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Abstract — This paper presents some new results on face
recognition using Radial Basis Function (RBF) Neural
Networks. First, face features are extracted by discriminant
eigenfeatures. Then, a general approach, which determines
the initial structure and parameters of RBF neural
networks, is presented. A hybrid learning algorithm is used
to dramatically decrease the dimension of the search space
in the gradient method, which is crucial on optimization of
high-dimension problem. Experimental results conducted
on the ORL database image of Cambridge University show
that the error rate is 1.5 % which is a tremendous
improvement over the best existing result of 3.83 %.

1 Introduction

Recently, face recognition has received significant
attention from the communities of computer vision, neural
networks and signal processing [1]. Although many
researchers have investigated a number of issues related to
face recognition by human beings and machines, it is still
difficult to design an automatic system for the task because
face images are highly variable. As stated by Moeses et al
[2], “Variations between images of the same face due to
illumination and viewing direction are almost always
larger than image variations due to changes in face
identity”. This makes face recognition a challenging task.
In our opinion, two issues are central:

(1). What features can be used to represent a face under
environmental changes?

(2). How to classify a new face image using the chosen
representation?

For (1), many successful face detection and feature
extraction methods have been developed [3]-[5]. Our
research in this paper focuses on issue (2), i.e. we aim to
find a general and efficient way for the task of face
classification based on conventional feature extraction
methods.

In many face recognition systems, the Nearest Neighbor
(NN) is widely used for classification. Yet, NN is short of
generalization and the efficiency of NN greatly depends on
the number of available training samples. Neural-
networks-based method has been proven to have many
advantages for classification such as incredible
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generalization and good learning ability. However, as large
numbers of vectors are invariably created to represent
various face features, the neural system used for face
recognition possesses the following characteristics:

¢ High dimension.

e  Small sample sets.

The frequently used approach to deal with the high-
dimension problem is to employ tree-structured adaptive
networks [6]-[7]. The idea therein is that for most of the
data, only a few dimensions of the input are necessary to
compute the desired output and additional input
dimensions are incorporated only when needed. The main
advantages of this topology are that the learning algorithm
is fast [6] and it can find a network structure size suitable
for the classification of complex patterns through structure
adaptation so as to overcome the complex input problem
7

In this paper, face recognition is implemented via RBF
neural networks. In order to reduce the structure
complexity and control the computational burden, two
strategies are adopted: First, face features are extracted by
discriminant eigenfeatures through two processing
modules, i.e. eigenface and Fisher’s Linear Discriminant
(FLD). Next, a hybrid learning algorithm is presented to
train the RBF neural networks so that the dimension of the
search space is significantly decreased in the gradient
method. Furthermore, an approach whereby some domain
knowledge is encapsulated in the choice of structure and
parameters of RBF neural networks before learning takes
place is presented.

In the following analysis, RBF neural networks are briefly
introduced in Section 2. Feature extraction using
discriminant eigenfeature is proposed in Section 3.
Following structure determination and initialization in
Section 4, a hybrid learning algorithm is presented in
Section 5. Experimental results based on the ORL database
are reported in Section 6. Finally, conclusions are drawn in
Section 7.

2 Radial Basis Function (RBF) Neural Networks

RBF neural networks have recently attracted extensive
research interests in the community of neural networks



because: (1) They are universal approximators [8]; (2)
Their learning speed is fast because of local-tuned neurons
{91; (3) They have more compact topology than other
neural networks [10]. (4) They possess the best
approximation property {11].

The basic structure of RBF neural networks is shown in
Fig. 1.

input layer

hidden layer
(RBF nodes)

output layer
Fig. 1 RBF neural networks

The output of the ith RBF unit is

R(X)=R AX=Gh e
where X is an r-dimensional input vector, Ci is a vector
with the same dimension as X, u is the number of hidden
units and R;(.) is the ith RBF unit. Typically, R,(.) is
chosen as a Gaussian function
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The jth output y;(X) of RBF neural networks is

y (X =b()+ Y RE) xw, () 3

i=1

where w,(j,i) is the weight of the ith receptive field to
the jth output and b( j ) is the bias of the jth output.

In the following analysis, the bias is not considered in
order to reduce the network complexity. Hence, the jth
output y;(X) of an RBF neural network is

Y, (X) =Y RX)Xw,(j,i) @
i=l
3 Feature Extraction Using Discriminant
Eigenfeatures

Here, we use the fisherface or discriminant eigenfeature
method proposed by Belhumeur [4] for feature extraction.
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This method aims at overcoming the drawback of
eigenface method by integrating FLD criteria into the
eigenface method, while retaining the advantages of
eigenface method to project faces from the high-
dimensional image space to a significantly lower
dimensional feature space. Consequently, the fisherface-
based features are the most discriminant eigenfeatures and
are well suitable for classification purpose. The most
discriminant eigenfeature can be obtained through two
processing modules, namely eigenfaces and FLD.

3.1 Eigenfaces

Denote the training set of N face images by
{z,,2,,"*»2y}. The Principle Components Analysis

(PCA) is applied to the set of training images to find the N
eigenvectors of the covariance matrix

1 & _ _ .
__Z(zn -2)(z, —Z) where 2 =——2zn is the
N n=l N n=}
average of the ensemble. The eigenvalues of the
covariance matrix are then calculated. Let ¢, be the

eigenvector corresponding to the kth largest eigenvalue.
The set of the first N'(X N) orthonormal vectors,
D =[¢,,-,0,.], forms a basis of an eigenface space.
Thus, for any face image z;, its corresponding eigenface-
based feature X; can be obtained by projecting Z; into the
eigenface space.

3.2 Fisherfaces

The FLD is applied to the projection of the set of training
samples in eigenface space {x,,xz,‘-‘xN}. The method

finds an optimal subspace for classification in which the
ratio of the between-class scatter and the within-class
scatter is maximized. Let the between-class scatter matrix
be defined as:

Sg = N(x, - X)(x, - %) (5)
i=1
and the within-class scatter matrix be defined as:
Sw =z Z(Xk —f;)(xk —fj)r (6)
i=l xeN;
where X, is the mean of the ith class, and N, is the number

of samples in the ith class. The optimal subspace for
classification, E_ . . can be obtained by FLD as follows:

I’p
T
|E"S,E] _
T
\ETS, E|
where [e,,ez,-”,eM] is the set of generalized

eigenvectors of S, and S, corresponding to the set of

decreasing generalized eigenvalues, and M < N’. Thus,
the feature vectors p for any query face images Z and
training face images in the most discriminant sense can be
calculated as:

E

optimal

= argmax [e,,e2,~~~,eM] N



P=E s ® (2-2) ®)
For all of the face images to be studied in the sequel, we
will use the feature vectors instead of their corresponding
original intensity data.

4 Structure Determination and Initialization

4.1 Structure Determination

In order to use the RBF neural networks for face
recognition, we set the number of inputs equal to that of
features (i.e., dimension of the input space), while the
number of outputs is set to that of classes (see Fig. 1). The
selection of RBF nodes is as follows:

(1) Initially, we set the number of RBF units equal to that
of output, i.e., we assume that each class has just one
subclass.

(2) For each class k, k=1,2--- s, the center of RBF nodes is
selected as the mean value of the sample data belonging to

the class, i.e.:
NL‘
Y p(r.i)
k __ =l
C'=——r--— N

where p*(r,i) is the ith sample with r-dimension

)

belonging to class k and N * is the number of patterns in
class k.

(3) For any class k&, compute the distance dk from the
mean to the furthest point p; belonging to class k:

d, =lp} —C*l (10
(4) For any class k:
e Calculate the distance dc(k, j) between the mean of
class k and the mean of other classes as follows:
de(k, j)=IC* = C’1 j=12..sj2k (11)
e Find
d, ;. (k1) = arg min(dc(k, j)) (12)
e Check the relationship between d, . (k,l) and d,,
d,:
Case 1: If d,+d,<d,,
overlapping with other classes.
Case 2: If d, +d, >d_, (k,1), class k has overlapping
with other classes and misclassifications may occur in this
case.
(5) For all the training data, check how the data are
classified. There is no problem if two functions belonging
to the same class overlap significantly. If two classes are

misclassified greatly, we should consider splitting one or
two of the classes into two, see Fig. 2.

(k,l), class k has no
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Fig. 2 One class splits into two classes

(6) Repeat (2) ~ (5), until all the training sample patterns
are classified satisfactorily.

(7) The mean values of the classes are selected as the
centers of RBF units.

4.2 Width Estimation

Essentially, RBF classifiers utilize overlapping localized
regions formed by simple kernel functions to create
complex decision regions while the amount of overlapping
is controlled by the widths of RBF units [12]. If no
overlapping occurs, the system will not generalize well
[13]. However, if the widths are too large, the interaction
of different classes will be great and the output belonging
to the class will not be so significant, while the output of
other classes may be large so that it will lead to
misclassification greatly. Here, we present two criteria for
the choice of widths of RBF units.

1) Majority Criterion: In any class, each datum shouild
have more than 50% confidence level for the class it
belongs to. The detailed calculations are as follows:

First, dk , the distance from the mean to the furthest point
belonging to class k, is calculated according to Eq. (10).
Next, define the width 0'{‘ of class k considering the
confidence level as

ot=d, 1B (13)
where ,3 is called confidence coefficient.
We can see from Eq. (2) that if the furthest sample in class
k should have output 0.5 (we say that the confidence level
is 50%), then 3 is 0.7.
The choice of [ is determined by the distribution of
sample patterns. If the data are scattered greatly, but the
centers are close, a small 3 should be selected.

(2) Overlapping Criterion: For any class k, the choice of
width O'; considering the overlapping of the neighboring
class { is determined by

ot =nxd,, (k1) (14)
where 1] is an overlapping factor that controls the overlap
of different classes.
(3) According to Eq. (13) and Eq. (14), the width of class
k is finally determined by



o' = max (o}, 6}) (15)

5 Hybrid Learning Algorithm

The adjustment of RBF unit parameters is a nonlinear
process while the identification of weight w, is a linear
one. Though we can apply the gradient method to find the
entire set of optimal parameters, the method is generally
slow and likely to become trapped in local minima. So, we
propose a hybrid learning algorithm, which combines the
gradient method and the Linear Least Squared (LLS)
method to adjust the parameters, see [13] and [14] for
details.

5.1 Weight Adjustment

Let r and § be the number of inputs and outputs
respectively, and suppose that #« RBF units are generated
for all training patterns according to Section 4.1. For any
input B(py;, Pys+-- p,;)s the jth output y; of the system
can be calculated according to Eq. (4). Rewriting Eq. (4) in
a more compact form:

W,xR=Y (16)
Our objective is the following: Given R€ RN and

T =(t, ,tz,--'tx)T € R™Y | where N is the total number
of sample patterns, T is the target matrix consisting of 1’s
and O’s with exactly one per column that identifies the
processing unit to which a given exemplar belongs.
Furthermore, given the following relationship:
E=ut-11H Qan

find an optimal coefficient matrix VV;G R such that

the error energy ETE is minimized. This problem can be
solved by the well-known LLS method by approximating

W,XxR=T (18)
The optimal W, is given by:

W, =TxR* (19)
where R" is the pseudoinverse of R and is given by:

R*=(R"R)"'R" (20)

5.2 Modification of Parameters of RBF Units

Here, the parameters (center and width) are adjusted by

taking the negative gradient of the error function, E"
which is given by:

ny2

E"= :

n=12..N (21)

1 5

Ez(ff -y
k=l

where y,” and t,': represent the kth real output and target

output at the nth pattern respectively.

The error rate for each output yk" can be calculated

readily from Eq. (21):
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For the internal nodes (center C and width ¢), the error
rate can be derived by the chain rule as follows:

—(t; = y0) (22)

oE"

AC”(i,j)=—§a—C:(‘i—j—);'

i=12...r, j=1,2 ...

oE" dy,; 3R}‘
dy; AR} 3CG, )"

==

=2EY yp-wy(k. j)- R}

k=1

(P" = CG, )/ o>

(23)

oE"

n
aoj

La——
Ac" =

§

26" v o8,

=S R 90

=2EY yi-wy(k,j)-R]

k=1

(B"=CG, ) o)
(24)

where AC" (i, j) is the error rate of the center of the ith
input variable of the jth prototype at the nth training

pattern, AG"; is the error rate of the width of the jth

prototype at the nth pattern, P,

i

" is the ith input variable at
the nth pattern and £ is the learning rate.

5.3 Learning Procedure

The hybrid learning procedure is summarized as follows
(see [13] and [14] for details): Each epoch of the learning
procedure is composed of a forward pass and a backward
pass. In the forward pass, we supply input data and

functional signals to calculate the output Rj of the jth

RBF unit. Then, the weight w, is modified according to
Eqgs.(19) and (20). After identifying the weight, the
functional signals keep moving forward till the error
measure is calculated. In the backward pass, errors
propagate from the output end towards the input end.
Keeping the weight fixed, the centers and widths of RBF
nodes are modified by the BP learning algorithm according
to Egs.(23) and (24). The learning procedure is shown in
Table 1.



Table 1 Two passes in the hybrid learning procedure

Forward pass Backward pass
Weight Linear Least Fixed
Squared
Parameters Fixed Gradient descent
of RBF units
Signals Node outputs Error rate

For given fixed parameters of RBF units, the weights
found are guaranteed to be the global optimum due to the
choice of the squared error measure [14]. It has much
faster convergence speed than the BP method. Thus, for
the modification of centers and widths by the BP
algorithm, the feedback error always seems to be very
small so that the learning rate é should be much bigger
than usual.

In order to improve the convergence speed and avoid
oscillating around the optimum value, & is gradually
reduced according to the following equation:

where lrmax and lrmin are maximum and minimum

learning rates respectively, i is the number of epochs, and
Yis a descent coefficient which lies in the range
O<y<lL

Our experiments show that this hybrid learning algorithm
can not only decrease the dimension of the search space in
the gradient method, but also cut down substantially the
convergence time.

6 Experimental Results

Experimental studies are carried out on the ORL database
image of Cambridge University. Like the experiment of
[15], we also use a database of 400 images of 40
individuals, which contain quite a high degree of variations
in expression, pose and facial details. A total of 200
images are used to train and another 200 are used to test,
where each person has 5 images. The results are shown in
Table 2 and Table 3 respectively.

5 = ma-x(lrmax . y" lrmin) (25)
Table 2 Error rate and parameters *
Number of Training Testing
feature
vectors B n 17 17 Y | Epochs | RMSEaA | NOM& | Errorrate ¢
50 0.225 | 1.0~1.5 1.5%10° 10* 0.99 | 50~80 | 0.044~ 1 0.5%
~0.51 0.034
40 0.225 | 0.9~1.5 8.0x10* | 1.5x10* | 095 | 30~50 | 0.031~ 0 0
~0.51 0.021
30 0.225 | 0.9~15 4.0x10% | 2.0x10° | 0.99 | 40~50 | 0.049~ 0 0
~0.51 0.04
20 0.51 0.75~09 | 9 ox10° 500 0.99 | 20~50 | 0.042~ 0 0
0.041
10 0.51 0.75~09 | 50x10° 500 0.99 30 0.047~ 0 0
0.046
* Training data used as training patterns and testing data as testing patterns
A RMSE— Root Mean Squared Error
& NOM— Number of Misclassifications
¢ Error rate = Number of Misclassifications / Number of Total Testing Patterns
Table 3 Error rate and parameters**
Number Training Testing
32 Cf(e)a:;ure B n Ir .. Ir;, Epochs | RMSE | NOM | Error rate
50 051~ | 1.8~ | 55%10° | 5.0x10* | 0.99 | 70~150 | 0.037~ 6 3%
0.357 j 2.2 0.028
40 0.1 075 | 3.0x10° | 2.0x10* | 0.96 40 0.0089 6 3%
30 0.225 | 0.75 0.0053 6 3%
~0.9 ~0.007
20 0.225 | 0.75 0.0035 8 4%
~0.1 ~0.9 ~0.003
10 0.225 | 0.7~ 0.0025 18 9%
~0.1 0.9 ~0.001

** Testing data used as training patterns and training data as testing patterns
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Define the average errorrate £, as

m
i
2N,
- =l

ave

(26)
mN,
where m is the number of experimental runs, each one

being performed on random partition of the database into

two sets, N ,';, is the number of misclassifications for the

ith run, and N, is the number of total testing patterns of

each run. The comparison with Convolutional Neural
Networks (CNN) approach [15] using the same ORL
database in terms of E ave 19 Shown in Table 4.

Table 4 Comparison of CNN and RBF approaches

Approach Euve
CNN 3.83%
RBF 1.5%

Here, the lowest error rate achieved by RBF neural
networks is based on the following conditions: m=2 and
the number of feature vectors is 30 and 40 respectively.
The way to partition the training set and query set is the
same as {15], whereas the value Em obtained by CNN in

Table 4 is based on 3 runs and the size of self-organizing
map is 8 and 9 respectively.

7 Conclusions

In [9], an assumption was made that RBF neural networks
are best suited for learning to approximate continuous or
piecewise continuous, real-valued mapping where the
input dimension is sufficiently small. Qur experimental
results show that RBF neural networks are also excellent in
face recognition to cope with the high-dimension problem.
In this paper, a feature optimization approach by
discriminant eigenfeatures through eigenface and FLD is
presented. A general approach is put forward to determine
the neural structure and select the initial parameters of
RBF units. A hybrid learning algorithm is developed to
decrease the dimension of the search space in the gradient
method dramatically. Our results show that the error rate is
1.5%. This is a tremendous improvement over the result of
[15], which is the best result to our knowledge based on
the ORL database.
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