
 1

Table of Contents:
Table of Contents:... 1
I. Abstract ... 3
II. Introduction... 4
III. Setting the Environment ... 5

A. Apache Tomcat ... 5
1. Running the Tomcat 4.0 Servlet/JSP Container ... 5
2. Starting Up Tomcat 4.0 via an Environment Variable 5
3. Shutting Down Tomcat 4.0 via an Environment Variable.................................. 5

B. JavaServer Pages (JSP) ... 6
1. Overview... 6
2. JSP Architecture.. 7
3. Setting Up the JSP Environment... 8
4. JSP Tags Used... 8
5. Implicit Objects... 9

C. MySQL Database.. 9
IV. The Project .. 10

A. Overview... 10
B. Detailed Description ... 10
C. Future Work .. 28

V. References... 29
I. Abstract ... 31
II. Introduction... 32
III. The Project .. 33

A. Viewing Archived Lectures on Epresence.. 33
1. Accessing a User Account .. 33
2. User Interaction with Epresence Presentations... 35
3. Synchronization Algorithm... 36

B. Migrating to SmartPhones .. 37
1. What are the features of a SmartPhone? ... 37
2. How is pocket Internet Explorer different from Internet Explorer? 39
3. Which SmartPhones run on Windows Mobile 2003?....................................... 40
4. What is the SmartPhone 2003 SDK?.. 40
5. How to start the SmartPhone Emulator and connect to the Internet? 41
6. How to view JSP pages created for Epresence? ... 42
7. What is the optimal text size to use for PowerPoint slides? 43

C. Migrating to Pocket PCs / PDAs .. 44
1. What are the features of a PDA?... 44
2. Viewing Epresence Presentations on PDAs ... 46

D. Future Work .. 47
1. Embedding Sound and Video into Web Pages for Mobile Devices 47
2. Video and Sound Streaming for PDAs and SmartPhones 47

IV. Reference .. 48
I. Abstract ... 50
II. Introduction... 50

 2

III. The Project .. 50
A. Overview... 50
B. Initial Modifications.. 51
C. Digital Item ... 51
D. Digital Item Adaptation .. 52
E. XSL Transformations.. 54

1. Interface .. 54
2. Transcoding... 56

F. Combining everything using JSP.. 56
G. Future Work .. 58

IV. References... 59
I. Appendices for Part Three .. 61

A. Appendix B ... 61
1. PC Interface .. 61
2. PDA Interface ... 61
3. SmartPhone Interface.. 63

~~ Part One ~~

 3

I. Abstract

In this report, I will be presenting a detailed description of the Universal Multimedia

Access Interface (UMAI). The description includes the tools that were used to make this

interface possible as well as explanations and snapshots of the interface. The complete

list of files used in this project is presented at the end of the report, in Appendix B.

Moreover, the appendices include other work that was completed during this training

period. Appendix A presents a review on various devices and their parameters. Appendix

C includes weekly progress reports on what work I was engaged in at the time. Finally,

Appendix D includes a research report I have completed on Ambient Intelligence.

 4

II. Introduction

This report begins by introducing the environment of the interface, i.e. the tools that were
used to make the interface dynamic. Section III briefly describes the Apache Tomcat
Server used, the JavaServer Pages (JSP) which incorporate HTML syntax and java code,
as well as the MySQL database for storing all the data.
Section IV gives an overview of what the project is and its purpose, explaining the
interface in detail by providing snapshots of all aspects of the interface. Throughout the
description, I have included parts of code to explain how certain methods are
accomplished (i.e. saving data from web page to web page). This should facilitate
understanding how it is done.
Finally, the complete list of files used is included at the end of the report in Appendix B.

 5

III. Setting the Environment

A. Apache Tomcat

The Tomcat server is an open-source Java based web application container that was
created to run Servlets and JavaServer Pages (JSP) in web applications to create dynamic,
interactive web sites. In the case of this project, Tomcat 4.1.30 was used [1, 3].

1. Running the Tomcat 4.0 Servlet/JSP Container

In order to install and run Tomcat 4.0, the following was done:

 Downloading and Installing a Java Development Kit (JDK) release from:
http://java.sun.com/j2se/

 Setting an environment variable JAVA_HOME to the pathname of the directory
into which the JDK release was installed [3, 4]

2. Starting Up Tomcat 4.0 via an Environment Variable

 Setting an environment variable CATALINA_HOME to the pathname of the
directory in which Tomcat 4.0 was installed

 Executing the shell command:

$CATALINA_HOME/bin/startup.sh (Unix)

 After startup, the default web applications included with Tomcat 4.0 were
available at: http://wwwtest.dsp.toronto.edu:8080/

3. Shutting Down Tomcat 4.0 via an Environment Variable

 Setting an environment variable CATALINA_HOME to the pathname of the
directory into which Tomcat 4.0 was installed [1]

 Executing the shell command:

$CATALINA_HOME/bin/shutdown.sh (Unix)

 6

B. JavaServer Pages (JSP)

1. Overview
JavaServer Pages (JSP) is a scripting language based on Java for developing dynamic
Web pages and allowing server side development. JSP files are HTML files with special
tags containing Java source code that provides the dynamic content [1, 6].

The following shows the Apache web server running on Unix, with different clients connecting to the
server via the Internet

Java can be used to write applications that provide dynamic content using data from
database requests, which is what is needed for this particular project [2, 5].

 7

The JSP Servlet Engine is connected to a database and supports JSP files. JSP source code runs on the web
server in the JSP Servlet Engine which dynamically generates the HTML and sends the HTML output to

the client’s web browser

2. JSP Architecture

As it was mentioned above, JSPs are HTML pages with special JSP tags embedded
within them that contain Java code. The file extension is .jsp and the JSP engine parses
the .jsp file and creates a Java servlet source file. It then compiles the source file into a
class file, as shown in the diagram below.

 8

3. Setting Up the JSP Environment

 Downloading the JSP Environment from:

http://java.sun.com/products/jsp/download.html
 Placing the project directory in the “webapps/ROOT” directory under the installed

Tomcat directory. To view the executed file, the browser address becomes:
http://wwwtest.dsp.toronto.edu:8080/JSPFile.jsp

4. JSP Tags Used

 A declaration tag allows the declaration of variables and methods. It is presented

as follows: <%! …; %>
 An expression tag allows the embedded Java expression to be displayed. It is

presented as follows: <%= … %>
 A JSP directive tag allows for files and libraries to be included for processing by

the JSP Servlet Engine. It is presented as follows: <%@ directive … %>. One of the
page directive attributes used in the project is:

 9

Language Which Language the File
Uses

<%@ page language =
“java” %>

Import Import all classes in a java
package into the JSP page.

<%@ page import =“java.util.*”
%>

 A scriptlet tag encloses any valid Java code and is called a scriptlet. It is presented

as follows: <% … %> [2]

5. Implicit Objects

 A request object is normally used in looking up parameter values and storing

them from web page to web page. It is presented as follows [2]:
<% String Str = request.getParameter(“Name”); %>. This code snippet stores the
parameter Name in the string Str.

C. MySQL Database

After mentioning some information about the Tomcat server and the JavaServer Pages
(JSP) used in this project, a little time will be devoted to the MySQL database used. The
database essentially contains all the data needed in the project and this information is
saved in tables. To access the information, a connection has to be made to the database. A
connection session includes the SQL statements that are executed and the results that are
returned over that connection [1].
To establish a connection with a database using Java code in the JSP file, a call has to be
made to the method DriverManager.getConnection. This method takes a string containing a
URL. The DriverManager class, referred to as the Java Database Connectivity (JDBC)
management layer, tries to locate a driver that can connect to the database represented by
that URL. The Driver method connect uses this URL to actually establish the connection.
In this specific project, I was making a connection with the "grp2" database where all the
data has been saved. The following Java code establishes the connection [1]:

<%
Connection conn = null;
try {

Class.forName("com.mysql.jdbc.Driver").newInstance();
//Below is the URL used for connection
conn=DriverManager.getConnection("jdbc:mysql://localhost.localdomain
/grp2?user=grp2&password=grp2");

 }
//In case of exceptions or errors, a message will be displayed
catch (SQLException ex) {
 out.print("SQLException: " + ex.getMessage());
 out.print("SQLState: " + ex.getSQLState());
}
%>

 10

IV. The Project

A. Overview

The tools mentioned above, namely the Tomcat Server, JavaServer Pages, and MySQL
were used in the implementation of the “Universal Multimedia Access Interface”
(UMAI) project. The purpose of this project is to allow users, mainly students, to search
for courses and view lecture slides and other media types like video. This provides the
students with the ability to catch up on missed classes, for example, and view lecture
videos online without missing out on in-class explanations.
For the purpose of this project, the courses are saved in a table in the MySQL database.
The table includes information about the course, such as course title, professor,
department, university, course number, and the media type(s) associated with it (slides,
video, etc…).
The powerful tool of this project is that the student can log in and look for courses in
various universities and different departments. This means that this interface is not only
limited to one university offerings but is stretched out over a wide set of available
universities. Moreover, the student can look up courses offered by specific teachers or
simply by course name/number. This search will yield a table with the possible matches.
From here, the student is free to select the course that he/she is looking for or just browse
for what is available.
Basically, what the “Universal Multimedia Access Interface” project provides is a means
for each student to access the media that is provided by courses and be able to download
it and see it.

B. Detailed Description

As mentioned earlier, the working directory of this project is saved in the
“webapps/ROOT” folder of the installed Tomcat server. In the “ROOT” folder, I created
my working directory and named it “interface”. Within this folder are all the files and
pictures that are associated with the interface.
To begin, open a web page and type the following URL to access the interface:

http://wwwtest.dsp.toronto.edu:8080/interface/login.jsp

As shown above, I specify the port number “8080” and my folder “interface” where I
saved my information. To access the login page, the above URL is required.

 11

 The first name, last name, and password are required fields that must be filled in

to enter the site. If the student has already registered, then he/she just has to fill in
those 3 fields and click “LOGIN” to enter

 A new student user should click “NEW USER” to register
 “RESET” simply erases what has been typed in the 3 fields

Clicking on either “NEW USER” or “LOGIN” loads the “main.jsp” page. The following
code scriptlet allows this to happen:

<form action="main.jsp" method=post>

<input type="submit" name="submit" value="LOGIN">
<input type="submit" name="submit" value="NEW USER">

<input type ="reset" value ="RESET">

By clicking on “NEW USER” the URL now becomes:
http://wwwtest.dsp.toronto.edu:8080/interface/main.jsp

 12

In this page, the user is
requested to enter
his/her first name, last
name, and a unique
password. Following,
the user must specify
values for his/her
device and network
conditions. Those
values are important
when the user later
downloads or views
media online. Once
the values are entered,
they will be stored.
Therefore, once he/she
wants to download
some media, the server
will check the user’s
set of values and
compare them against
a fixed set of “sheets”
with standard values
for the same
parameters. Hence, the
closest sheet to the
user’s sheet will be
selected and the user
will be provided with
that set of conditions
for downloading
media or viewing it
online.
Once the set of
parameters are
provided, the user can
click on “SIGN UP” to
register or click on
“RESET” to fill out
this sheet again.

 13

↓

As shown above, if some parameters were left empty, the user will be requested to refill
all the fields. On the other hand, even if all the parameters were filled, if the “password”
and “confirm password” fields were not matching, the user will be requested to fill the
fields again.

 14

↓

Once all the fields are filled, and considering that the “password” and “confirm
password” fields match, the user will be registered in the database.
The code that was utilized to add the new user to the database tables is show below. As it
can be seen, the first step is to make sure that the user does not already exist and this is
why a MySQL statement is first executed to check that the user is not listed. If no
matches of this person were found, the next step would be to insert the new user, along
with the parameter values he/she provided earlier, into two tables – user and profile. I
will talk about the profile table shortly.

Statement st = conn1.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = st.executeQuery("SELECT first_name, last_name, password FROM user where
first_name= '"+fname+"' AND last_name= '"+lname+"' AND password= '"+pass1+"' ");
int match=0;
while (rs.next())
 match=1;
if (match==0){

int update = st.executeUpdate("INSERT INTO user SET first_name= '"+fname+"', last_name=
'"+lname+"', password= '"+pass1+"', bitrate= '"+bitrate+"', framerate= '"+framerate+"', resolution=
'"+resolution+"', depth= '"+depth+"', freq= '"+freq+"', freq_range= '"+freq_range+"', channels=

 15

'"+channels+"', codec_capability= '"+codec_capability+"', image_resolution= '"+image_res+"',
video= '"+video+"', audio= '"+audio+"', image= '"+image+"', modality1= '"+modality1+"' ");

int update2 = st.executeUpdate("INSERT INTO profile SET id=1, fname= '"+fname+"', lname=
'"+lname+"', lastfile1=0, lastfile2=0, lastfile3=0 ");

}

Below is a look into the MySQL table user, which displays correctly the added user:
“rasha rashidi”.

Once the user is saved successfully in the database, the following will be displayed on the
web page:

Earlier, I mentioned that the user is requested to provide values for his/her device and
network conditions for the purpose of downloading media and watching it. The purpose
of the user supplying this data is so that he/she will be provided with the best available
download conditions. What this means is that once the user submits the values as it was
done above, the server checks the user’s submitted values against a set of standard
“sheets” that are saved in the database. The sheets contain the same information (i.e. bit
rate, frame rate, resolution…) but the values vary from sheet to sheet so as to cover as
many types of devices as possible (the image resolution for a PDA may differ from that
for a notebook, etc…)1. When the user clicks on “CHECK PARAMETERS”, the server

1 A Device Parameters Review can be found in Appendix A

 16

performs a “filtering” algorithm2 whereby the sheets are retrieved from the database and
checked against the user’s values. From here, one sheet is picked which corresponds most
closely to the user’s values and these values will be used when the user downloads media.
I saved 18 sheets in the database, each with unique values that cover a wide range of
devices. Below is a snapshot of the sheets saved in the sheet table.

This is the result of the “filtering” algorithm:

2 The “filtering” algorithm can be found in the params.jsp file in Appendix B

 17

The above shows that the parameter values of sheet 5 in the database were chosen as the
download parameters when the user wants to download or view media.

By clicking on “RETURN TO MAIN MENU”, the user can view the main page, where
search options and profile updates are possible (i.e. the user’s parameters).

The user “rasha rashidi” can update her profile by selecting “UPDATE PROFILE”.

 18

Here, the user may
choose to change the
password or even the
device and network
conditions.
After completing this
sheet, the user clicks
on “UPDATE MY
PROFILE”, whereby
the new values replace
the older ones and the
user returns to the
main menu.
Also note that none of
the fields here should
be empty and the
“password” and
“confirm password”
fields must match.

 19

Returning to the main menu, a note on the left hand side states that there were no saved
files:

Being a new user, the student has not yet accessed or saved any course files yet. So, this
message is valid as long as the user does not add course files. However, once the student
starts adding files, he/she will be allowed to view the three latest saved files. Earlier in
this report, I mentioned that when the new user is registered, his/her data is saved in two
tables in the database – the user table as well as the profile table. This is where the profile
table becomes useful. Once the user is registered, the data is also passed to the profile
table. This table saves the last three added files by the user. Therefore, when the user logs
on, the server searches for this user in the profile table and returns the last three files
found. Since no more than three files are allowed to be saved, once the user saves three
files, the next file to be saved will replace the oldest file in the table in a first-in-first-out
(FIFO) manner.
The following code shows how this is done:

<% …

else if (acc1!=0 && acc2!=0 && acc3!=0) //There are 3 files
saved already
{
 file1=result.getInt(4);
 file2=result.getInt(5);

 //”load” here corresponds to the file that was selected by the user after the search
was made
 result3 = add.executeUpdate("UPDATE profile set lastfile1='"+load+"' where
fname='"+first+"' AND lname='"+last+"' ");
 result4 = add.executeUpdate("UPDATE profile set lastfile2='"+file1+"' where
fname='"+first+"' AND lname='"+last+"' ");
 result5 = add.executeUpdate("UPDATE profile set lastfile3='"+file2+"' where
fname='"+first+"' AND lname='"+last+"' ");
}
… %>

A snapshot of the profile table is shown below:

 20

As it can be seen, the values under lastfile1, lastfile2, and lastfile3 are all integers. What
those integers correspond to are the course file numbers. For example, the user “azadeh
kushki” has accessed and saved only one file – file 26. This means that in the courses
table (the table is called metadata), the 26th course listed has been saved for this user.
Each course in the metadata table has an id number next to it that specifies the number of
that course in the table. As more courses are added to the table, the id numbers will be the
key to differentiate them.
To understand this better, below is a snapshot of part of the metadata table. The “id” field
is used as the key to store files in the profile table:

To add files to the user profile, a search has to be made and a course has to be selected.
To perform the search, the following can be done is available:

The search can be done by selecting one of the four fields, or any combination of all four
and clicking “SEARCH”.

 21

The list of possible universities, departments, professors, and courses is shown below:

The data within each box is retrieved from the
database of course by accessing the metadata table
which includes information about all of the courses
available and the data pertaining to the courses. For
example, the university that the course is given in, the
professor teaching the course, the title of the course,
etc...
Therefore, the way that the above was able to be done
was simply by calling MySQL statements that sort
the table according to the field required – for
example, university. Hence, the table would become
sorted according to university and I could then output
the distinct university name in a drop down box as
shown here.

 22

The code used for retrieving the university name and displaying it in a drop down menu
is provided below. Similar code is used for the rest of the searches:

<% …

Statement sort1 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet res1 = sort1.executeQuery("SELECT distinct university FROM metadata order by
university");
%>

<form method=post action="search.jsp">

<table align="center">
<tr><td><center><h4>UNIVERSITY</h4></center></td>
<form><td>
<select name="uni">
<option value= "UNI">-- University --
<%
 String university="";
 while (res1.next()) {
 university=res1.getString(1);
%>
 <option value="<% out.print(university); %>" > <%out.print(university);
<%
 }
%>

For demonstration purposes, I selected all the courses that are enlisted in the University
of Toronto and clicked “SEARCH”:

 23

As it can be seen, the search has listed the courses that can found in the University of
Toronto. By selecting any one of those files and clicking “ADD FILE”, the course file
number will be saved under the “lastfile3” field in table profile.

I have selected Software Engineering and the following is displayed:

Now, by clicking on “VIEW UPDATED PROFILE”, I will be able to see my main page
with the selected file added to my profile:

 24

In the MySQL database, table profile table has been updated for the user “rasha rashidi”.
As shown below, the id of the “Software Engineering” course has been saved in the
“lastfile3” field so as to display the course file in the main page when “rasha rashidi” logs
on.

I will add more files for display:

As you can see, I have added another two files the same way I added the first one. One of
the fields above is called “MEDIA TYPE”. This means that the corresponding course is
available for downloading and viewing in the media type specified. The course “Software
Engineering” provides slides for download, whereas the other two courses provide the
actual lecture online for viewing making the type a video.
From here, what can be done is to select one of the three files and click “DOWNLOAD”
to be able to view the selected media. For this project, I have made a simple demo that
plays a video. The video is not relevant to the course. However, it is just a demonstration
of how the interface will be working in later stages to support the different types of media
for each course. Upon clicking “DOWNLOAD”, the following is displayed:

 25

The video I have chosen to display is located in a directory different from my working
directory. To view the video, I need to encode it first and parse it using the “ffmpeg”
encoder. By selecting the preferred size and frame rate, those values will be embedded in
the encoding command that will encode the video and play it afterwards. The code for the
encoding is:

//Retrieving the size value the user selected
String size = request.getParameter("size");
//Retrieving the frame rate value the user selected
String frame = request.getParameter("frame");

String f = request.getParameter("f");
String l = request.getParameter("l");
String p = request.getParameter("p");

boolean display = true;
//The encoding command
String[] cmd={"ffmpeg", "-i",
"/home/grp2/mazenDoNotTouch/mpeg4ip-1.0/ffmpeg-0.4.9-pre1/pirates.mpg", "-s", "sqcif",
"-r", "15", "/home/grp2/tomcat/webapps/ROOT/interface/videos/rasha2.mpg"};

cmd[4] = size;
cmd[6] = frame;
int ch;
String s,s1;
display = false;
Process p2 = Runtime.getRuntime().exec(cmd);
try{
 p2.waitFor();
}
catch (Exception e) {
 out.print("ERROR!");
}

BufferedReader stdInput = new BufferedReader(new InputStreamReader(p2.getInputStream()));
BufferedReader stdError = new BufferedReader(new InputStreamReader(p2.getErrorStream()));

try{
%>
 <center>Encoding the Video...</center>
<%
}

catch(IOException t) {
 t.printStackTrace();
}
%> //Displaying the video on the web page
 <center><img dynsrc="../interface/videos/rasha2.mpg"
 width=<% out.print(w); %> height=<% out.print(h); %>
 start="fileopen" loop="infinite"></center>

 26

The above code encodes the video I have selected and outputs it to my directory to a
folder I called “video”. The following is shown after I have selected the video size to be
128x96 pixels and the frame size to be15f/s:

The video will play in the web page as shown below. If the user wishes to change the size
of the video display, clicking on “CHANGE SIZE” will make this possible. There are
four size options available and choosing each one in turn will yield the outputs shown
here:

 27

The user can either log out from this page or return to the main menu and perform more
searches or updates to the user profile. Upon clicking “LOG OUT”, the following is
displayed, whereby clicking on “LOGIN” again will load the first page – “login.jsp”:

 28

C. Future Work

As it can be seen from the detailed description of this project, users are able to log into
the site or register as new users. They can search for courses online in different
universities and add up to three course files to their profile. There is also the ability to
download the media type associated with the course. This is where more work can be
implemented. As I mentioned before, the video display was simply a demonstration of
how a video file can appear on a web page after it has been encoded. Moreover, as it was
shown in some figures above, in the course files, there is a field called media type which
specifies if the file contains slides, a video, etc…
This is where some work can be implemented in the future. Instead of simply writing out
“slides” or “online lecture”, a real file can be stored in the media type field in the
database table. This file can be a PowerPoint lecture or an mpeg video file. Whatever the
file is, the student can select the specific course file and click “DOWNLOAD” and what
will be visible is this file.
Moreover, there could be an administrator user who has control over this website. This
means that he/she has the authority to upload new course files into the database, delete
some old ones, look up registered users and have the permissions to access their data and
alter/delete/modify it. Basically, the administrator will make sure that data is kept up to
date and have control on who registers in to the site.

 29

V. References

[1] W3 Schools, [Online]. Available: http://www.w3schools.com/

[2] Community for Multi Skilled Developers, [Online]. Available:

http://www.visualbuilder.com

[3] The Apache Jakarta Project, [Online]. Available: http://jakarta.apache.org/tomcat/

[4] Jeff Hanson, Server Side Coding, [Online]. Available:

http://www.sitepoint.com/subcat/java

[5] Sun Microsystems, Java Technology, [Online]. Available:

http://java.sun.com/

[6] Dave Kristula, HTML: An Interactive Tutorial for Beginners, [Online]. Available:

http://www.davesite.com/webstation/html/

 30

~~ Part Two ~~

 31

I. Abstract

Part Two of this report deals with the JSP implementation of the user interface for

Epresence on PCs, SmartPhones and PDAs. Different specifications for each device are

discussed and the underlying algorithm is explained. In addition, illustrations include

diagrams and snapshots that will aid in the understanding of the material. A complete list

of codes used in this segment of the project is presented at the end of the report, in

Appendix A for Part Two. Appendix B contains weekly reports on the work’s progress.

 32

II. Introduction

The project description first familiarizes readers with the login as well as the presentation
layout of Epresence. The interactivity of the webpages is briefly mentioned and the
JavaScript algorithm that is the backbone of the JSP codes is disected. Section B then
moves on to the implementations written for Windows Mobile 2003 SmartPhones. An
overview of the restrictions of SmartPhones is given and a means of virtually testing the
JSP pages is illustrated. Screen shots and demonstrations from the simulations are
included. Section C changes gear to a Windows Mobile 2003 platform on PDAs and
finally, possible future improvements are discussed in Section D.

 33

III. The Project

A. Viewing Archived Lectures on Epresence

1. Accessing a User Account

This is the login interface, with all three fields set as required fields to be filled in. New
users can click on the “New User” button to create an account.

A new user is asked to fill out the following form in order to create an account.

 34

After logging in or creating a new account, the user is presented with his or her most
recently accessed archives, the choice of updating his or her profile of device and
network conditions, and the option of searching for a specific lecture yet to be viewed.

Once a lecture is chosen with either of the two methods mentioned above, the user is
asked to select the preferable resolution. The options are shown below.

 35

Finally, the archived lecture is displayed according to the resolutions chosen by the user.
(The example of a user viewing “small” resolution with a frame rate of “10” on a PC
platformis demonstrated in this snap shot. The lecture is CSC343 Introduction to SQL.)

2. User Interaction with Epresence Presentations
An Epresence presentation can be a combination of one or all of video, sound, slides and
text-chat, depending on user preference and client device limitations (ie. processing rate,
resolution, network speed, etc.). The interface shown above in step 5 is typical of the PC
platform with all the media types present. A Personal Digital Assistant (PDA), for
example, or a SmartPhone will have a different interface based on its screen estate and
pocket Internet Explorer capabilities (to be discussed later).

The basic features of the media are similar across all three platforms. The video and
sound files are streamed by the Darwin Streaming Server over an RTSP protocol, which
will provide the user with almost instant viewing of the lecture rather than a slow website
that needs to download the media files in their entirety before playing back. On the PC
interface, the movie is embedded into the web page, saving the user the hassle of entering
the RTSP URL him- or herself. Currently, PDAs and SmartPhones that run on Windows
Mobile 2003 SE, which is what this project focuses on, do not support the <embed> tag
required for RTSP links. Therefore, for now these devices will have to rely on playback

 36

capabilities of Windows Media Player 9. Possible solutions to this scenario will be
discussed in the Future Works section.

The user is given control over the media elements. The video can be played, paused and
restarted along with sound and slideshow. When both movie and slides are displayed, the
two are synchronized: the slide will change as the video plays out. The time of the slide
change will have been recorded as time stamps from the live lecture. The chapter
headings underneath the video allow the user to jump to any section of the slideshow, but
as soon as the user chooses a chapter, the video and the slideshow would become out of
synch. The same can be said about the ‘Next,’ ‘Prev,’ ‘First,’ and ‘Last’ buttons to the
right of the slideshow (see screen shot from step 5 of the above section); they allow the
user to browse through the slides freely, but will bring the presentation out of synch. The
difference with these buttons, however, is that the video and slideshow will go back to
synchronized display as soon as the video catches up to the slides.

3. Synchronization Algorithm

The synchronization of the video, sound and slideshow is accomplished through
JavaScript. The backbone of the algorithm is the setTimeout (“function_to_be_called”,
interval x) function, which allows a function by the name in quotation marks to be called
after a period of x seconds. To create a slideshow, setTimeout is placed inside
“function_to_be_called” so that it will call itself again and again, but every time the
interval will be reset according to the time stamps. In addition, a variable is kept to record
the numerical ID of the current slide in the sequence. Since the video and slideshow are
synchronized, a difficulty arises if the user chooses to bring them out of synch. If the user
decides to browse through the slide, then the timer to call the slideshow function is
simply cancelled until the video catches up. But when the video is paused, the timer has
to be cancelled and the amount of time paused has to be recorded in order to calculate the
appropriate slide to show when un-paused as well as the duration of that slide. Please
refer to the appendix for complete algorithm and comments.

 37

B. Migrating to SmartPhones

1. What are the features of a SmartPhone?

~The Software~
The newest version of the Microsoft software that runs SmartPhones is Windows Mobile
2003. This software includes the following features.

● Pocket Outlook
● Unified Inbox
● Contacts
● Calendar
● Pocket Internet Explorer
● MSN Messenger
● Windows Media Player
● Smartphone Games
● Security
● Predictive Text Input
● Smartdial
● ActiveSync

~The Screen Estate~
A Smartphone screen size is 176 x 220 pixels (see Fig. 2 for the Home and Start screen).
When viewing a web page in pocket Internet Explorer, the usable content area is reduced
to 171 x 175 pixels due to the scroll bars, the title bar and the menu bar (see Fig. 2 again).
To ensure that the dreaded horizontal scroll bar does not occur, any fixed-width element
should be set to 160 pixels or less.

Fig. 1 Motorola MPx200

Fig. 2 Home Screen,
Start Screen

 38

~User Inputs~
The buttons and their functionalities on a SmartPhone are summarized in Fig. 4.

For text input, users must rely on the numeric keypad to enter both numbers and
alphabets. The input mode is indicated on the title bar as Fig. 5 shows.

Fig. 3 Screen Estate in pocket Internet Explorer

Fig. 4 Buttons and controls on a SmartPhone

Fig. 5 Providing visual cues to indicate the input mode

 39

2. How is pocket Internet Explorer different from Internet
Explorer?

The Microsoft® Pocket Internet Explorer is a full-featured Internet browser, optimized
for mobile devices with small, vertically oriented displays. HTML functionality is
equivalent to that of Microsoft Internet Explorer version 4.01. A fit-to-screen option
dynamically resizes Web pages to minimize horizontal scrolling. Microsoft® Pocket
Internet Explorer has been updated to support the following:

Feature Description

Fixed width layout Dynamically fits text to device screen, eliminating
need for user to scroll horizontally to read text.

Cookies 50 elements, 4 KB maximum each.

Supported protocols IPv4, IPv6 HTTP1.1 (http, https), FTP, FTPIR,
NNTP, file://.

XML Uses the Windows CE MSXML parser.

Hypertext Markup Language
(HTML)

Equivalent to version 3.2, with support for tables
and forms.
Cascading Style Sheets
No Virtual Reality Modeling Language (VRML).

Scripting Windows CE JScript 5.5 (ECMA-262 compliant).

Audio formats WAV.

File formats GIF, JPEG, BMP, XBM, PNG, HTML, TXT.
No support for animated GIF (GIF89a).

Offline browsing Page caching, subscriptions.

Encryption 64-bit and 128-bit SSL.

Security SSL2, SSL3, TLS 1.0, SGC.

User authentication Basic, NTLM.

Pocket Internet Explorer does not support the following:

● Printing
● Java Virtual Machine
● Downloading of ActiveX® controls
● Context menu (right-click menu) support
● Intelligent forms for automatic completion of user input and saved

passwords
● Font downloading
● Data binding
● Multiple windows

 40

Complete HTML reference for Windows Mobil-Based SmartPhones can be found in the
SmartPhone Developer’s Guide at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/DevGuideSP/html/Dev_
Guide_for_Windows_Mobile-Based_Smartphones.asp

3. Which SmartPhones run on Windows Mobile 2003?

The Microsoft Corp. website is currently advertising the following phones:

● Audiovox SMT 5600 – Windows Mobile 2003 SE
● mate SP3 – Windows Mobile 2003 SE
● mate SP3i –Windows Mobile 2003 SE
● Motorola MPx220 – Service Provider: Cingular / TIM (Brazil), Windows

Mobile 2003 SE
● Samsun SCH-i600 – Service Provider: Verizon Wireless, Windows

Mobile 2002
● SP-i600 SmartPhone – Service Provider: Sprint, Windows Mobile 2003
● Voq Professional Phone –Windows Mobile 2003

Further information on these products and downloads for SmartPhone accessories can be
found at http://www.microsoft.com/windowsmobile/devices/smartphone/americas.mspx

4. What is the SmartPhone 2003 SDK?

SDK for Windows Mobile 2003-based Smartphones is created by Microsoft Corp. for the
development of applications for Windows Mobile 2003-based Smartphones, leveraging
the Microsoft® .NET Compact Framework, Windows CE. NET 4.2, an improved
emulator and new ATL support.

The Emulator is the main tool needed for this project. It mimics a real SmartPhone in
every way, except it appears on the desktop. All features of a SmartPhone are included,
such as Calendars, Games, Windows Media Player 9 Series, Contacts and pocket Internet
Explorer.

The soft keys, numeric keypad and the Left/Right/Up/Down/Selection buttons can be
controlled with the mouse. For text input, both the keypad on the emulator and the
keyboard can be used.

The web pages created for Epresence will be tested on this Emulator to verify that they
will function properly on a real SmartPhone; however, since it is emulation, Internet
loading speed on the Emulator is much slower than on the actual phone.

System Requirements for the Installation of the SDK are:

● Windows 2000 Service Pack 3 or Windows XP

 41

● Microsoft ActiveSync 3.7.1
● eMbedded Visual C++ 4.0
● eMbedded Visual C++ 4.0 Service Pack 3

The downloadable files and additional instructions on the installation can be found at
http://www.microsoft.com/downloads/details.aspx?FamilyId=A6C4F799-EC5C-427C-80
7C-4C0F96765A81&displaylang=en

5. How to start the SmartPhone Emulator and connect to
the Internet?

The SmartPhone Emulator can be launched with the following methods (see Fig. 6 for
what the Emulator looks like on the desktop).

● eMbedded Visual C++: compile a simple “Hello world” program and
choose the device as the Emulator

● Command Prompt: execute Emul.exe under the Emulation folder of
SmartPhone 2003 in your installation location

● Shortcut from the Start Menu: the emulator should be under Microsoft
SmartPhone 2003 SDK -> SmartPhone 2003 Emulator

Once the Emulator is up, go through these steps to connect it to the Internet.

1. Click on “Start”
2. Go to “8. Settings” and choose “9. More…”
3. Choose “2. Data Connections”
4. Click on “Menu” and choose “1. Edit Connections”
5. Choose “3. Proxy Connections”
6. From “Menu,” choose “1. Add”

Fig. 6 SmartPhone 2003 Emulator

 42

7. Give the connection a description
8. Choose Connects from “My Corporate Network” (it may be called something

else, such as “Work”, depending on the computer’s configuration)
9. Choose Connects to “The Internet”
10. Leave the other options
11. Click Done until your back at the Start screen
12. Browse the internet

6. How to view JSP pages created for Epresence?

To view JSP pages, simply start the Tomcat server and enter the URL into the
SmartPhone Emulator as one would on a regular browser. Note, however, that if
“localhost” is typed in, the Emulator will not recognize it; instead, type in the computer’s
name. The next series of images demonstrates what a user would see for a makeshift
archived lecture.

Continued Next Page…

1. The user, after finishing
viewing the lecture slides, chooses
to see the slide for Chapter 1.

2. He or she then scrolls down
using the arrows to select the
option of switching to a
different medium.

3. The other option is to go to
“Menu” and choose “Address
Bar.”

 43

7. What is the optimal text size to use for PowerPoint
slides?

Slides containing different sizes of Arial and Times New Roman text were created in
Microsoft PowerPoint and these slides were saved directly in JPEG format (under Save
As… in PowerPoint). This is probably the easiest method to retrieve lecture slides as

4. Assume that the main page
has the above URL. Note:
“pcthomaswu” has to be used on
the Emulator instead of
“localhost.”

5. On the main page, the user
chooses to see the lecture video.
Note that pocket Internet
Explorer (pIE) gives link focus.

6. The user selects “View
Movie.”

7. pIE asks for confirmation to
download the video.

8. pIE launches Windows Media
Player 9 Series (WMP9) to play
the video.

7. The control consul of WMP9
is displayed at the end of the
video and users can use the back
button to return to the main
page.

 44

JPEG images. Then, these images were coded into web pages with their widths set at 160
pixels (the maximum width before the horizontal scroll bar appears) and they are viewed
with the SmartPhone 2003 Emulator as in Fig. 7 and 8.

It can be concluded that in general a non-serif font face, such as Arial, looks better than a
serif font like Times New Roman, which tend to become segmented when shrunk. Also
by using the smallest words appearing on the SmartPhone’s Home screen (see Fig. 2) as a
standard of measurement, the Arial font would require size 66, preferably bolded when
written in Microsoft PowerPoint, and if Times New Roman must be used, it should be at
least size 72 and bolded.

C. Migrating to Pocket PCs / PDAs

1. What are the features of a PDA?

~The Software~
PDAs or Pocket PCs that have been recently available on the market use the same
software as the new SmartPhones: Windows Mobile 2003, with support for context
menus, drop down lists and a few other controls. For a comprehensive list of Windows
Mobile 2003-based Pocket PCs, go to
http://www.microsoft.com/windowsmobile/devices/pocketpc/ppc/americas.mspx

~The Screen Estate~
A Pocket PC screen size is typically 240 by 320 pixels (see Fig. 9 and 10). The usable
content area in pIE, however, is only 229 by 255 pixels. With these dimensions, the

Fig. 7 Various font sizes (regular and
bolded) for Arial

Fig. 8 Various font sizes (regular and
bolded) for Times New Roman

 45

optimal size for displaying content is a maximum width of 220 pixels, which eliminates
the appearance of the horizontal scrollbar.

~User Inputs~
All Windows Mobile 2003-based PDAs come equipped with a touch sensitive screen and
a pointer. Sometimes they have physical key pads like Symbol Technologies’ MC50, but
most of the time, Pocket PC have a built-in Software-based Input Panel (SIP). When
activated, it consumes 240 by 81 pixels of screen space (see Fig. 11).

Fig. 9 Home Screen Fig. 10 Start Screen

Fig. 11 PDA with SIP activated

 46

2. Viewing Epresence Presentations on PDAs

An actual Pocket PC was purchased in order to test the web pages, so there was no need
for any development in a Pocket PC SDK. The following (Fig. 12 – 14) are screen shots
of what the PDA interface looks like.

 * *

Fig. 12 Media preference page for an
archived lecture on a PDA

Fig. 13 Viewing the slides on a PDA

Fig. 14 Text Chat (to be implemented
later) with the PDA’s SIP activated

 47

D. Future Work

1. Embedding Sound and Video into Web Pages for
Mobile Devices

Embedding sound and video into the web pages would allow users to bypass the page on
which he or she has to click “View Video” in order to open Windows Media Player, and
the pages showing the lecture slides would be able to have the lecturer’s voice as
accompaniment. Unfortunately, embedding objects requires ActiveX controls for the
object, in this case, Windows Media Player 9. In Windows Mobile 2003, such control
does not exist and Microsoft has decided that users would not be able to download any
ActiveX element. The good news is Windows Media Player 10 Mobile will have the
necessary ActiveX control for embedding the Windows Media Player object. Microsoft
has already announced that Windows Media Player 10 Mobile will be available on many
new SmartPhones over the next few months.

The following have Windows Media Player 10 Mobile installed:

● SmartPhone: Audiovox SMT-5600 from Cingular
● Pocket PC: Dell Axim X50

The following Pocket PCs are upgradeable to Windows Media Player 10 Mobile:

● HP iPAQ rx3100
● HP iPAQ rx3400
● HP iPAQ rx3700
● Dell Axim X30

2. Video and Sound Streaming for PDAs and
SmartPhones

Simply embedding the media is not, in fact, the optimal solution to the user-friendliness
issue on PDAs and SmartPhones. Streaming an embedded medium would be. The current
set up of the Darwin Streaming Server can only stream to a QuickTime Player, not a
Windows Media Player (WMP) because although WMP is RTSP compliant, it only
supports the streaming of .asf files, but Darwin only streams .mov files. Why not ask the
user to download QuickTime? One, there is no Windows Mobile version of QuickTime
and two, this project’s aim is to minimize inconvenience to the client.

A possible solution comes with Microsoft Media Server (MMS), which is a compatible
server with Windows Media Player. Unfortunately, MMS is not an open-source product
of Microsoft Corp., and the use of MMS related servers from the Internet, especially
those without credentials, should be scrutinized.

 48

IV. Reference

Microsoft Corporation. (n.d.). Windows Mobile Software. Retrieved June 30, 2005,

from http://www.microsoft.com/windowsmobile/about/tours.mspx

Microsoft Corporation. (n.d.). Windows Media Player 10 Mobile. Retrieved June 30,

2005, from
http://www.microsoft.com/windows/windowsmedia/player/windowsmobile/default.
aspx

Microsoft Corporation. (n.d.). Windows Mobile-Based SmartPhones Available in the

Americas. Retrieved June 30, 2005, from
http://www.microsoft.com/windowsmobile/devices/smartphone/americas.mspx

Microsoft Corporation. (n.d.). What’s New [in Windows Mobile 2003 SE]. Retrieved

June 30, 2005, from
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devguidesp/html/sp
_conwinmobile_programming.asp

Microsoft Corporation. (n.d.). Download Details: SDK for Windows Mobile

2003-Based SmartPhones. Retrieved June 30, 2005, from
http://www.microsoft.com/downloads/details.aspx?FamilyId=A6C4F799-EC5C-
427C-807C-4C0F96765A81&displaylang=en

Sophonix. (2002, November 8). Development and Content for Desktop and Mobile.

Retrieved June 30, 2005, from http://www.sophonix.com/articles/spcontent.asp

Wei-Meng Lee. (2004, January 7). Design Considerations for Microsoft SmartPhones.

Retrieved June 30, 2005, from
http://www.oreillynet.com/pub/a/wireless/2004/01/07/smartphone.html

 49

~~ Part Three ~~

 50

I. Abstract

This report provides a detailed description of the implementation of the Universal
Multimedia Access Interface (UMAI). The description includes various technologies
used to implement the algorithms and overall ideas, accompanied by explanations,
examples and screenshots. Finally in the appendices there are all source files.

II. Introduction

The work done is based and is extending Rasha Rashidi’s work, so the assumption was
made that the reader is familiar with it. This report start by introducing the slight
modifications added to Rasha’s work. Those were introduced to accompany the future
extension (i.e. extending the MySQL database, modifying some of the JSP code).

The report then goes to discuss creating the Digital Item (DI) and the Digital Item
Adaptations (DIA), which are both XML meta-data.

It continues by discussing the various XSLT style sheets and finally putting all the pieces
together. How JSP was used to apply the transformations to the XML files and generating
both different User Interfaces and command line arguments for the transcoder.

III. The Project

A. Overview

The project is an extension to Rasha Rashidi’s work. There were a few modifications
added and a lot of separate additions. After a user logs in and selects a lecture they want
to view, the movie is no longer hard-coded. There is a database that has a collection of all
the available lectures (may they be pre-recorded or live streaming), along with all the
relevant information, e.g. University, professor, etc. The server takes all necessary
information and creates the DI that will be used to generate the interface, and the DIA,
used to generate the command line arguments.
There is also a database storing all the XSLT style sheets with their relevant parameters,
e.g. resolution, modality, etc. After the DI and the DIA are generated two sheets, that
match the user preferences the closest, are picked. The first one is applied to the DI to
produce the web interface and the second one is applied to the DIA to produce the
command line arguments to the transcoder.
After that the appropriate interface is displayed and the transcoded media is shown
accommodating the user preference and abilities as close as possible, providing high
QoS.

 51

B. Initial Modifications

The modifications done to Rasha’s work were introduced to mainly accommodate the
future development of the project and to optimize certain steps since everything should
be running in real time.

One of the changes that need explanation was converting the algorithm that selects the
closest sheet. While the actual algorithm remains the same, its implementation was
moved from JSP/MySQL queries to a single MySQL query. That was done because JSP
runs on the java virtual machine which tends to be slower than MySQL which is
optimized for data retrieval. The downside of this is that the query is huge, not user
friendly and hard to modify over and over again, but this is justifiable by the increase of
speed.

Another significant extension is changing the flow when the user clicks download. The
last hard-coded webpage is remove and after the user has made his/hers choice on
resolution or frames per second, he/she is taken to the dynamic JSP-based webpage
(view.jsp) that generates the interface and also does the transcoding on the fly and then
delivers the adapted multi-media content to the user. See 3.6 for more details.

C. Digital Item

The Digital Item is a piece of XML meta-data that describes everything about a lecture
(i.e. speaker, university, number of chapters, slides, etc). There is not a strict outline of
the DI. It varies greatly depending on the content. Here follows a detailed description of
the DI used with explanation for the purpose of each tag.

The root element of the document is <DIDL>. Right after it is a <DECLARATIONS>
element. Within it goes any Mpeg-7 data that might be needed to describe the video, e.g.
motion descriptors. After that is the <CONTAINER> tag which encapsulates all the
metadata for this specific lecture.

The first couple of tags in the <CONTAINER> are <DESCRIPTOR>. Those provide
general information for the lecture, e.g. university, professor name, course name, etc.

Two of the descriptors are different, as they have a reference in them. The first one is
with id “LOGO”, and stores the logo of the lecture. The second one is with id
“PLAYLIST” and stores the location of the play list of videos that will be passed to
WMP. After that come a series of <ITEM> tags, each one corresponding to a different
chapter. The ID property of an ITEM specifies its order in the presentation.

Each item has the information about the video, audio and slides in that chapter. First the
chapter title is described by a descriptor. The video meta-data is stored in a
<COMPONENT> with an id that is “VIDEO”. Tat component stores information about
the description of the video, its format and length as well as the locations of a thumbnail
and the video itself.

 52

Audio information is stored in the same way, only that the <COMPONENT> storing it
has an id “AUDIO”.

Similarly, the slides are described by a <COMPONENT> with an id “SLIDES”. Within it
every slide is represented by an <ANCHOR> tag. Its property, FRAGMENT, holds the
information of the duration of the slide. Within the anchor there is a descriptor that
specifies the overall position in the sequence of slides, and is followed by the location of
the slide.
An example DI can be found in Appendix A.

D. Digital Item Adaptation

The DIA is similar to the DI in the sense that it is also descriptive XML meta-data. Its
purpose is completely different though. It is used to store the user preferences and the
capabilities of the devices they are using. That information is later used in the transcoding
to provide the best available multimedia quality to the user. As with the DI, the DIA vary
greatly depending on their use, so here follows a description of the used tags and their
functions. For example of how the tags were used refer to DIA.xml in Appendix A.

<UsageEnvironment> - Describes various dimensions of the usage environment,
including user characteristics, terminal capabilities, etc.
<UserCharacteristics> - Describes the User characteristics in terms of general User
information, content preference, presentation preferences, accessibility characteristics,
etc.
<UserInfo> - Describes a general characteristics of a User such as name and contact
information.
<UserCharacteristics xsi:type=”PresentationPreferencesType”> - Tool that
describes the audio-visual presentation preferences of a User
<ModalityConversion> - Describes the modality conversion preferences of a User.
 <Conversion> - Tool for describing the choices of a modality conversion
 <From> - Describes the original modality
 <To> - Describes the destination modality
 order - Describes the order of the conversion corresponding to the
original
 modality and destination modality above. Conversion of high order is
carried out
 before conversion of low order. The smaller the value is, the higher the
order is,
 except that when value is 0, the corresponding conversion is forbidden.
 weight – describes the weight of the conversion corresponding to the original
 modality and destination modality above. It is used to scale the
highly-subjective
 conversion boundaries between different modalities. The weight has the
non-
 negative real type. Its default value is 1.0.

 53

<PresentationPriority> - Describes the presentation priority of resources
according to the preference of a User.
 <GeneralResourcePriorities> - Describes the presentation priorities for
 resources in a general way. In this case the User has some general knowledge of the
 content source, e.g. original modalities or genres.
 <ModalityPriorities> - Describes the presentation priorities for all resources
of
 certain modalities.
 <Modality> - Describes a certain modality.
<TerminalCapabilities> - Describes the capabilities of the terminal in terms of
 decoding and encoding capabilities, input-output capabilities, and device properties.
<TerminalCapabilities xsi:type="CodecCapabilitiesType"> - Tool for
 describing the encoding and decoding capabilities of the terminal.
 <Decoding> - Describes the decoding capability of the terminal.
<TerminalCapabilities xsi:type="InputOutputCapabilitiesType"> -
 Tool for describing the input-output capabilities of the terminal.
 <Display> - Tool that describes the display capabilities of the terminal.
 bitsPerPixel – Describes the bits-per-pixel, i.e., the color depth, of the display.
 refreshRate – Describes the refresh rate of a display in Hz.
 <Resolution> - Describes the horizontal and vertical resolution of the display in
 pixels.
 horizontal – Describes the horizontal resolution.
 vertical – Describes the vertical resolution.
 <AudioOut> - Tool that describes the audio output capabilities of the terminal.
 samplingFrequency – Describes the sampling frequency in units of Hz.
 bitsPerSample – Describes the number of bits per sample the output device
 supports
 lowFrequency – Describes the lower value of the frequency range in units of
Hz.
 highFrequency – Describes the upper value of the frequency range in units of
 Hz.
 numChanels – Describes the number of output channels the speakers support.

<UsageEnvironment xsi:type="NetworkCharacteristicsType"> - Tool for
describing the network characteristics in terms of capabilities and conditions.
<NetworkCharacteristics> - Describes the static capabilities and time-varying
conditions of a network.
<NetworkCharacteristics xsi:type=”NetworkCapabilityType”> - Tool for
describing the static capabilities of a network.
 maxCapacity – Describes the maximum bandwidth capacity of a network in
 bits/sec.
 minGuaranteed – Describes the minimum guaranteed bandwidth of a network in
 bits/sec.
<NetworkCharacteristics xsi:type=”NetworkConditionType”> - Tool for
describing time-varying conditions of a network.

 54

 <AvailableBandwidth> - Describes the available bandwidth of a network.
 minimum – Describes the minimum available bandwidth in bits per second of
the
 network during the window of time expressed by interval
 minimum – Describes the minimum available bandwidth in bits per second of
the
 network during the window of time expressed by interval
 average – Describes the average available bandwidth in bits per second of the
 network during the window of time expressed by interval.
 interval – Describes the window size in milliseconds that corresponds to the
 calculation of AvailableBandwith attributes: minimum, maximum and
average.

E. XSL Transformations

Meta-data (DI and DIA) by itself is just storage. To utilize that store we will use XSLT
and XPath. XSLT is a language for transforming XML documents into XHTML
documents or to other XML documents and XPath is a language for navigating in XML
documents used by XSLT. In the transformation process, XSLT uses XPath to define
parts of the source document that should match one or more predefined templates. When
a match is found, XSLT will transform the matching part of the source document into the
result document. The fact that XSLT uses pattern matching techniques makes it faster to
transform data than JSP that is why it is our preference to use XSLT as much as possible.

There are two types of XSLT sheets written for this project. The first is the one applied to
the DI to generate the XHTML interface, whereas the second type is applied to the DIA
to generate the command line options to the transcoder. We will look in more detail at
both types.

1. Interface

The sheets used to create the UI normally have a general pattern, with the only difference
being the XHTML look of the webpage. Here we will show some of the more common
routines used.

The XSLT sheets that show the interface is essentially an XHTML document with some
of its parameters (media locations, media durations, etc.) generated by XSL
transformations. These transformations are applied to the Digital Item since all necessary
information is stored there.

 55

There are several sheets for each interface, but these differ only cosmetically. The only
differences are the size of the video, slides, etc. and the actual XSLT content stays the
same for each interface.

Sheets for different platforms differ again only in the XHTML content and the
presentation method (since for example PDAs don’t have WMP 10 ActiveX controls),
but again the routines to extract the information from the DI are the same.

The following code extracts the durations of the slides, converting them to milliseconds.
Extracting the actual slide locations is done with a similar routine.

 <xsl:for-each select="//didl:ANCHOR">
 <xsl:sort
select="didl:DESCRIPTOR[@ID='SLIDE_NUMBER']/didl:STATEMENT"></xsl:sort>
 <xsl:choose>
 <xsl:when test="position()=last()">
 <xsl:value-of select="@FRAGMENT * 1000"></xsl:value-of>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="@FRAGMENT * 1000"></xsl:value-of>,
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>

The next piece of code creates an ActiveX control to play the video of the first chapter,
getting the location from the DI using XSLT.

 <object classid="clsid:22D6F312-B0F6-11D0-94AB-0080C74C7E95" height="96"
id="movie" width="128">
 <param name="FileName">
 <xsl:attribute name="value">
 <xsl:value-of
select="//didl:ITEM[@ID='1']/didl:COMPONENT[@ID='VIDEO']/didl:RESOURCE/@REF"></xsl:value-o
 </xsl:attribute>
 </param>
 <param name="ShowControls" value="0"></param>
 </object>

The following generates a radio button for every chapter, so the user can skip to any
chapter he/she wants.

 <xsl:for-each select="//didl:ANCHOR">
 <input name="slide_radio" onFocus="showSlide(1)" type="radio"
value="1">

 56

 <xsl:attribute name="onFocus">
 showSlide(<xsl:value-of
select="didl:DESCRIPTOR[@ID='SLIDE_NUMBER']/didl:STATEMENT"></xsl:value-of>)
 </xsl:attribute>
 Chapter <xsl:value-of
select="didl:DESCRIPTOR[@ID='SLIDE_NUMBER']/didl:STATEMENT"></xsl:value-of>
 </input>
</br>
 </xsl:for-each>

The full list of XSLT sheets can be found in Appendix A.

2. Transcoding

There is just one transcoding style sheet and it is very straight forward. It produces the
command line arguments to ffmpeg, without appending the “ffmpeg” and the input file in
the beginning.

The style sheet that performs this is called command.xsl and can be found in Appendix
A. It creates a XML document with the root level being <conversion>. It has at most 2
children tags (<command>). Each one is the command line option to ffmpeg . The first
one is the video options and the second one – audio. Depending on the chosen modality
and presentation preference some of these may not appear (e.g. the user wants only audio
but not video). Also this XML layout allows for the two commands to be combined into
one should the input file contain both audio and video, or they can be used separately
when the input are two files – one for video and one for audio.

F. Combining everything using JSP

Putting everything together was naturally done with Java, since JSP is serving the
website. Most of that work is done in the view.jsp file, which can be found in Appendix
A.

When we arrive at view.jsp we already have enough details that allow identifying a
unique user and a unique lecture. Some of the data (like framerate and size of video) is
set in the beginning because of the fact that it might not come from the database but from
the user preference from the previous page.
Using this data the program first finds the closest suitable sheet. The algorithm used was
not changed but only the implementation. As a result there is one query that finds the
closest list.

SELECT id, location, param_sum
FROM (SELECT s.id, s.location,
 (ABS(s.modality-ui.modality)/ui.modality+ABS(s.bitrate-ui.bitrate)/ui.bitrate+

ABS(s.framerate-ui.framerate)/ui.framerate+ABS(s.resolution-ui.resolution)/ui.resolution+
 ABS(s.depth-ui.depth)/ui.depth+ABS(s.freq-ui.freq)/ui.freq+

 57

 ABS(s.channels-ui.channels)/ui.channels+
 ABS(s.image_resolution-ui.image_resolution)/ui.image_resolution+

ABS(s.video-ui.video)/ui.video+ABS(s.audio-ui.audio)/ui.audio+ABS(s.image-ui.image)/ui.image
)AS param_sum
 FROM user ui,(SELECT s.id,s.modality,s.bitrate,s.framerate,s.resolution,s.depth,s.freq,s.channels,
 s.image_resolution,s.video,s.audio,s.image,s.location
 FROM sheet s, user ui
 WHERE ui.modality >= s.modality AND ui.bitrate >= s.bitrate AND
 ui.framerate >= s.framerate AND ui.resolution >= s.resolution AND
 ui.depth>= s.depth AND ui.freq>=s.freq AND ui.channels>=s.channels
AND
 ui.image_resolution>=s.image_resolution AND ui.video>=s.video AND
 ui.audio>=s.audio AND ui.image>=s.image AND ui.id=userID AND
vwidth=width AND
 vheight=height AND s.stream=stream
)s
 WHERE ui.id=userID)result_table
WHERE param_sum=(SELECT min(param_sum)
 FROM (SELECT s.id, s.location,(ABS(s.modality-ui.modality)/ui.modality+
 ABS(s.bitrate-ui.bitrate)/ui.bitrate+
 ABS(s.framerate-ui.framerate)/ui.framerate+
 ABS(s.resolution-ui.resolution)/ui.resolution+
 ABS(s.depth-ui.depth)/ui.depth+ABS(s.freq-ui.freq)/ui.freq+
 ABS(s.channels-ui.channels)/ui.channels+
 ABS(s.image_resolution-ui.image_resolution)/ui.image_resolution+
 ABS(s.video-ui.video)/ui.video+ABS(s.audio-ui.audio)/ui.audio+
 ABS(s.image-ui.image)/ui.image) AS param_sum
 FROM user ui,(SELECT
s.id,s.modality,s.bitrate,s.framerate,s.resolution,s.depth,

s.freq,s.channels,s.image_resolution,s.video,s.audio,s.image, 9
 s.location
 FROM sheet s, user ui
 WHERE ui.modality >= s.modality AND ui.bitrate >=
s.bitrate AND
 ui.framerate >= s.framerate AND ui.resolution >=
s.resolution AND
 ui.depth>= s.depth AND ui.freq>=s.freq AND
 ui.channels>=s.channels AND
 ui.image_resolution>=s.image_resolution AND
 ui.video>=s.video AND ui.audio>=s.audio AND
ui.image>=s.image
 AND ui.id=userID AND vheight=height AND
vwidth=width AND
 s.stream=stream
)s
 WHERE ui.id="+userID+")result_table
)

The name of the result is stored in a string variable called sheet.
The transformation that generates the command line options is only one, so it is known.

 58

Using the same data, about the user and the lecture, the program creates the DI and DIA
as strings, inserting the necessary information where it is needed.

Now that it has everything necessary (the DI, DIA and the transformation to be applied to
them) the program proceeds to apply the transformations.

The string of the DIA and DI is transformed into a StringReader and later into a
StreamSource, the sheet is loaded as a StreamSource object. After which the program
receives a new TransformFactory and generates a new Transformer. With it, the program
goes to apply the transformation.

Reader xslReader = new StringReader(didl);

File transform = new File("/home/grp2/jakarta-tomcat-

5.5.9/webapps/ROOT/interface/"+sheet);
StreamSource sTransform = new StreamSource(transform);
TransformerFactory tFactory = TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer(sTransform);
StreamSource source = new StreamSource(xslReader);
StringWriter strWriter = new StringWriter();
StreamResult result= new StreamResult(strWriter);

transformer.transform(source, result);
String strOutput = strWriter.getBuffer().toString();

After this the result of the transformation is stored in strOutput as a string.
This is done first for the command line options to ffmpeg. Then the command line is
executed to produce new files which are then included in the DI instead of the original
ones.

After that the transformation that generates the interface is applied to the Digital Item to
produce the webpage. The resulting string is printed using out.print();

This implementation is straight forward, but requires one special note due to the fact that
the PDA and SmartPhone interfaces consist of several pages.

G. Future Work

Several ideas could not be implemented due to hardware and software limitations.
One of them is embedding the video and sound in a webpage on a PDA or a SmartPhone.
This was due to the fact that currently there does not exist a multi-media control for the
pocket internet explorer. However this should change soon when Microsoft Windows
Mobile 5.0 comes out. The new operating system for Pocket PCs, which includes WMP

 59

10 and an ActiveX control for it, is already out but the device vendors haven’t shipped
Pocket PCs or allowed upgrades yet. This is expected to happen in fall 2005, so
streaming video and audio to a Pocket PC would not be a problem then. Visually, instead
of the current interface for video

We would have the more user-friendly version:

IV. References

[1] W3 Schools, [Online]. Available: http://www.w3schools.com/

[2] The Apache Jakarta Project, [Online]. Available: http://jakarta.apache.org/tomcat/

[3] Sun Microsystems, Java Technology, [Online]. Available:

http://java.sun.com/

[4] Working with XML – Tutorial, [Online]. Available:
 http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/TOC.html

 60

~~ Appendices ~~

 61

I. Appendices for Part Three

A. Appendix B

This appendix contains several screenshots of the different interfaces.

1. PC Interface

2. PDA Interface

Main page

 62

Slideshow

Current video interface

Future video interface

 63

3. SmartPhone Interface

