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Abstract

It is well-known that the applicability of Linear Discriminant Analysis (LDA) to

high-dimensional pattern classification tasks such as face recognition often suffers

from the so-called “small sample size” (SSS) problem arising from the small number

of available training samples compared to the dimensionality of the sample space.

In this paper, we propose a new LDA method that attempts to address the SSS

problem using a regularized Fisher’s separability criterion. In addition, a scheme of

expanding the representational capacity of face database is introduced to overcome

the limitation that the LDA-based algorithms require at least two samples per class

available for learning. Extensive experiments performed on the FERET database

indicate that the proposed methodology outperforms traditional methods such as

Eigenfaces and some recently introduced LDA variants in a number of SSS scenarios.
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1 Introduction

Face recognition (FR) has a wide range of applications, such as face-based

video indexing and browsing engines, biometric identity authentication, human-

computer interaction, and multimedia monitoring/surveillance. Within the

past two decades, numerous FR algorithms have been proposed, and detailed

surveys of the developments in the area have appeared in the literature (see e.g.

Samal and A.Iyengar, 1992; Valentin et al., 1994; Chellappa et al., 1995; Gong

et al., 2000; Turk, 2001; Zhao et al., 2003). Among various FR methodologies

used, the most popular are the so-called appearance-based approaches, which

include two well-known FR methods, namely, Eigenfaces (Turk and Pentland,

1991) and Fisherfaces (Belhumeur et al., 1997). With focus on low-dimensional

statistical feature extraction, the appearance-based approaches generally op-

erate directly on the appearance images of face object and process them as 2D

holistic patterns in order to avoid difficulties associated with 3D modelling,

and shape or landmark detection (Turk, 2001).

Of the appearance-based FR methods, those utilizing linear discriminant anal-

ysis (LDA) techniques have shown promising results as it is demonstrated in

(Belhumeur et al., 1997; Zhao et al., 1999; Chen et al., 2000; Yu and Yang,

2001; Liu and Wechsler, 2002; Lu et al., 2003a,b; Ye and Li, 2004). However,

statistical learning methods including the LDA-based ones often suffer from

the so-called “small-sample-size” (SSS) problem (Raudys and Jain, 1991), en-

countered in high-dimensional pattern recognition tasks where the number of

training samples available for each subject is smaller than the dimensional-

ity of the sample space. For example, only L ∈ [1, 5] training samples per

subject are available while the dimensionality is up to J = 17154 in the FR
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experiments reported here. As a result, the sample-based estimation for the

between- and within-class scatter matrices is often extremely ill-posed in the

application of LDA into FR tasks. Briefly, there are two ways to address the

problem. One option is to apply linear algebra techniques to solve the numeri-

cal problem of inverting the singular within-class scatter matrix. For example,

Tian et al. (1986) utilize the pseudo inverse to complete this task. Also, some

researchers (e.g. Hong and Yang, 1991; Zhao et al., 1999) recommended the

addition of a small perturbation to the within-class scatter matrix so that

it becomes nonsingular. The second option is a subspace approach, such as

the one followed in the development of the Fisherfaces method (Belhumeur

et al., 1997), where principal component analysis (PCA) is firstly used as a

pre-processing step to remove the null space of Sw, and then LDA is performed

in the lower dimensional PCA subspace. However, it has been shown that the

discarded null spaces may contain significant discriminatory information (Liu

et al., 1992a,b, 1993). To prevent this from happening, solutions without a

separate PCA step, called direct LDA (D-LDA) methods have been presented

recently in (Chen et al., 2000; Yu and Yang, 2001; Lu et al., 2003b).

The basic premise behind the D-LDA approaches is that the information re-

siding in (or close to) the null space of the within-class scatter matrix is more

significant for discriminant tasks than the information out of (or far away

from) the null space. Generally, the null space of a matrix is determined by

its zero eigenvalues. However, due to insufficient training samples, it is very

difficult to identify the true null eigenvalues. As a result, high variance is of-

ten introduced in the estimation for the zero (or very small) eigenvalues of

the within-class scatter matrix. Note that the eigenvectors corresponding to

these eigenvalues are considered to be the most significant feature bases in the
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D-LDA approaches (Chen et al., 2000; Yu and Yang, 2001; Lu et al., 2003b).

To overcome the above problem, a new LDA method for FR tasks is proposed

in this letter. The LDA method developed here is based on a novel regularized

Fisher’s discriminant criterion, which is particularly robust against the SSS

problem compared to the original one. The purpose of regularization is to

reduce the high variance related to the eigenvalue estimates of the within-class

scatter matrix at the expense of potentially increased bias. It will be shown

that by adjusting the regularization parameter, we can obtain a set of LDA

variants, such as the D-LDA of Yu and Yang (2001) (hereafter YD-LDA) and

the D-LDA of Lu et al. (2003b) (hereafter JD-LDA). The trade-off between

the variance and the bias, depending on the severity of the SSS problem, is

controlled by the strength of regularization. Extensive experiments indicate

that there exists an optimal regularization solution for the proposed method,

which outperforms some existing FR approaches including Eigenfaces, YD-

LDA and JD-LDA. In addition, a scheme of expanding the representational

capacity of face database is introduced to overcome a known limitation of

the LDA style learning methods, which require at least two samples per class

available for training. Furthermore, experimentation shows that the scheme

also enhances the overall FR performance of the proposed LDA method.

2 Methods

2.1 The Small-Sample-Size (SSS) Problem

Given a training set, Z = {Zi}Ci=1, containing C classes with each class

Zi = {zij}Ci

j=1 consisting of a number of localized face images zij , a total
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of N =
∑C
i=1Ci face images are available in the set. For computational conve-

nience, each image is represented as a column vector of length J(= Iw × Ih)

by lexicographic ordering of the pixel elements, i.e. zij ∈ R
J , where (Iw × Ih)

is the image size, and R
J denotes the J-dimensional real space.

LDA finds a set ofM(� J) feature basis vectors, denoted as {ψm}Mm=1, in such

a way that the ratio of the between- and within-class scatters of the training

sample is maximized (Fisher, 1936). The maximization problem is generally

formulated as:

Ψ = argmax
Ψ

∣∣∣ΨTSbΨ
∣∣∣

|ΨTSwΨ| , Ψ = [ψ1, · · · , ψM ], ψm ∈ R
J (1)

where Sb and Sw are the between- and within-class scatter matrices, having

the following expressions,

Sb =
1

N

C∑
i=1

Ci(z̄i − z̄)(z̄i − z̄)T =
C∑
i=1

Φb,iΦ
T
b,i = ΦbΦ

T
b (2)

Sw =
1

N

C∑
i=1

Ci∑
j=1

(zij − z̄i)(zij − z̄i)T (3)

where Φb,i = (Ci/N)1/2(z̄i − z̄), Φb = [Φb,1, · · · ,Φb,c], and z̄i = 1
Ci

∑Ci
j=1 zij is

the mean of the class Zi. The optimization problem of Eq.1 is equivalent to

the following generalized eigenvalue problem,

Sbψm = λmSwψm, m = 1 · · ·M (4)

Thus, when Sw is non-singular, the basis vectors Ψ sought in Eq.1 correspond

to the firstM most significant eigenvectors of (S−1
w Sb), where the “significant”

means that the eigenvalues corresponding to these eigenvectors are the first

M largest ones. Due to the SSS problem, often a extremely degenerated Sw
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is generated in FR tasks. Let us assume that A and B represent the null

spaces of Sb and Sw respectively, while A′ = R
J −A and B′ = R

J −B denote

the orthogonal complements of A and B. Traditional methods, for example

Fisherfaces (Belhumeur et al., 1997), attempt to solve the problem by utilizing

an intermediate PCA step to removeA andB. Nevertheless, it should be noted

at this point that the maximum of the ratio in Eq.5 can be reached only when∣∣∣ΨTSwΨ
∣∣∣ = 0 and

∣∣∣ΨTSbΨ
∣∣∣ 	= 0. This means that the discarded null space

B may contain the most significant discriminatory information. On the other

hand, there is no significant information, in terms of the maximization in

Eq.5, to be lost if A is discarded. It is not difficult to see at this point that

when Ψ ∈ A, the ratio
|ΨT SbΨ|
|ΨT SwΨ| drops to its minimum value, 0. Therefore,

many researchers (e.g. Liu et al., 1992a,b, 1993; Chen et al., 2000) consider

the intersection space (A′ ∩ B) to be spanned by the optimal discriminant

feature bases.

Based on the above principle, Yu and Yang (2001) proposed the so-called

direct LDA (YD-LDA) approach in order to prevent the removal of useful

discriminant information contained in the null space B. However, it has been

recently found that the YD-LDA performance may deteriorate rapidly when

the SSS problem becomes severe (Lu et al., 2003c). The deterioration should

be attributed to the influence of the two factors, variance and bias. Firstly, it

is well-known that the Sw estimate based on Eq.3 produces biased estimates of

the eigenvalues. As a result, the largest ones are biased high and the smallest

ones are biased toward values that are too low. Secondly, the estimate of the

null space B can be highly unstable, giving rise to high variance. Both the

variance and biasing degrees are determined by the degree of the SSS problem.

A relevant method developed by Friedman (1989) in similar situations is the
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regularized quadratic discriminant analysis, where each sample class covari-

ance matrix estimate Si could be highly ill-posed. The solution proposed by

Friedman (1989) is to introduce a regularization term, which is a multiple of

the identity matrix, γ · I, so as to have Si = Si + γI, where γ is the regu-

larization parameter and I is the identity matrix. Such a regularization has

the effect of decreasing the larger eigenvalues and increasing the smaller ones,

thereby counteracting the biasing. Another effect of the regularization is to

stabilize the smallest eigenvalues. Furthermore, it should be noted that the

within-class scatter matrix Sw considered here is equivalent to the average of

the individual class covariance matrices Si, i.e. Sw = 1
C

∑C
i=1 Si. This encour-

ages us to conceive a similar solution to handle the SSS situations that the

D-LDA type methods may encounter.

2.2 A Regularized Fisher’s Discriminant Criterion

Motivated by the success of Friedman (1989), a variant of D-LDA is developed

here by introducing a regularized Fisher’s criterion, which can be expressed

as follows:

Ψ = argmax
Ψ

∣∣∣ΨTSbΨ
∣∣∣

|η(ΨTSbΨ) + (ΨTSwΨ)| (5)

where 0 ≤ η ≤ 1 is a regularization parameter. Although Eq.5 looks quite

different from the conventional Fisher’s criterion (Eq.1), it can be shown that

they are exactly equivalent by the following theorem.

Theorem 1 Let R
J denote the J-dimensional real space, and suppose that

∀ψ ∈ R
J , u(ψ) ≥ 0, v(ψ) ≥ 0, u(ψ) + v(ψ) > 0 and 0 ≤ η ≤ 1. Let

q1(ψ) =
u(ψ)
v(ψ)

and q2(ψ) =
u(ψ)

η·u(ψ)+v(ψ)
. Then, q1(ψ) has the maximum (including
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positive infinity) at point ψ∗ ∈ R
J iff q2(ψ) has the maximum at point ψ∗.

PROOF. Since u(ψ) ≥ 0, v(ψ) ≥ 0 and 0 ≤ η ≤ 1, we have 0 ≤ q1(ψ) ≤ +∞
and 0 ≤ q2(ψ) ≤ 1

η
.

(1) If η = 0, then q1(ψ) = q2(ψ).

(2) If 0 < η ≤ 1 and v(ψ) = 0, then q1(ψ) = +∞ and q2(ψ) = 1/η.

(3) If 0 < η ≤ 1 and v(ψ) > 0, then

q2(ψ) =
u(ψ)/v(ψ)

1 + ηu(ψ)/v(ψ)
=

q1(ψ)

1 + ηq1(ψ)
=

1

η

(
1− 1

1 + ηq1(ψ)

)
.

It can be seen that in this case, q2(ψ) increases iff q1(ψ) increases.

Combining (1)− (3), we have the theorem.

The modified Fisher’s criterion is a function of the parameter η, which controls

the strength of regularization. Within the variation range of η, two extremes

should be noted. In one extreme where η = 0, the modified Fisher’s criterion is

reduced to the conventional one with no regularization. In contrast with this,

rather strong regularization is introduced in another extreme where η = 1. In

this case, Eq.5 becomes Ψ = argmax
Ψ

|ΨT SbΨ|
|ΨT (Sb+Sw)Ψ)| , which as a variant of the

original Fisher’s criterion has been also widely used for example in the D-LDA

method (JD-LDA) of Lu et al. (2003b) and others (see e.g. Liu et al., 1992a,b,

1993; Chen et al., 2000; Lu et al., 2003a). The advantages of introducing the

regularization strategy will be seen during the development of the new LDA

algorithm proposed below.
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2.3 A Regularized LDA: R-LDA

In this work, we propose a regularized LDA (hereafter R-LDA) method, which

attempts to optimize the regularized Fisher’s criterion of Eq.5. The R-LDA

method follows the D-LDA process of Yu and Yang (2001) and Lu et al.

(2003b). To this end, we first solve the complement space of Sb, A
′. Let

Um = [u1, · · · , um] be the eigenvectors of Sb corresponding to its first m

largest nonzero eigenvalues Λb, where m ≤ C − 1. The complement space

A′ is spanned by Um, which is furthermore scaled by H = UmΛ
−1/2
b so as to

have HTSbH = I, where I is the (m×m) identity matrix. In this way, it can

be seen that the denominator of Eq.5 is naturally transformed to the regular-

ization expression of Friedman’s style, ηI+HTSwH, in the subspace spanned

by H. We then seek a set of feature bases, which minimizes the regularized

denominator. It is not difficult to see that the sought feature bases correspond

to theM(≤ m) eigenvectors ofHTSwH, PM = [p1, · · · ,pM ], with the smallest
eigenvalues Λw. Combining these results, we can obtain the sought solution,

Ψ = HPM(ηI + Λw)
−1/2, which is considered a set of optimal discriminant

feature basis vectors. The detailed process to implement the R-LDA method

is depicted in Fig.1.

It can be seen from Fig.1 that R-LDA reduces to YD-LDA and JD-LDA when

η = 0 and η = 1, respectively. Varying the values of η within [0, 1] leads to

a set of intermediate D-LDA variants between YD-LDA and JD-LDA. Since

the subspace spanned by Ψ may contain the intersection space (A′ ∩B), it is
possible that there exist zero or very small eigenvalues in Λw, which have been

shown to be high variance for estimation in the SSS environments (Friedman,

1989). As a result, any bias arising from the eigenvectors corresponding to
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Input: A training set Z with C classes: Z = {Zi}Ci=1, each class

containing Zi = {zij}Ci

j=1 face images, where zij ∈ R
J , and

the regularization parameter η.

Output: An M-dimensional LDA subspace spanned by Ψ, a J ×M

matrix with M � J .

Algorithm:

Step 1. Express Sb = ΦbΦ
T
b , with Φb = [Φb,1, · · · ,Φb,c],

Φb,i = (Ci/N)1/2(z̄i − z̄), z̄i = 1/Ci
∑Ci
j=1 zij , and

z̄ = 1/N
∑C
i=1

∑Ci
j=1 zij .

Step 2. Find the m eigenvectors of ΦTb Φb with non-zero

eigenvalues, and denote them as Em = [e1, · · · , em].
Step 3. Calculate the first m most significant eigenvectors (Um)

of Sb and their corresponding eigenvalues (Λb) by

Um = ΦbEm and Λb = U
T
mSbUm.

Step 4. Let H = UmΛ
−1/2
b . Find eigenvectors of HTSwH,

P = [p1, · · · ,pm] sorted in increasing eigenvalue order.

Step 5. Choose the first M(≤ m) eigenvectors in P. Let PM and

Λw be the chosen eigenvectors and their corresponding

eigenvalues, respectively.

Step 6. Return Ψ = HPM(ηI+ Λw)
−1/2.

Fig. 1. The pseudo code implementation of the R-LDA method

these eigenvalues is dramatically exaggerated due to the normalization pro-

cess (PMΛ
−1/2
w ). Against the effect, the introduction of the regularization helps

to decrease the importance of these highly unstable eigenvectors, thereby re-
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ducing the overall variance. Also, there may exist the zero eigenvalues in Λw,

which are used as divisors in YD-LDA due to η = 0 so that the YD-LDA pro-

cess can not be carried out. However, it is not difficult see that the problem

can be avoided in the R-LDA solution, Ψ = HPM(ηI + Λw)
−1/2, simply by

setting the regularization parameter η > 0.

3 Discussion: A Different Viewpoint to the SSS Problem

The works described above are attempting to solve the SSS problem from

the viewpoint of improving existing LDA algorithms. On the other hand, the

problem can be addressed by expanding the representational capacity of the

available training database. For example, given a pair of prototype images

belonging to the same class, Li and Lu (1999) proposed a linear model, called

the nearest feature line (NFL), to virtually generalize an infinite number of

variants of the two prototypes under variations in illumination and expression.

However, like LDA, the NFL method requires at least two training samples

per subject to be available. To deal with the extreme case where only one

training image per subject is available, Huang et al. (2003) recently proposed

a method, which constructs more samples by rotating and translating the

prototype image. Nevertheless, the method introduces bias inevitably when

face recognition is performed on a set of well-aligned face images for example

along with the centers of the eyes as did in the experiments reported here.

To avoid the bias, an alternative approach may be the use of the mirrored

versions of the available training samples. Based on the symmetrical property

of face object, intuitively it is reasonable to consider the mirrored view of a

face image to be a real and bias-free sample of the face pattern. In this way, the
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size of the training set can be doubled. In addition, the mirrored version of any

test sample can also be utilized to enhance the performance of a FR system.

For example, we can verify the classification result of a given query using its

mirror. A recognition process is accepted only when the query and its mirror

are given the same class label, otherwise the query is rejected to recognition.

More sophisticated rules to combine the results from multiple classifiers can

be found in (Kittler et al., 1998), but such a development is beyond the scope

of this letter.

4 Experimental Results

4.1 The FR Evaluation Design

A set of experiments are included in the paper to assess the performance

of the proposed R-LDA method. To show the high complexity of the face

patterns’ distribution, a medium-size subset of the FERET database (Phillips

et al., 2000) is used in the experiments. The subset consists of 1147 gray-

scale images of 120 people, each one having at least 6 samples so that we can

generalize a set of SSS learning tasks. These images as depicted in Table 1

cover a wide range of variations in illumination, facial expression/details, and

pose angles. We follow the preprocessing sequence recommended by Phillips

et al. (2000), which includes four steps: (1) images are translated, rotated

and scaled (to size 150 × 130) so that the centers of the eyes are placed on

specific pixels; (2) a standard mask as shown in Fig.2:Middle is applied to

remove the nonface portions; (3) histogram equalization is performed in the

masked facial pixels; (4) face data are further normalized to have zero mean
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and unit standard deviation. Fig.2:Right and Fig.3 depict some examples after

the preprocessing sequence is applied. For computational requirement, each

image is finally represented as a column vector of length J = 17154 prior to

the recognition stage.

Table 1

The number of images divided into the standard FERET imagery categories, and

the pose angle, α (degree), of each category.

Ct. fa fb ba bj bk ql qr rb rc

No. 567 338 5 5 5 68 65 32 62

α 0 0 0 0 0 -22.5 +22.5 10 -10

Fig. 2. Left: Original samples in the FERET database. Middle: The standard

mask. Right: The samples after the preprocessing sequence.

Fig. 3. Some samples of eight people come from the normalized FERET evaluation

database.

The SSS problem is defined in terms of the number of available training sam-
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ples per subject, L. Thus the value of L has a significant influence on the re-

quired strength of regularization. To study the sensitivity of the performance,

in terms of correct recognition rate (CRR), to L, five tests were performed

with various L values ranging from L = 1 to L = 5. For a particular L, the

FERET subset is randomly partitioned into three datasets: a training set, a

validation set and a test set. The training set is composed of (L×120) samples:

L images per person were randomly chosen. The validation set is composed of

(2× 120) samples: 2 images per person were randomly chosen. The remaining

(1147− L× 120− 2× 120) images are used to form the test set. There is no

overlapping between the three. To enhance the accuracy of the assessment,

five runs of such a partition were executed, and all of the experimental results

reported below have been averaged over the five runs.

4.2 CRR Performance with Varying Regularization Parameter

The first experiment is designed to test the CRR performance of R-LDA with

varying regularization parameter in various SSS scenarios. To this end, the R-

LDA method is applied to a testing grid of (η,M) values, defined by the outer

product of η = [10−4 : 0.01 : 1] and M = [20 : 1 : 119], where the expression

[b1 : b2 : b3] denotes a spaced vector consisting of round((b3 − b1)/b2) elements

from b1 to b3 with step b2, and η is initiated from 10−4 instead of zero to avoid

numerical singularities in (HTSwH). For every pair of (η,M) values in the grid,

R-LDA is first trained with the training set. Since there is no requirement for

parameter selection in this experiment, the learned R-LDA(η,M) machine is

then directly applied to an evaluation dataset consisting of the validation and

test sets. The CRRs obtained by R-LDA(η,M) on the combined evaluation
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set are depicted in Fig.4.

Fig. 4. CRRs obtained by R-LDA as a function of (M,η). Top: L = 2, 3; Bottom:

L = 4, 5, where L is the number of training samples per subject.

The parameter η controls the strength of regularization, which balances the

tradeoff between variance and bias in the estimation for the zero or small

eigenvalues of the within-class scatter matrix. Varying the η values within [0, 1]

leads to a set of intermediate LDA variants between YD-LDA and JD-LDA. In

theory, YD-LDA with no extra bias introduced through η should be the best

performer among these variants if sufficient training samples are available. It

can be observed at this point from Fig.4 that the CRR peaks gradually moved

from the right side (η = 1) toward the left side (η = 0) that is the case of

YD-LDA as L increases. Small values of η have been good enough for the

regularization requirement in many cases (L ≥ 4) as shown in Fig.4. However,

it also can be seen from Fig.4 that YD-LDA performed poorly when L = 2, 3.

This should be attributed to the high variance in the estimate of Sw due to
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insufficient training samples. In these cases, evenHTSwH is singular or close to

singular, and the resulting effect is to dramatically exaggerate the importance

associated with the eigenvectors corresponding to the smallest eigenvalues.

Against the effect, the introduction of regularization helps to decrease the

larger eigenvalues and increase the smaller ones, thereby counteracting for

some extent the bias. This is also the reason why JD-LDA outperforms YD-

LDA when L is small.

4.3 Quantitative Comparison with Other FR Methods

To further study the performance of the R-LDA method, we conducted a more

strict experiment for a quantitative comparison among R-LDA, YD-LDA and

JD-LDA in this section. The Eigenfaces method (Turk and Pentland, 1991)

was also implemented to provide a performance baseline. For all the four

methods compared here, the CRR is a function of the number of extracted

feature vectors,M , and the number of available training examples per subject,

L. In addition, R-LDA’s performance depends critically on the regularization

parameter, η. It has been shown by last experiment that R-LDA is capable

of outperforming both YD-LDA and JD-LDA. However, it should be noted

that the performance improvement is subject to the selection of the parame-

ters (η,M). Thus, to make a fair comparison, the parameter selection process

should be included in the experiment. To this end, we take advantages of the

three splits: the training, validation and test sets. Each method compared here

is first trained on the training set to generalize a set of models with various

parameter configurations, for example, all the possible M values for Eigen-

faces, YD-LDA and JD-LDA, and the (η,M) grid described in Section 4.2
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for R-LDA. These models are evaluated on the validation set, and then the

best found model is applied to the test set. The CRRs obtained by the four

methods on the test set are reported in Table 2, where M∗ and η∗ denote the

parameter values corresponding to the best configuration determined by using

the validation set.

Table 2

Comparison of the CRRs (%) obtained on the test set and their corresponding pa-

rameter values without using mirrored samples. L is the number of training samples

per subject.

L = 1 2 3 4 5

Eigenfaces 46.48 57.96 65.19 65.81 65.26

(M∗) 117 145 217 287 405

YD-LDA − 17.42 75.69 83.61 88.73

(M∗) − 114 116 108 106

JD-LDA − 69.60 76.71 81.17 85.26

(M∗) − 116 116 117 112

R-LDA − 69.66 78.10 83.47 88.98

(M∗) − 116 119 112 114

(η∗) − 0.983 0.24 0.048 10−4

From Table 2, it can be clearly seen that R-LDA is the top performer amongst

all the methods compared here. Also, the characteristics of the three LDA-

based methods are demonstrated again in this experiment. YD-LDA showed
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excellent performance on one side (L = 5) of the SSS settings but failed on the

other side (L = 2), while JD-LDA performed on the contrary. In contrast with

this, by introducing the adjustable regularization parameter, R-LDA systemat-

ically combines the strengths of YD-LDA and JD-LDA while at the same time

overcomes their shortcomings and limitations. On the other hand, it should

be noted that compared to other methods, the determination of the optimal

parameter values (M∗, η∗) for R-LDA is computationally demanding as it is

based on an exhaust search in the preset (η,M) grid by using the validation

set. Nevertheless, some heuristics may be applied to reduce the grid size. For

example, it is not difficult to see that the optimal regularization parameter

η∗ decreases monotonously as the number of training samples per subject, L,

increases. It seems that the relationship is not linear. This is the reason why

the values of the best found η∗ in Table 2 appear to be [0.983, 0.24, 0.048, 10−4]

corresponding to L = [2, 3, 4, 5]. Also it should be noted that small values of

η have been good enough for the regularization requirement in the cases of

L ≥ 4. In addition to L, our recent experiments indicated that the η∗ value

increases as the number of subjects, C, increases. It is similar at this point to

the learning capacity of the LDA machines, which is generally considered to be

directly proportional to the number of training samples per subject L, while

reciprocally proportional to the number of the training subjects C. Therefore,

further exploring the mathematical relationship among these parameters L, C,

η, and the training/generalization errors may be an interesting future research

direction to reveal the nature of discriminant learning under small sample size

scenarios.
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4.4 Performance Improvement with the Introduction of Mirrored Images

The LDA based algorithms require at least two training samples for each class.

However, with the introduction of the mirrored training samples, it becomes

possible to overcome the limitation. In this experiment, R-LDA is trained

with a combined set consisting of the training samples and their mirrors.

Same to the experiment described in Section 4.3, the model parameters are

determined by using the validation set. The R-LDA classifier with the best

found parameters is then applied to the test set in three ways. The resulting

CRRs are depicted in Table 3, where R-LDAm1 and R-LDAm2 correspond

to the results obtained by using the original test set and its mirrored version,

respectively, while R-LDAm3 denotes the results from a combination of the

two sets. As introduced in Section 3, a recognition process is accepted by R-

LDAm3 only when the test sample and its mirror are identified as belonging

to the same subject, otherwise the test sample is rejected to recognition.

Not surprisingly, as it can be seen from Table 3, R-LDAm1 and R-LDAm2

have similar performance. This means that to recognize a test sample, we

can use either the sample or its mirror. Compared to R-LDA in Table 2,

the performance improvement achieved by R-LDAm1 and R-LDAm2 is up

to approximately 2% in average over the range L = 2 ∼ 5. On the other

hand, the reject rates obtained in R-LDAm3 indicate that the recognition is

incorrect in most cases when the sample and its mirror are given different class

labels. Therefore, compared to R-LDAm1 and R-LDAm2, an additional CRR

improvement of approximately 2% in average over L = 1 ∼ 5 is obtained by R-

LDAm3. These results shown in Table 3 demonstrate that the mirrors of face

images provide not only additional training samples, but also complemental
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Table 3

Comparison of the CRRs (%) with the corresponding parameter values obtained by

R-LDA on the test set using different mirror schemes.

L = 1 2 3 4 5

R-LDAm1 56.01 70.25 80.18 86.84 90.59

(M∗) 119 117 115 114 108

(η∗) 0.3 0.40 0.068 10−4 10−4

R-LDAm2 56.01 70.64 81.50 86.89 90.28

(M∗) 119 119 119 114 112

(η∗) 0.38 0.53 0.016 10−4 10−4

R-LDAm3 59.57 73.11 82.26 88.19 91.07

Reject Rate 7.85 6.21 3.14 2.06 0.87

(M∗) 119 117 115 112 107

(η∗) 1 1 0.064 10−4 10−4

information, which is useful to enhance the generalization performance of a

LDA-based FR system.

5 Conclusions and Future Works

A new LDA method for face recognition has been introduced in this paper.

The proposed method is based on a novel regularized Fisher’s discriminant

criterion, which is particularly robust against the SSS problem compared to
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the traditional one used in LDA. It has been also shown that a series of

traditional LDA variants including the recently introduced YD-LDA and JD-

LDA can be derived from the proposed R-LDA framework by adjusting the

regularization parameter. Also, a scheme to double the size of face databases

is introduced, so that R-LDA can be carried out in the extreme case where

only one training sample available for each subject. The effectiveness of the

proposed method has been demonstrated through experimentation using the

FERET database.

Our future work will concentrate on a continuing improvement of the R-LDA

algorithm. Firstly, as discussed before, an immediate direction is to seek a

fast and cost-effective parameter optimization method instead of the exhaust

search. However, such a research is rather difficult, due to some unknown facts,

for example,

(i) What is the actual distribution of the patterns?

(ii) How have the training data sampled the underlying distribution of the

patterns?

Classical parameter estimation schemes such as leave-one-out may not work

well, since the estimation will experience high variance as it is under small

sample considerations. Alternatively, a further study on the mathematical

relations between the number of training samples per subject L, the number

of subjects C, the regularization parameter η, and the classification error seems

more promising. Also, a kernel version of R-LDA is straightforward to develop

a more general R-LDA framework, which is able to deal with both linear and

nonlinear problems.
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