 Daydreaming, or listening to radio.
1 0 1 Following GPS on unfamiliar routes stressfully.
1 1 0 Attempting to interact with a voice-command system.
1 1 1 Frustrated by an important phone conversation.




Data Collection

« Experimental design: 2015 summer

« Implementation: 2015 fall

« Pilot testing: 2016 spring

o Data collection: 2016 summer-fall

« Data organization: 2016 winter

Modality Information Size
EEG Brain electrical activities recorded from four positions 7 GB
Physiological (ECG, Heart rate, skin conductance and breath depth/rates 1.6
GSR, respiration) GB
Vehicle Vehicle, brake pedal and steering wheel states gag
Eye-tracking Head position, gaze position and eye closure information 23 GB
Videos Recordings from a participant-facing colour camera 33 GB
Subjective Ratings Perceived task-load level in sub-categories (e.g. mental demand) | <1MB

27




Experimental Conditions

« Primary task: following a Lead Vehicle (LV) at 40 Mph on a 4-lane urban route

» No turning or merging, but brakes abruptly at specific moments

« Secondary task: completing 6 tasks per n-back drive (none in the no-task drive)

» The ordering of presenting 3 cognitive load is counterbalanced

« Carefully controlling various conditions: route and road, traffic and pedestrian,
presence of n-back tasks

sk .
J (~3O sec) e R — 7
\\\Sequenzze of 10 Questfon
/ . x= “._stimuli & anéwer
Task Group B e R ;
; B e
Task Ending /’ . Intrg 1st Task 2nd Task 3rd Task™ End
n-back Task : \\\ ,,—"/’
\ - Drive/Scenario RTIPRSPR IS e I'.’..’.,,.r..l l ..............
Task Intro \ : ///Intense Braking 7 (~10 min) g L 1o L o il
).< Slight Braking \“\\_ 1st Task Recording 2nd Task Reco[;iing"
Traffic Lights :

\ /— Driving Route . I |
/ ........ Data Segment Experiment ¢ i A o N ) I

- x - (~2 hourS) ................................................... — ,znd —
Spatial map Scheduling
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More about n-back Tasks

Implementation of the n-back task:

 During specific periods (“focus periods”) Participants listen to a sequence
of letters and count how many times the current stimuli is identical to the

one presented n-steps ago.

» Used extensively in neuroscience and psychology for collecting

physiological data or individual performance differences.

« Adapted for driving studies as a surrogate task [1].

n-back involves multiple cognitive

processes: 1-Back: K

« Perceiving and encoding incoming stimuli = 2-Back: K

« Maintenance and updating of memory

11

YY

YY

TDTMOM ANS:1

TDT

MOM

T 1

T 1

ANS: 2

Example of n-back task

« Matching/analyzing/selecting of
materials

[1] “MIT AgeLab Delayed Digit Recall Task (n-back) ”, B. Mehler, B.
Reimer and J. A. Dusek



Apparatus

Driving Simulator:
* miniSim by NADS

» Also records driver operations, and various vehicle
measurements (e.g. speed or lane deviation)

Physiological Sensors:
 EEG (Muse headband), ECG, GSR, Respiration

GSR
~

EEG

30



Apparatus

Camera and eye-tracker:

« Participant-facing color cameras

« A pair of Near-Infrared cameras
for the faceLAB eye-tracker

Subjective ratings:

« NASA Task Load Index (NASA-
TLX)




Background:

Cognitive Loads and Visual Attention

« This study exploits the subjects’
visual attention information
for cognitive load assessment.

> It’s been shown significantly impacted
by added cognitive tasks.

— Increased blinking —attention allocated for
visual observation is reduced, which could

result in increased blinking.

— Consistently observed in multiple
naturalistic or simulator-based studies.

— Concentrated gaze — reduced checking for
peripheral environment or devices.

— More mixed results due to this
measure’s sensitivity to visual loads

> It was also used as promising features
for prediction models.

— Detection systems have been proposed

Significant impact?

Cognitive Load Visual Attention
(Underlying Condition) (Observations)

rrrrrr

Piteh angle dogrzs o Yaw angle [deves

(Arithmetic)

Yow angle desrer

(Ordinary)

Fig. 12. Distribution of the frontal focal points

[1] “Effect of pattern recognition features on detection for 32
driver’s cognitive distraction”, Miyaji et al, 2010



Raw Signals from Eye-tracker

» EYE_ CLOS: the fraction of the iris covered by eye- Yiewd
lids

eyelid_distance

TeCc = 1 — —
mris_size

where eyelid_distance is the distance between top and bottom eyelids, and

iris_size is the iris size, which is 12mm by default.

X zworld
head
xworld

> GAZE_ROT: a paiI‘ Of Eu1€r angles in radians fOI' The Head Coordinate Frame shown with the World Coordinate Frame and the Stereo-Head
. . . Coordinate Frame
rotations around the world x-axis (pitch) and world
y-axis (yaw).

TGD = [XGD,pitcha XGD,y(Lw]

= [arccos(\/u2 + u2), arccos(4/u2)],

where @ = [uy, uy, u.] is the unit vector pointing from pupil center to the

object being looked at in World Coordinate . . .

The gaze direction vector indicates direction in the World Coordinate Frame from the origin
of the gaze - the centre of the eye balls for (A) Looking straight ahead (B) looking to the

» Each raw signal is measured for right and left eyes ot

independently.

Graphics from faceLAB manual -



Initial Inputs: Raw Signals (+1)

« The faceLAB eye-tracker can also estimate:

> The gaze fixation location in the world coordinate (in X, Y,

Z) or the plane coordinate (in X, Y).
— This has been used as the base signal previously [1, 2, 3, 4]

— However, this value depends largely on the setup of the

“world” in faceLAB and in the driving environment.

— The plane in eDREAM is quite small and does not cover

side or rear mirrors, which is quite different then the

setup in other studies (e.g. [2]).

> Therefore, direct analysis of the gaze rotation angle

provides better generalization capability.

[1] “Driver cognitive workload estimation: A data-driven perspective”, Y. Zhang et al.

oo S
[2] “Real-time detection of driver cognitive distraction using support vector machines”, Y. Liang et al.
[3] “Detecting Cognitive Workload Using Driving Performance and Eye Movement in a Driving

Simulator”, J. Son, M. Park and H. Oh

[4] “Impact of Cognitive Task Complexity on Drivers’ Visual Tunneling”, B. Reimer The sin g le-screen s etup in [2 ]



Proposed Meta-Features

Visual attention was found to be impacted by cognitive load in two ways:

« Reduced checking towards peripheral environment or mirror/speedometer [?]

 Loss of attention towards visual perception [?]

Notation

Description

pu—

) ) XaeD DUR
Gaze concentration is captured

by gaze direction (GD) features ~
| X@p.onT

Loss of visual attention is reflected | Xec.our

by eye closure (EC) features
XEC.CNT

—

Total duration of gaze-off-center: number of
frames that the gaze direction (GD) is deviated
from the reference direction by more than the
threshold thresgp.

Count of gaze-off-center times: number of times
GD crossed thresgp.

Total duration of eye closure (EC): number of
frames that EC is greater than the threshold
thresgc.

Count of blinking times: number of times EC
crossed thresgp.

» We propose to compute duration (DUR) and count (CNT) of over-threshold

incidents within a 10-second sliding window to capture the interested

patterns

— Better compatibility across different data collection setups

35



Visual Attention Meta-Features

« Duration and count of large eye closures are for capturing the changes of blinking behaviors,
which are hypothesized to indicate the amount of visual attention demands [7].

> This has also led to use of the following features in previous studies:
— PERCLOS [5], Mean blink frequency [4, 5]

« Duration and count of off-center glances are for capturing temporal variation of visual
attention direction.

> These are similar to the following features in previous studies:
— Duration and count of glances to center/off-center regions [1, 2, 3]
— Gaze fixation/pursuit duration [3, 4]
— SD of fixation position [4, 6, 8]

> Also commonly considered in previous studies is the spatial characteristics of visual attention (such as
mean of fixation position). It is not captured with proposed features.

[1] An on-road assessment of cognitive distraction: Impacts on drivers’ visual behavior and braking performance”, J.L.
Harbluk et al.

[2] “Sensitivity of eye-movement measures to in-vehicle task difficulty”, T.W. Victor, J.L Harbluk, J.A. Engstrom.
[3]“Driver cognitive workload estimation: A data-driven perspective”, Y. Zhang et al.

[4] “Real-time detection of driver cognitive distraction using support vector machines”, Y. Liang et al.

[5] “Driver distraction detection using semi-supervised machine learning”, T. Liu et al.

[6] “Detecting Cognitive Workload Using Driving Performance and Eye Movement in a Driving Simulator”, J. Son, M. Park
and H. Oh

[7] “Mental workload and visual impairment: differences between pupil, blink and subjective rating”, M. Recarte, et al.

[8] “Impact of Cognitive Task Complexity on Drivers’ Visual Tunneling”, B. Reimer



Extraction Process

« To obtain the proposed meta-features from the complicated
eye-tracking data, an extraction process of multiple levels is
designed:

» Also involves preprocessing and standardize
»The process could be different for each specific meta-features.

»They are further explained in the following slides.

- >
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; Frame-level. < Segmem x Window-level @
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. " %
: ZE " = El ZZ .
SO L _
Initial Inputs _L:agweigl?dals: R ignals: Gaze/Eve States:  Meta-Features:
.g. e.g. averaged eyelid e.g. blinking e.g. duration of
blinking

Modeling/

Inference

- distances of RIL  distance
[ Device

Measure Jeyes
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Extraction: Reduction and Interpretation

Given the raw signals from a Eye Closure
period-of-interests:

Ly
o
1

1. Combine values estimated
for left/right eyes into one

Percentage
o
(9]

0.0 ey A
channel (black) 0 250 500 750 1000 1250 1500 1750 2000
2. Detect blinks from EC, Lo- ' o D'reCt'ol” {Fikcn) .
i M raw_0
(black—dotted) os{ | . : N y EE i i . - i: * - raw_1
[~ . |" | ® fo
> Mean-removal for the GD § “-E , e ! i. ) i: . 222{1
c < 0.0 ' > -
signals — reduced
o ——- thres
3. Calculate the frequency and 0 250 500 750 1000 1250 1500 1750 2000 — ref

duration based on the

thresholded signal (see next
slide)

Radian

0 250 500 750 1000 1250 1500 1750 2000
Frame Index
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Extraction: Window-level Summarization

« Example of extracted “duration”
values (in red) on top of the
thresholded signals (in dotted blue),
taken from Participant 07.

> Each row shows a segment of data for a
different cognitive load. The feature values’
vertical axis are on the right.

e There exists considerable individual
differences in the extracted features

» Subject-level standardization is performed
using reference data from the periods near
the beginning of each driving sessions.

— Example for duration of off-center glances

shown on the right.
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