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ABSTRACT

Linear Discriminant Analysis (LDA) is derived from the
optimal Bayes classifier when classes are assumed to be
Gaussian with identical covariance matrices. However, it
is well known that the distribution of face images under a
perceivable variation in viewpoint, illumination or facial ex-
pression, is highly nonlinear and complex. The Quadratic
Discriminant Analysis (QDA) which relaxes the identical
covariance assumption and allows for nonlinear discrimi-
nant boundaries to be formed, seems to be a better choice.
However, the applicability of QDA to problems, such as
face recognition, where the number of training samples is
much smaller than the dimensionality of the sample space
is problematic due to the increased number of parameters
to be learned. In this paper, we propose a new regularized
discriminant analysis method that effectively solves the so-
called “small sample size” problem in very high-dimensional
face image space. Extensive experimentation performed on
the FERET database indicates that the proposed method-
ology outperforms traditional methods such as Eigenfaces,
QDA and Direct LDA in a number of application scenarios.

1. INTRODUCTION

Face recognition (FR) systems, utilizing Linear Discrimi-
nant Analysis (LDA) techniques have been shown to be very
successful [1, 2, 3, 4]. However, the so-called “plug-in” co-
variance matrix estimates widely used in these LDA-based
approaches often suffer from the so-called “small sample
size” (SSS) problem which exists in high-dimensional pat-
tern recognition tasks where the number of available train-
ing samples is smaller than the dimensionality of the sam-
ples. The traditional solution to the SSS problem is to
utilize principal component analysis (PCA) in conjunction
with LDA (PCA+LDA) as it was done for example in Fish-
erfaces [1]. Recently, more effective solutions, called Direct
LDA (D-LDA) methods, have been presented [2, 3, 4].

Although successful in many cases, LDA-based methods
often fail to deliver good performance when face patterns
are subject to large variations in viewpoints, illumination
or facial expression, which result in a highly nonlinear and
complex distribution. The limited success of these meth-
ods should be attributed to their linear nature [5, 6]. LDA
can be considered as a special case of the optimal Bayes
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classifier when each class is subjected to a Gaussian dis-
tribution with identical covariance structure. Obviously,
the assumption behind LDA is highly incorrect in practical
FR tasks. As a result, it is reasonable to assume that a
better solution to this inherent complex problem could be
achieved using quadratic methods, such as the Quadratic
Discriminant Analysis (QDA), which allows for complex
discriminant boundaries to be formed. However, the SSS
problem affects QDA more than LDA, since QDA requires
much more training than LDA due to the increased num-
ber of parameters. To deal with such a situation, Friedman
proposed a regularization technique of discriminant anal-
ysis (RDA) in the Gaussian framework [7]. The purpose
of the regularization is to reduce the variance related to
the sample-based estimates at the expense of potentially
increased bias. Although RDA relieves to a great extent
the SSS problem and performs well even when the number
of training samples per class (L) is comparable to the di-
mensionality of the samples (D), it still fails when L << D,
which is the case in most FR applications. For example, if
only L ∈ [2, 7] samples per subject are available for training
while the dimensionality of the space is up to D = 17154,
the RDA cannot be successfully implemented.

In the paper, we propose a new regularized discrimi-
nant analysis method called RD-LDA by incorporating the
D-LDA technique into the RDA framework. The RD-LDA
provides a comprehensive solution to the SSS problem ham-
pering both LDA and QDA. It will be shown that, ad-
justing the parameters of the RD-LDA, we can obtain a
number of new/traditional discriminant analysis methods
such as Yang’s D-LDA (YD-LDA) [3], Juwei’s D-LDA (JD-
LDA) [4], direct QDA (D-QDA), nearest center (NC) and
weighted nearest center (WNC) classifiers.

2. METHODS

2.1. Determining the optimal discriminant features

Given a training set containing C classes {Zi}C
i=1, with each

class consisting of a number of face images: Zi = {zij}Ci
j=1,

a total of N =
∑C

i=1 Ci face images are available in the
set. Each image is represented as a column vector of length
D(= Iw × Ih), i.e. zij ∈ R

D, where Iw × Ih is the image
size, and RD denotes the D-dimensional real space.

Let SBTW and SWTH denote the between- and within-
class scatter matrices of the training image set respectively.
LDA determines a set of optimal discriminant basis vec-
tors, denoted by {ψk}M

k=1, so that the ratio of the between-



and within-class scatters is maximized [8]. Assuming Ψ =
[ψ1, . . . , ψM ], the maximization can be achieved by solving
the following eigenvalue problem,

Ψ = arg max
Ψ

∣∣(ΨT SBTW Ψ)
∣∣

|(ΨT SWTHΨ)| (1)

Assuming that SWTH is non-singular, the basis vectors
Ψ correspond to the first M eigenvectors with the largest
eigenvalues of (S−1

WTHSBTW ). Due to the SSS problem, a
degenerated SWTH may be generated in FR tasks. Tra-
ditional methods, for example Fisherfaces [1], attempt to
solve the SSS problem by using a PCA step to remove the
null space of SWTH . However, it has been shown that the
null space may contain the most significant discriminant
information [2, 3].

Recently, the so-called direct LDA (D-LDA) approach
have been introduced to avoid the shortcomings existing in
traditional solutions to the SSS problem [2, 3, 4]. The ba-
sic premise behind the approach is that the null space of
SWTH may contain significant discriminant information if
the projection of SBTW is not zero in that direction, and
that no significant information will be lost if the null space
of SBTW is discarded. Based on the finding, it can be con-
cluded that the optimal discriminant features exist in the
complement space of the null space of SBTW , which has
a dimensionality M = C − 1. In [3, 4], the subspace de-
noted as H is scaled to have HT SBTW H = I, where I is
the (M × M) identity matrix. The projection of SWTH

in H, HT SWTHH, is then estimated using sample analogs.
However, when training sample number per class is small
enough, even the projection HT SWTHH is ill- or poorly-
posed. To this end, a modified optimization criterion repre-

sented as Ψ = arg max
Ψ

|ΨT SBT W Ψ|
|ΨT SBT W Ψ+ΨT SW T HΨ| , is proposed

to use in JD-LDA [4] instead of Eq.1 used in YD-LDA [3].
The modified criterion introduced a considerable degree of
regularization to reduce the variance of the plug-in estimate
in ill- or poorly-posed situations. It will be shown later that
such a regularization is only a special case of the proposed
RD-LDA.

2.2. Regularized D-LDA (RD-LDA)

The number of face classes C is usually a small value, and
comparable to the number of training samples N in most
FR tasks, e.g. C = 49 and N ∈ [98, 343] in the experiments
reported here. Thus, it becomes appropriate to perform
a RDA [7] in the low-dimensional subspace H, where the
most significant discriminant information are remained.

To this end, we firstly project the original face images
into H, obtaining a representation yij = HT zij where i =
1, . . . , C, j = 1, . . . , Ci. The regularized sample covariance
matrix estimate of class i in H, Σ̂i(λ, γ), can be expressed
as,

Σ̂i(λ, γ) = (1 − γ)Σ̂i(λ) +
γ

M
tr[Σ̂i(λ)]I (2)

where

Σ̂i(λ) =
1

Ci(λ)
[(1 − λ)Si + λS] (3)

Ci(λ) = (1 − λ)Ci + λN (4)

Si =

Ci∑
j=1

(yij − ȳi)(yij − ȳi)
T (5)

S =
C∑

i=1

Si = N · HT SWTHH (6)

(λ, γ) is a pair of regularization parameters, and ȳi is the
projection of the mean of class i in H.

In the FR procedure, any input query image z is firstly
projected into the subspace H: y = HT z. its class la-
bel i∗ then can be inferred through i∗ = arg min

i
di(y)

based on QDA, where di(y) is the well-known Mahalanobis
(quadratic) distance between y and class ȳi, and has the
following expression,

di(y) = (y − ȳi)
T Σ̂−1

i (λ, γ)(y − ȳi) + ln
∣∣∣Σ̂i(λ, γ)

∣∣∣− 2 ln πi

(7)
where πi = Ci/N is the prior probability of class i.

The regularization parameter λ (0 ≤ λ ≤ 1) controls the
amount that the Si are shrunk toward S. The other param-
eter γ (0 ≤ γ ≤ 1) controls shrinkage of the class covariance
matrix estimates toward a multiple of the identity matrix.
Under the regularization scheme, a QDA can be performed
without suffering the high variance of the plug-in estimates
even when the dimensionality of the subspace H is compa-
rable to the number of available training samples. We refer
to the approach as regularized D-LDA, hereafter RD-LDA.

Since the RD-LDA is derived from the D-LDA and RDA,
it has close relationship with a series of traditional discrimi-
nant analysis methods. Firstly, the four corners defining the
extremes of the (λ, γ) plane represent four well-known clas-
sification algorithms, as summarized in Table 1, where the
prefix ‘D-’ means that all these methods are developed in
the subspace H derived from the D-LDA technique. Due to
the criterion of Eq.1 used in YD-LDA [3], it is obvious that
YD-LDA is actually a standard LDA implemented in H.
Also, we have Σi = α

(
S
N

+ I
)

= α
(HT SWTHH + I

)
when

(λ = 1, γ = η), where α =
(

tr[S/N ]
tr[S/N ]+M

)
and η = M

tr[S/N]+M
.

In this situation, it is not difficult to see that RD-LDA is
equivalent to JD-LDA [4]. In addition, a set of intermediate
discriminant classifiers between the five traditional ones can
be obtained when we smoothly slip the two regularization
parameters in their domains. The purpose of RD-LDA is to
find the (λ∗, γ∗) that give the best correct recognition rate
for a particular FR task.

Table 1. A series of algorithms derived from RD-LDA.

Algs. D-NC D-WNC D-QDA YD-LDA JD-LDA

λ 1 0 0 1 1
γ 1 1 0 0 η

3. EXPERIMENTAL RESULTS

3.1. The FR Evaluation Design

A set of experiments are included in the paper to assess the
performance of the proposed RD-LDA method. To show



the high complexity of the face patterns’ distribution, a
middle-size subset of the FERET database [9] is used in the
experiments. The subset consists of 606 gray-scale images
of 49 people, each one having more than 10 samples. These
images cover a wide range of variations in illumination, fa-
cial expression/details, acquisition time, races and others.
We follow the preprocessing sequence recommended in [9],
which includes four steps: (1) images are translated, rotated
and scaled so that the centers of the eyes are placed on spe-
cific pixels, (2) a standard mask is applied to remove the
nonface portions, (3) histogram equalization is performed
in the non masked facial pixels, (4) face data are further
normalized to have zero mean and unit standard deviation.
Fig.1 depicts some sample images after the preprocessing
sequence is applied. For computational convenience, each
image is finally represented as a column vector of length
D = 17154 prior to the recognition stage.

The number of available training samples per subject, L,
has a significant influence on the plug-in covariance matrix
estimates used in all these discriminant analysis methods.
To study the sensitivity of the performance, in terms of cor-
rect recognition rate (CRR), to L, 6 tests were performed
with various L values ranging from L = 2 to L = 7. For
a particular L, the FERET subset is randomly partitioned
into two datasets: a training set and a test set. The training
set is composed of (L × 49) samples: L images per person
were randomly chosen. The remaining (606−L×49) images
are used to form the test set. There is no overlapping be-
tween the two. To enhance the accuracy of the assessment,
5 runs of such a partition were executed, and all of the
CRRs reported later have been averaged over the 5 runs.

Fig. 1. Some samples of six people from the normalized
FERET subset.

3.2. The FR Performance Comparison

Besides RD-LDA and its special cases summarized in Ta-
ble 1, the most well-known FR algorithm, the so-called
Eigenfaces method [10], was also implemented to provide
a performance baseline. The testing grid of (λ, γ) values
was defined by the outer product of λ = [1e − 4 : 0.01 : 1]
and γ = [1e − 4 : 0.01 : 1], where both of λ and γ started
from 1e − 4 instead of zero in case Si is singular. The
CRRs obtained by RD-LDA in the grid are depicted in
Fig.2. Since most peaks or valleys occur around the four
corners, four 2D side faces of Fig.2 (only four representative
cases L = 2, 3, 4, 6 are selected) are shown in Figs.3-4 for
a clearer view. Also, a quantitative comparison of the best
CRRs obtained by Eigenfaces, those methods depicted in

Table 1, and RD-LDA with corresponding parameters, is
summarized in Table 2.

Fig. 2. CRRs obtained by RD-LDA as functions of (λ, γ).
Top: L = 2, 3, 4; Bottom: L = 5, 6, 7.

Fig. 3. CRRs as a function of γ with fixed λ.

Fig. 4. CRRs as a function of λ with fixed γ.

The parameter λ controls the degree of shrinkage of
the individual class covariance matrix estimates Si toward
the within-class scatter matrix of the whole training set
(HT SWTHH). Varying the values of λ within [0, 1] leads



Table 2. Comparison of best CRRs (%).
L 2 3 4 5 6 7

PCA 59.8 67.8 73.0 75.8 81.3 83.7
D-NC 67.8 72.3 75.3 77.3 80.2 80.5

D-WNC 46.9 61.7 68.7 72.1 73.9 75.6
D-QDA 57.0 79.3 87.2 89.2 92.4 93.8
YD-LDA 37.8 79.5 87.8 89.5 92.4 93.5
JD-LDA 70.7 77.4 82.8 85.7 88.1 89.4

(γ) 0.84 0.75 0.69 0.65 0.61 0.59
RD-LDA 73.2 81.6 88.5 90.4 93.2 94.4

(λ) 0.93 0.93 0.35 0.11 0.26 0.07
(γ) 0.47 0.10 0.07 0.01 1e-4 1e-4

to a set of intermediate classifiers between D-QDA and
YD-LDA. In theory, D-QDA should be the best performer
among the methods evaluated here if sufficient training sam-
ples are available. It can be observed at this point from
Fig.2 and Table 2 that the CRR peaks gradually moved to-
ward the corner (0, 0) that is the case of D-QDA from the
central area as L increases. Small values of λ have been
good enough for the regularization requirement in many
cases (L ≥ 3) as shown in Fig.4:Left.

However, it is also can be seen from Fig.3:Right and
Table 2 that both of D-QDA and D-LDA performed poorly
when L = 2. This should be attributed to the high variance
in estimates of Si and S due to insufficient training sam-
ples. In these cases, Si and even S are singular or close to
singular, and the resulting effect is to dramatically exagger-
ate the importance associated with the eigenvectors corre-
sponding to the smallest eigenvalues. Against the effect, the
introduction of another parameter γ helps to decrease the
larger eigenvalues and increase the smaller ones, thereby
counteracting for some extent the bias. This is also why
JD-LDA outperforms YD-LDA when L is small. Although
JD-LDA seems to be a little over-regularized compared with
the optimal (λ∗, γ∗), the method almost guarantees a stable
sub-optimal solution, 4.5% CRR difference in average over
L = 2− 7 from the best one found by RD-LDA. Therefore,
JD-LDA could be the first choice when insufficient prior in-
formation about the training samples is available and a cost
effective processing solution is sought. Although RD-LDA
is the top performer amongst all methods compared here,
the determination of its optimal parameter values is compu-
tationally demanding as it is based on exhaustive searches.
A fast and cost effective RD-LDA parameter optimization
method will be the focus of future research.

4. CONCLUSION

A new method for face recognition has been introduced in
this paper. The proposed method combines the D-LDA
technique with regularization strategies to effectively ad-
dress the SSS problem commonly encountered in FR tasks.
The D-LDA technique is utilized to map the original face
patterns to a low-dimensional discriminant feature space,
where the regularization strategy becomes applicable. The
regularization strategy provides a balance between the vari-
ance and the bias in sample-based estimates addressing

the SSS problem. It also has been shown that a series of
traditional discriminant analysis methods including the re-
cently introduced YD-LDA and JD-LDA can be derived
from the proposed RD-LDA framework by adjusting the
regularization parameters. Experimental results indicate
that the RD-LDA method outperforms the commonly used
Eigenfaces method as well as other discriminant analysis
approaches across various SSS settings.

RD-LDA can be seen as a general pattern recognition
method capable to address with nonlinear and SSS prob-
lems. We expect that in addition to FR, RD-LDA will
provide excellent performance in applications, such as im-
age/video indexing, retrieval, and classification.

5. REFERENCES

[1] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,
“Eigenfaces vs. Fisherfaces: recognition using class spe-
cific linear projection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp.
711–720, 1997.

[2] Li-Fen Chen, Hong-Yuan Mark Liao, Ming-Tat Ko, Ja-
Chen Lin, and Gwo-Jong Yu, “A new LDA-based face
recognition system which can solve the small sample size
problem,” Pattern Recognition, vol. 33, pp. 1713–1726,
2000.

[3] Hua Yu and Jie Yang, “A direct LDA algorithm for
high-dimensional data with application to face recog-
nition,” Pattern Recognition, vol. 34, pp. 2067–2070,
2001.

[4] Juwei Lu, K.N. Plataniotis, and A.N. Venetsanopoulos,
“Face recognition using LDA based algorithms,” IEEE
Transactions on Neural Networks, vol. 14, no. 1, Jan-
uary 2003.

[5] M. Bichsel and A. P. Pentland, “Human face recogni-
tion and the face image set’s topology,” CVGIP: Image
Understanding, vol. 59, pp. 254–261, 1994.

[6] Juwei Lu, K.N. Plataniotis, and A.N. Venetsanopoulos,
“Face recognition using kernel direct discriminant anal-
ysis algorithms,” IEEE Transactions on Neural Net-
works, vol. 14, no. 1, January 2003.

[7] Jerome H. Friedman, “Regularized discriminant anal-
ysis,” Journal of the American Statistical Association,
vol. 84, pp. 165–175, 1989.

[8] R.A. Fisher, “The use of multiple measures in taxo-
nomic problems,” Ann. Eugenics, vol. 7, pp. 179–188,
1936.

[9] P. Jonathon Phillips, Hyeonjoon Moon, Syed A. Rizvi,
and Patrick J. Rauss, “The FERET evaluation method-
ology for face-recognition algorithms,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.
22, no. 10, pp. 1090–1104, 2000.

[10] Matthew A. Turk and Alex P. Pentland, “Eigenfaces
for recognition,” Journal of Cognitive Neuroscience, vol.
3, no. 1, pp. 71–86, 1991.


