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Abstract.
A new face recognition system is introduced and analyzed in this

paper. The system utilizes a novel statistical pattern recognition
method to optimize the feature selection process. The optimized
feature set feeds a classification module, which is based on the mod-
ified ν-support vector machine approach (ν-SVM). The optimized
feature set reduces the burden of the subsequent ν-SVM classifier
and improves its learning speed and classification accuracy. The pa-
per includes, simulation studies and comparative evaluation with
several existing systems on the ORL face database. Results indi-
cate that the proposed system has excellent performance achieving
the lowest error rate reported to date for the ORL face database
using only a very small set of features.

INTRODUCTION

Within the last decade, numerous algorithms have been proposed for face
recognition. A number of surveys in this area can be found in [13, 17, 4].
Two issues are central to all these algorithms: (i) what features to use to
represent a face, and (ii) how to classify a new face image based on the
chosen feature representation.

The first issue addresses the problem of feature representation, where
techniques available for its solution can be divided into two classes [9]: (i)
geometric feature (GF) based methods [13], and (ii) statistical pattern recog-
nition (SPR) based methods [17, 4]. GF-based methods [13] use properties
and relations between facial characteristics such as eyes, nose, mouth and
chin, as descriptors of faces for recognition. This class of methods relies
heavily on the detection of facial features. Unfortunately, facial feature de-
tection techniques developed to date have not been reliable enough to cater
to this need [9]. In contrast with GF-based methods, SPR-based methods
generally operate directly on the pixel level and process face images as holis-
tic patterns. Since there is no need to detect facial features, this class of



approaches is demonstrated to be more robust and practical comparing to
GF-based methods [9, 17]. The most successful SPR-based methods include
Eigenfaces [16] and Fisherfaces [1].

Although research studies indicate that linear discriminant analysis (LDA)
based algorithms [1, 5, 20] outperform principal component analysis (PCA)
based algorithms [16] in many applications of practical importance such as
face recognition, traditional LDA algorithms cannot provide reliable and ro-
bust solutions since their separability criteria are not directly related to their
classification accuracy in the output space, often resulting in misclassification
[11]. As a result, weighting functions are introduced in LDA based techniques
[11]. Object classes that are closer together, and thus can potentially result in
misclassification, are more heavily weighted. Based on the idea, we utilize a
new LDA algorithm, called DF-LDA [12], for feature extraction in this paper.
DF-LDA optimizes the feature space utilizing a fractional-step dimensional-
ity reduction algorithm which allows for the relevant distances in LDA to be
more accurately weighted. DF-LDA also provides more reliable and robust
solutions to the so-called “small sample size problem” (SSS) which exists
in high-dimensional pattern recognition tasks where the number of samples
is smaller than the dimensionality of the samples [1, 5, 20]. DF-LDA can
been seen as an integrated LDA approach, which takes advantages of the
existing LDA techniques while at the same time overcomes many of their
shortcomings and limitations.

The another issue addresses the problem of pattern classification. Tak-
ing the optimized feature vectors as the input, a modified ν-support vector
machine (ν-SVM) [3] is trained to learn non-linear boundaries separating dif-
ferent classes of patterns. Support vector machines (SVM) comprise a new
class of learning algorithms, originally developed by Vapnik [18]. SVMs dif-
fer radically from comparable approaches such as neural networks, since they
embody the Structural Risk Minimization principle, which has been shown
to be superior to traditional Empirical Risk Minimization principle employed
by most of neural networks in many classification and regression problems
[2, 7]. In conventional SVMs, the only parameter that we can dispose of is
the regularization constant C, which has important effect on the performance
of SVMs. However, it is difficult to select an appropriate C. Schölkopf [14]
presented a new support vector algorithm called “ν-SVM”, where C is substi-
tuted by a parameter ν. ν lets one be able to effectively control the number
of support vectors and errors. However, comparing to regular SVMs, ν-SVM
is more complicated so that there are no effective methods to solve large-scale
ν-SVM. In this paper, we adopt a variant of ν-SVM proposed by Chang [3]
in which ν-SVM is modified to a different form where existing methods can
be applied to solve it, while advantages of regular SVMs are preserved.

The organization of the rest of the paper is as follows. In Section 2,
we introduce the DF-LDA algorithm and the ν-SVM based classifier. In
Section 3, two sets of experiments are presented to demonstrate advantages
of the proposed system. In which, DF-LDA is compared with Eigenfaces,
Fisherfaces and direct LDA algorithm (D-LDA) [20] based on a common



classifier. Then, ν-SVM is also compared with other 3 classifiers: nearest
neighbor (NN), nearest feature line (NFL) [9] and probabilistic neural net-
works (PNN) [19] taking the same feature set as input. The results show
that both of DF-LDA and ν-SVM obtain the best performance in terms of
error rate. Moreover, our system consisting of DF-LDA and ν-SVM achieves
the lowest error rate reported to date for the ORL face database using only
a very small set of features. Finally, Section 4 gives the conclusions.

METHODS

Given a set of training face images {zi}L
i=1, each of images is represented as

a vector of length N(= Iw × Ih), i.e. zi ∈ R
N , and belongs to one of c classes

{Zi}c
i=1, where L is the number of face images, Iw × Ih is the face image

size, and R
N denotes N -dimensional real space. The processing on these

patterns consists of two parts: the SPR-based optimal feature extraction
and the ν-SVMs based learning for classification.

SPR-based Feature Selection

Traditional LDA-based algorithms. LDA is one of the most popular
SPR-based techniques for feature extraction. Researchers have demonstrated
that the LDA based algorithms outperform the PCA based algorithm for solv-
ing problems of pattern classification [1, 5, 20]. Because LDA optimizes the
low-dimensional representation of the objects with focus on the most discrim-
inant feature extraction while PCA achieves simply object reconstruction.
Let SBTW and SWTH be the between- and within-class scatter matrices

respectively, LDA found the most discriminant basis vectors, denoted by

{ψk}M
k=1, by Ψ = arg max

Ψ

|(ΨT SBTW Ψ)|
|(ΨT SWT HΨ)| where Ψ = [ψ1, . . . , ψM ] and M < N .

Assuming that SWTH is non-singular, the basis vectors {φk}M
k=1 correspond

to the first M eigenvectors with the largest eigenvalues of S−1
WTHSBTW .

However, in face recognition tasks the number of training samples L is,
in most cases, much smaller than the dimensionality N leading to a degen-
erated SWTH , which produced the SSS problem. Many methods have been
proposed to solve the problem [1, 5, 20]. A typical solution adopted in Fisher-
faces [1] is, to perform an intermediate dimensionality reduction before doing
the FLD analysis by PCA transformation to remove null space from SWTH .
Nevertheless, the Fisherface method inevitably suffer the same drawback as
the Eigenface method in the PCA step, which leads some of significant dis-
criminatory information may be lost [20].

Aimed to the problem with Fisherface method, Yang et al. [20] and Chen
et al. [5] proposed direct LDA algorithms (D-LDA) respectively without a
separate PCA step. The basic idea of D-LDA is that the null space of SWTH

may contains significant discriminatory information if the projection of SBTW

is not zero in that direction, but it will not lose any useful information if the



null space of SBTW is discarded. However, a drawback with the D-LDA
method is that zero eigenvalues of SWTH may be used as divisors [12].

Integrated LDA (DF-LDA). A disadvantage of traditional LDA algo-
rithms including Fisherfaces and D-LDA is that the separability criteria does
not have a direct relationship with the classification accuracy in the output
space [11]. The weighting function on the between-class scatter helps make
the optimality criteria more representative of the classifiability in the output
space based on the motivation that classes which are closer to one another
are more likely to cause confusion and thus should be more heavily weighted.
Let ŜBTW be the weighted between-class scatter matrix in the input space

and given by, ŜBTW =
∑c

i=1 φiφ
T
i where, φi =

∑c
j=1 (Li · w(dij))1/2(z̄i − z̄j)

and dij =‖ z̄i − z̄j ‖ is the Euclidean distance between the means of class
i and class j in the input space. The weighting function w(dij) should be
a monotonically decreasing function because classes that are closer together
should be given a greater weightage.

During dimensionality reduction using LDA, another possible problem
will be encountered. Suppose we want to reduce the dimensionality of face
images {zi}L

i=1 from N to (N − 1). We firstly diagonalize ŜBTW , and get its
eigenvectors, [υ1, . . . , υN ]. The required lower dimensional representation of
zi is obtained by projecting zi into the subspace spanned by the first (N −1)
most significant eigenvectors [υ1, . . . , υN−1]. However, it is possible that there
is a pair of classes i and j whose difference (z̄i − z̄j) has approximately the
same orientation as the discarded eigenvector υN . Thus, the two classes would
heavily overlap in the (N − 1)-dimensional subspace, which is orthogonal to
υN . The problem is caused by insufficiently weighting on (z̄i − z̄j) when
calculating ŜBTW [11], i.e. classes i and j are well-separated in the input
space and this leads a small w(dij). Instead of reducing the dimensionality
from N to N − 1 directly, DF-LDA uses a fraction-step LDA (F-LDA) like
algorithm which move “incrementally” towards a dimensionality of (N − 1).
At each incremental step, ŜBTW is recomputed and rediagonalized, thereby
allowing those classes that come closer together to be increasingly weighted
and causing the (N − 1)-dimensional subspace to reorient and avoid severe
overlap between classes in the output space.

However, the SSS problem with face recognition tasks leads to degener-
ated SWTH and ŜBTW . It is not applicable to directly apply F-LDA to find
{ψk}M

k=1. Therefore, DF-LDA implements feature optimization in two steps.
Firstly, an improved D-LDA algorithm is used to remove the null space of
ŜBTW and solve SSS problem without losing the most discriminant features.
This also lower dimensionality of feature space from N to M ′ < N . Then,
feature space is further optimized using a F-LDA like technique. Finally,
a lower-dimentional feature space spanned by M < M ′ most discriminant
feature basis vectors can be obtained. DF-LDA algorithm naturally unifies
the D-LDA and F-LDA techniques together, and takes advantages of the two
techniques while at the same time overcomes many of their shortcomings and
limitations. The detail pseudocode to implement the DF-LDA algorithm can



be found in [12]. The first 6 of M when M = 25 and M = 10 in our exper-
iments are shown in Fig.1 (Right) respectively. Let Γ denote the projection
matrix consisting of the M basis vectors obtained by DF-LDA. For each face
image zi, a feature vector xi can be calculated by xi = ΓT zi, which is then
fed into subsequent classifiers.

Figure 1: Left: Sample images of two persons in the ORL database. Right: The
optimal basises derived by the DF-LDA method, top: the first 6 basises obtained
when M = 25, r = 30 and w(d) = d−8, bottom: the first 6 basises obtained when
M = 10, r = 30 and w(d) = d−8, both of them are listed from left to right.

ν-SVM based classifier

Most methods for training a classifier, such as neural networks and radial ba-
sis function (RBF), are based on the principle of minimizing Empirical Risk,
i.e. training error. As a result, the classifiers obtained may be entirely un-
suitable for classification of unseen test patterns, although they may achieve
lowest training error. In contrast, SVMs embody another induction princi-
ple, i.e. the Structural Risk Minimization, which aims to minimize an upper
bound on the expected generalization error. Since the notation and termi-
nology of SVM approaches still remain relatively unknown, a brief overview
on conventional C-SVM is included here.

C-Support vector classification. Given training vectors xi ∈ R
n, i =

1, . . . , l belonging two classes, and a class label yi ∈ {1,−1} for every xi, the
general optimal separating hyperplane given in C-SVM is the one that,

Minimize : PC =
1
2
‖w‖2 + C

∑l

i=1
ξi (1)

subject to yi(wTxi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l, where ξi are slack
variables, C is a regularization constant and the hyperplane of equation is
defined by parameters w and b.
Our target is to find the solution of (w, b) from Equ(1) and its constraints.

The solution can be given by the saddle point of the Lagrange function,

LC =
1
2
‖w‖2 +

∑l

i=1
{Cξi − αi(yi(wTxi + b) − 1 + ξi) − µiξi} (2)

where αi and µi are positive Lagrange multipliers. Then the solution can
be found by minimizing LC with respect to w, b, ξi and simultaneously



requiring ∂LC

∂αi
= 0, ∂LC

∂µi
= 0, all subject to αi ≥ 0 and µi ≥ 0. According to

the Wolf dual [6], the above primal Lagrangian problem can be transformed
to its dual problem, which becomes:

Maximize : DC =
∑l

i=1
αi − 1

2

∑l

i=1

∑l

j=1
αiαjyiyjxi · xj (3)

subject to 0 ≤ αi ≤ C and
∑l

i=1 αiyi = 0.
We can easily obtain the solution of the primal problem from the dual,

and denote them as (w∗, b∗), where w∗ =
∑l

i=1 α
∗
i yixi.

For a new data point x, the classification is given by a decision function,

fC(x) = sign(
∑l

i=1
(w∗ · xi + b∗)) = sign(

∑l

i=1
(yiα

∗
i x · xi + b∗)) (4)

In the case where the decision function is not a linear function of the
data, SVMs firstly map the input vector, x, into a high dimensional feature
space by a nonlinear function φ(x), and then construct an optimal separating
hyperplane in the higher dimensional space (possibly infinite dimensional).
Fortunately, the exact φ(x) is not needed. The only requirement is to replace
the inner product < xi · xj > in the input space with a kernel function
K(xi, xj) = φ(xi) · φ(xj) [18]. Since the dual (Equ(3)) and the decision
function (Equ(4)) only depend on the input data x through dot products.
There are three typical kernel functions: Polynomial, Gaussian Radial Basis
Function and Multi-Layer Perception [18].

ν-Support vector classification. The original ν-SVM [14] is more com-
plicated than regular C-SVM so that there are no effective methods to solve
large-scale ν-SVM [3]. Therefore, we adopt a variant of ν-SVM proposed
by Chang [3] in which ν-SVM is modified to a different form where existing
methods can be applied to solve it, while advantages of the original ν-SVM
are preserved.
The primal form in the modified ν-SVM [3] is:

Minimize : Pν =
1
2
‖w‖2 +

1
2
b2 − νρ+

1
l

∑l

i=1
ξi (5)

subject to yi(wTφ(xi) + b) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , l, ρ ≥ 0.
The dual of Pν is:

Maximize : Dν = −1
2

∑l

i=1

∑l

j=1
αiαjyiyj(K(xi, xj) + 1) (6)

subject to 0 ≤ αi ≤ 1/l,
∑l

i=1 αi = ν.
Compared with the original ν-SVM [14], constraints of the dual (Dν) here

is simplified so that Dν has a similar form to DC and can be solved by the
same way as DC .

The decision function is then given by,

fν(x) = sign(
∑l

i=1
yiα

∗
i (K(x, xi) + 1)) (7)



In the original SVM algorithm [18], the only parameter that we can dis-
pose of is the regularization constant C (that is why it is called C-SVM). C
has important effects on the performance of SVMs. Unfortunately, it is diffi-
cult to select an appropriate C in practical application, since we can not give
an intuitive interpretation on C. C is substituted by parameter ν in ν-SVM,
which is proved to be an upper bound on the fraction of margin errors and
a lower bound of the fraction of support vectors in [14]. An advantage of
ν-SVM [14] over C-SVM is that ν lets one be able to effectively control the
number of support vectors and errors instead of C.

Although the ν-SVM classifiers described above are binary classifiers,
they are easily combined to handle the multiclass case. A simple and ef-
fective method is to train c one-versus-rest classifiers for the c-class case. Let
(α∗

ij , x
∗
ij , y

∗
ij) denote boundary parameters of j-th classifier, where j = 1 · · · c,

i = 1 · · ·mj, mj ≤ l is number of support vectors, and (x∗ij , y
∗
ij) are i − th

support vector and its class label. For a test point x, its distance from the
boundary is calculated by

dj(x) =
∑mj

i=1
y∗ijα

∗
ij(K(x, x∗ij) + 1) (8)

The decision is then given by k∗ = arg maxj dj(x), and k∗ is the class for x
to be that corresponding to the largest distance.

EXPERIMENTAL RESULTS

Two sets of experiments are presented to demonstrate the performance of our
system. One is to compare DF-LDA with several existing feature selection
algorithms: Eigenfaces [16], Fisherfaces [1] and D-LDA algorithm [20] in
terms of the error rate based on a simple nearest neighbor classifier (NN).
Another is to compare the ν-SVM with other 3 classifiers: NN, nearest feature
line (NFL) [9], and probabilistic neural networks (PNN) [19] based on the
same input feature set. Both of them are conducted on ORL Cambridge face
database [15].

The ORL database contains 40 distinct persons, each person having 10
different images, taken at different times, varying lighting slightly, facial ex-
pressions and facial details. Fig.1 (Left) shows sample images of two ran-
domly selected persons in the database.

Face recognition procedure is performed for the two experiments in the
following two stages: (1) Feature extraction. The training set and query
set are derived in the same way as in [9, 8]: The 10 images of each of the
40 persons is randomly partitioned into two sets, resulting in 200 training
images and 200 testing images, with no overlapping between the two. Then,
both of them are projected into the feature space derived from Eigenface,
Fisherface, D-LDA and DF-LDA methods. (2) Classification. Taking feature
vectors derived from (1) as feeds, classifiers are trained and tested by training
and testing sets of feature vectors respectively. The final error rates are the



averages of the error rates obtained by 8 runs (4 runs in [9] and 3 runs in
[8]), each run being performed on a random partition of the database into
two sets.

DF-LDA vs Eigenfaces, Fisherfaces and D-LDA

This experiment compares the DF-LDA with several popular feature selection
algorithms used for face recognition: Eigenfaces [16], Fisherfaces [1] and D-
LDA [20] based on a simple NN classifier. r = 30 and w(d) = d−8 is used as
the number of fractional steps and the weighting function respectively, and
dimensionality of face images is reduced from N = 10304 to M = 25 in the
DF-LDA method.

Figure 2: Comparison of error rates as functions of the number of feature vectors.
A: ‘-.’: Eigenfaces, ‘*’: Fisherfaces, ‘o’: D-LDA and ‘-’: DF-LDA using NN based
classifiers. B: ‘-.’: NN, ‘*’: PNN, ‘- -’: NFL and ‘-’: ν-SVM

The error rate as functions of the number of feature vectors obtained by
the four methods are given in Fig.2 (A), in which the performance of DF-LDA
is overall superior to other three methods. Let αi and βi be the error rate
of DF-LDA and one of other three methods respectively, where i = [5 . . . 25]
is the number of feature vectors. We can obtain the average percentage
of the error rate of DF-LDA over that of other methods by

∑25
i=5 (αi/βi).

The results show that the average error rate of the DF-LDA is only about
73.32%, 43.36% and 80.77% of that of the Eigenfaces, Fishfaces and D-LDA
algorithms respectively. Also, of interest is the performance of Eigenfaces vs
Fishfaces. Not surprisingly, Eigenfaces outperform Fisherfaces, because Fish-
faces may lost significant discriminant information due to the intermediate
PCA step. The similar observation can be found in [10].



ν-SVM vs NN, NFL and PNN

Taking the feature vectors derived from the DF-LDA algorithm as input,
this experiment compares performance among different classifiers: ν-SVM,
NN, NFL [9] and PNN [19]. The error rate as functions of the number
of feature vectors obtained by the four methods are given in Fig.2 (B), in
which ν-SVM obtains the best performance when RBF kernel (K(x, y) =
exp(−β ‖x− y‖2)), β = 2.9 and ν = 0.09 are used. The average error rate
of the ν-SVM calculated as the same way as last experiment, is only about
85.74%, 87.74% and 69% of that of the NN, PNN and NFL classifiers respec-
tively. Especially when 25-dimensional DF-LDA feature vectors are used,
the error rate of ν-SVM is only 3.125%, and it achieves the lowest error rate
reported previously by [9, 8] with the least dimensional feature vectors used
(40-dimensional feature vectors (based on Eigenfaces) are used in [9]).

CONCLUSION

A new face recognition system based on the two new techniques: DF-LDA
and ν-SVM has been proposed. The feature set is optimized for the best
linear discrimination by DF-LDA. Although the optimization may not be op-
timal for nonlinear discrimination as performed by the subsequent ν-SVMs,
it provides more compact clusters in the optimized feature space and bet-
ter separability between clusters. We believe that this would help ease the
training of the ν-SVMs and obtain better classification performance.

ν-SVMs are used to learn a complex function for adequate classification
given the feature set. This is advantageous over the SPR approach such as
NN, NFL and PNN in that a SPR-based classifier takes a functional form
which is often too simplified for mathematical tractability at sacrifice of clas-
sification performance, and has to tackle parameter estimation which is often
performed on ad hoc basis. Results indicate that the proposed system has
excellent performance and achieves the lowest error rate reported to date for
the ORL face database using only a very small set of features.

The proposed system has provided a general platform to solve high-
dimensional pattern recognition problems. We expect that it will have also
good performance in other applications such as content-based image indexing,
video and audio classification.
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