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Abstract

A Bayesian Model (BM) is proposed in this paper for
extracting facial features. In the BM, first the prior distri-
bution of object shapes, which reflects the global shape
variations of the object contour, is estimated from the
sample data. This distribution is then utilized to con-
strain and dynamically adjust the prototype contour in
the matching procedure, in this way large or global shape
deformations due to the variations of samples can be tol-
erated. Moreover, a transformational invariant internal
energy term is introduced to describe mainly the local
shape deformations between the prototype contour in the
shape domain and the deformable contour in the image
domain, so that the proposed BM can match the objects
undergoing not only global but also local variations. Ex-
periment results based on real facial feature extraction
demonstrate that the BM is more robust and insensitive
to the positions, viewpoints, and deformations of object
shapes, as compared to the Active Shape Model (ASM)
algorithm.
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1 Introduction

Compared with traditional rigid models, deformable
models have attracted much attention in the areas of ob-
ject detection and matching because of their ability of
adapting themselves to fit objects more closely. Gener-
ally, deformable models can be classified into two classes
[1]: the free-form models and the parametric models.
The free-form models, e.g. active contours or snakes,
can be used to match any arbitrary shape provided some
general regularization constraints, such as continuity and
smoothness, are satisfied. On the other hand, the para-
metric models are more constrained because some prior
information of the geometrical shape is incorporated. It
has been demonstrated that the parametric models are
more robust to irrelevant structures and occlusions when
being applied to detect specific shapes of interest.

The parametric models, such as deformable tem-

plates/models [1] [2] [3] [4], G-Snake [5] and ASM [6],
encode specific characteristics of a shape and its varia-
tions using global shape model, which is formed by a set
of feature parameters or well defined landmark/boundary
points of that shape. A quite successful and versatile
scheme in this field is statistics-based shape models in
Bayesian framework [1][5]. In these models, the prior
knowledge of the object as well as the observation sta-
tistics is utilized to define the optimal Bayesian estimate.
However, most of these existing parametric models en-
code the shape information in a “hard” manner in that the
prototype contour is fixed during the matching process.
As a result, only a small amount of local deformations
can be tolerated.

The Active Shape Model (ASM) encodes the prior in-
formation of object shapes using principal component
analysis (PCA), and matches object by directly using the
geometrical transformed version of the ASM model. In
ASM, the prototype used to match object can be dynam-
ically adjusted in the matching procedure, which is con-
strained by the prior distribution of sample data. There-
fore, some global/large shape variations that present in
the sample data, can be tolerated. Recently, Cootes et.
al. proposed an Active Appearance Model (AAM) [7],
which contains a statistical model of the shape and grey-
level appearance of an object of interest. The object
matching is accomplished by measuring the current resid-
uals and using the linear predict model learnt in the train-
ing phase. By combining the prior information of object
shape and appearance, AAM can match object more ef-
fectively than ASM.

However, as a statistical model, ASM/AAM takes the
reconstructed object model that matches the image best
as the results of object matching. Therefore, it may not
be able to match accurately to a new image if the vari-
ations of shape and appearance does not present in the
sample data, or if the number of model modes has been
truncated too severely. To match a new object more ac-
curately, new methods should be proposed to deal with
not only the global deformations defined by the model,
but also the local random variations. In [8], the AAM is
combined with a local model, i.e. during the matching
procedure, the further local model deformations (the lo-
cal AAMs) for each point are performed after the conver-
gence of AAM, and a multi-resolution framework is also



used to enlarge the searching range of the model. Such
a process can fit more accurately to unseen data than
models using purely global model modes (ASM/ASM)
or purely local models (Snakes). However, it has to build
and train the local models for each point, which leads
the shortcomings: more parameters are required to de-
scribe the model state; heavy computational load; it is
difficult to judge the change between global AAM and
local AAMs during the matching procedure.

In this paper, a Bayesian Model (BM), which serves as
a framework to solve the global and local deformations
in object matching, is proposed. In the BM, the prior
distribution of object shapes and/or appearance, which
reflects the global shape variations of the object, is esti-
mated from the sample data. In the matching procedure,
this prior distribution is used to constrain the dynamically
adjustable prototype. In this way, large shape and/or ap-
pearance deformations due to the variations of samples
can be tolerated. Moreover, since the shapes are sub-
jected to some transformations between the shape space
and the image space, such as similarity transformation
and affine transformations, it is expected that the algo-
rithms developed should be able to deal with the rota-
tion, translation, scaling and even shearing. Therefore,
a transformational invariant internal energy term is in-
troduced in the BM to describe mainly the local shape
deformations between the prototype contour in the shape
domain and the deformable contour in the image domain.
Because the deformable contour used to match object
has been modeled as the transformed and deformed ver-
sion of the prototype contour, which can also be dynam-
ically adjusted to adapt itself to the shape variations us-
ing the information gathered from the matching process,
the proposed BM has the advantage of matching objects
with both global and local variations. Experiment re-
sults based on real facial feature extraction demonstrate
that the BM is more accurate as compared to the Active
Shape Model (ASM).

The rest of the paper is organized as follows: Section
2 introduces the BM, Section 3 describes the algorithm
for facial feature extraction using BM and presents the
experimental results, and Section 4 summarizes the con-
clusion from this study.

2 Bayesian Model (BM)

2.1 Bayesian Framework and Energy
Terms

The Bayesian Model (BM) formulates the matching of
a deformable model to the object in a given image as
a maximizing a posteriori (MAP) estimation problem.
Denote the mean of the sample contours in the shape
domain as �W( (the mean contour), the deformed version

of �W( as �W (the prototype contour), and the deformable
contour in the image domain as W , where �W( ; p1] ,
�W ; p1] and W ; p1] are the matrices representing
the corresponding contours formed by the coordinates of
] landmark/boundary points. According to the Bayesian
estimation, the joint posterior distribution of W and �W ,
�wW, �W /QD, is

�wW, �W /QD )
�wQ/WD�wW, �WD

�wQD
(1)

where �wQ/WD ) �wQ/W, �WD is the likelihood distribution
of input image data Q.

�wW, �WD ) �wW / �WD�w �WD (2)

is the joint prior distribution of W and �W .

For a given image Q, the MAP estimates, W-\h and
�W-\h , can be defined as,
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where �w �WD is the distribution of the prototype �W , �wW / �WD
describes the variations between W and �W , and �wQ/WD
indicates the matching between W and the salient features
of the object in image Q. It can be seen from Eq.3
that BM estimates the suitable prototype shape �W , and
obtains a best deformable contour in the image domain
W to match the object. Therefore, in the BM, not only
the prototype, but also the deformation between W and
the prototype �W can be adaptively adjustable.

Provided the densities in Eq. (3) can be modeled as
Gibb’s distribution, i.e.
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where .d, .1 and .n are the partition functions, max-
imizing the posterior distribution is equivalent to mini-
mizing the corresponding energy function of the contour:

\W-\h , �W-\h i ) s��8$t
W, �W

\o�Lz0L`�i (5)

where o�Lz0L`� ) o�LzLo7z0Lo�?0. o�Lz ) o�Lzw �WD
is the constraint energy term of the adjustable prototype
contour �W , which limits the variations of �W and ensures
that �W is similar with �W( in shape. �W( is the mean of all
the aligned sample contours in the shape domain. o7z0 )
o7z0wW / �WD is the internal energy term that describes the
global and local shape deformation between W and �W .
The external energy term o�?0 ) o�?0wQ/WD defines the
degree of matching between W and the salient features of
image Q.



2.2 The Constraint Energy of Prototype

The constraint energy term o�Lz of the prototype contour
is caused by the prior distribution, �w �WD, of the samples
in the shape domain, which can be estimated from the
normalized sample data and reflects the shape variations
of the shapes in the shape domain. Linear or nonlinear
methods can be used to estimate this prior distribution
according to the application. In this paper, the method
using PCA to estimate �w �WD is utilized, which reflects
mainly the linear relationship of the shape variations. In
cases where all the samples are aligned views of similar
objects seen from a standard view, this distribution can
be accurately modeled by a single Gaussian distribution
[9].

�w �WD )
�-}w� d

1

�-
7)d

j3

7

�7
D

w1$D-b1
�-

>)d �
db1
>

(6)

where

j ) 	x
- w �W � �W(D (7)

is the vector of the shape parameters, and �W � �W( is the
deformation from �W( to �W . 	- is the matrix composed of
the eigenvectors corresponding to the largest - eigen-
values �7, wd � 7 � -D, which is computed from the
covariance matrix of all the sample contours. Therefore,
using the PCA, a prototype contour can be reconstructed
from �W( and a given j,

�W ) �W( L 	-j (8)

Note in Eq.(7) and Eq.(8), �W and �W( have been expanded
to 1]  d vectors. The PCA representation preserves
the major linear correlations of the sample shapes and
discards the minor ones, hence provides an optimized
approximation of �W in the sense of least squares error.
This representation describes the most significant modes
of the shape variations or the global shape deformations
subject to the prior distribution of the prototype contour.
From Eq.(6), the corresponding constraint energy is de-
noted as
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d

1
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The variations of the prototypes contour is limited by the
plausible area of the corresponding shape parameters j,
which is defined as

-3

7)d

j17
�7
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The threshold, -0, may be chosen using the �1 distri-
bution [6]. The constraint energy term ensures that the
dynamically adjustable prototype contour remains sim-
ilar with the mean shape during the matching process,
and at the same time, large shape variations and defor-
mations subject to the prior distribution of the samples
can be tolerated.

2.3 Transformational Invariant Internal
Energy

Since �wW / �WD or o7z0wW / �WD measures the degree of match-
ing between the deformable model W in the image domain
and the prototype �W in the shape domain, a transforma-
tional invariant internal energy term should be designed
and incorporated in the BM to deal with the correspond-
ing transformations (such as Euclidian, similarity and
affine transforms) between the shape domain and the
image domain. Mathematically, �W and W are related by

W7 ) x w �W7D L 6, wd � 7 � ]D, (11)

where x wND refers to the transformation operator, and 6

represents the deformation. In this paper, the similarity
or affine transformations are considered,

x w �W7D ) \ �W7 L �, wd � 7 � ]D3 (12)

where \ is the corresponding transformational 11 ma-
trix, � is a translation vector.

Since the point correspondence between W and �W is
known, by defining the least squares objective function,
the transformational parameters can be easily determined
[6, 10, 11]. Let |\ and |� represents the alignment results
of W and �W , the global internal energy term of the de-
formable contour is designed as,
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d

]
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It can be seen that the internal energy term is transfor-
mational invariant, which indicates the global degree of
matching between the deformable contour W and the pro-
totype �W .

In addition, to describe the local shape variations, a local
internal energy term is also defined by the proportion of
area,

oq7z0wW7/ �WD )
wCd L C1D\po\��L0L

\po\yq7/z�Q
(14)

Cd ) Cw �W7�d, W
y
7 ,

�W7D and C1 ) Cw �W7, W
y
7 ,

�W7LdD, where
CwD is the area of the triangle formed by the three points
inside the brackets. \po\��L0L and \po\yq7/z�Q

represent the interior areas formed by the hull of the
prototype contour and the aligned deformable contour
(Wy7 ) |\�dwW7 � |�D) in the shape domain respectively.
When the areas of the triangles Cd and C1 are close to
zero, the shape and position of �W and W will also be
close. In case the contour represents an open shape, the
local internal energy at the end point of the contour will
not be calculated.

In summary, the internal energy is composed of both the
global and local terms,

o7z0wW / �WD ) o/7z0wW / �WD L
d

]
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which reflects the degree of fitting between �W and W , and
remains invariant under similarity and affine transforma-
tions.

2.4 External Image Constraints

The external energy term o�?0 ) owQ/WD indicates the
degree of matching between the deformable contour W
and the salient image features. Minimizing o�?0 adjusts
W and moves it towards the object boundary in the image
Q. The external energy usually combines all the infor-
mation of edge, texture, color and region, etc, so that it
can provide an effective description of the matching. For
example, the color information can be combined into the
edge detection process, so that the edge maps will accu-
rately stand for the boundaries of the interested objects.
Among various matching rules and external energy terms
used in the literature, the energy term including both the
gradient and directional edge information is utilized be-
cause of its simplicity and efficiency [3].

First, the image Q ) \Qw?, rDi is smoothed using
Gaussian function, t�w?, rD, with the deviation �.

Q�w?, rD ) t�w?, rD 	 Qw?, rD (16)

This convolution can be performed in frequency domain
by using FFT/IFFT quickly.

Second, the normalized gradient of the smoothed image
Q� at each pixel location w?, rD, denoted

Q/�w?, rD ) wQ/�?w?, rD, Q
/
�rw?, rDD, w//Q

/
�w?, rD// ; >(, dHD,

is computed.

At last, constraints on the deformable contour W ensure
that W moves towards the object boundaries: when the
image pixels along the contour have high gradient mag-
nitude, and the direction of the image gradient along the
contour is perpendicular to the orientation of the contour,
the external energy is small. Therefore, the external en-
ergy function is defined as

o�?0wQ / WD )

]3

7)d

wd� //Q/�w?7, r7D//D

/tw?7, r7D N Yw?7, r7D/ (17)

where “N” is the dot product. Yw?, rD is the direction of
the gradient Q/�w?, rD, and

Yw?, rD ) Q/�w?, rDb//Q
/
�w?, rD//yzQ//Yw?, rD// ) d3

tw?7, r7D indicates the normal vector of the contour W at
point W7 ) w?7, r7D, with

//tw?7, r7D// ) dyzQtw?7, r7D ) >
( �d
d (

H%7b//%7//

, where

%7 )
W7Ld � W7

//W7Ld � W7//
L

W7 � W7�d
//W7 � W7�d//

is the tangent vector of contour W at point W7.

(a) (b)

(c) (d)

Figure 1: Sample data. (a)(b) Samples of the marked
frontal faces; (c) all the aligned facial features (contours);
(d) mean contour.

3 Facial Feature Extraction Using
BM

3.1 BM Tracking Algorithm

The computation of BM is actually a solution finding
procedure that minimizes the energy term of the de-
formable contour, o�Lz0L`�. The strategies used in [1]
and [6] are adopted: Gaussian pyramid for coarse-to-
fine search and the rapid iterative approach to find the
nearest plausible prototype shape �W (estimate |\,|�, and
j) from W according to the edge profile information.

A two-stage procedure is adopted: coarse and fine. In
the coarse matching, the coarse-to-fine search and the
iterative schemes are utilized, and the deformation be-
tween W and �W is not taken into account, so that a large
initial range of the contour can be tolerated. Generally,
in this stage, three different image scales are selected,
and the convergence is declared when applying an itera-
tion produces no significant change in the pose or shape
parameters. In the fine matching stage, both of the de-
formations between W and �W , �W and �W(, are considered,
which can fit the object closely.

The detail BSM algorithm is summaried as follows:

Stage 1 (coarse matching):
> ) � , initialize contour W .
(a) Examine the image region around W , find out a

new contour candidate W
I

, which matches image
edge best (at resolution level >).

(b) Update the parameters of affine transform,
x (\, �), the shape parameters j, and the
prototype contour �W

I

, according to W
I

[6],
where j is constrained in the plausible area.

(c) Update the current contour W to x w �W
I

D, and
the prototype contour �W to �W

I

.



(a) (b)

(c) (d)

Figure 2: Comparison between BM and ASM using the
same training data. (a)(b) the results of ASM; (c)(d) the
results of BM.

(d) Go to step (a) unless the newly updated W is close
to the old one, or the maximum iterations have
been applied.

(e) if > k d, then > ) > � d, goto (a), else exit.

Stage 2 (fine matching):
> ) d

(a) Calculate the internal and external energy terms,
and update the contour W .

(b) Update the parameters of affine transform x (\,
�), the shape parameters j, and the
prototype contour �W , according to W [6].
The constraints of j is applied to ensure the
prototype contour is in a plausible area.

(c) Repeat (a)(b) until convergence.

3.2 Experimental Results

Face detection, extraction, and recognition plays an im-
portant role in automatic face recognition systems. In
practice, the users may be expected to detect, match, or
recognize faces at any angles. In this section, experi-
ments based on facial feature extraction are presented to
illustrate the effectiveness of the BM.

A contour with 89 landmark/boundary points, includ-
ing six facial features: the face outline, brows, eyes,
and a mouth, is recruited to describe a full face. The
face images used for training are selected from the AR
frontal face database [12] (http://rvl1.ecn.purdue.edu/�
aleix/aleix face DB.html), which consists of various ex-
pression, male and female frontal face images. Fig.1
shows two examples of the marked faces. All the sample
contours are aligned and normalized using least squares
error method to constitute the shape space. The set
of all the sample contours used in this experiment and
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Figure 3: Examples of BM results for matching frontal
faces.

the mean contour are also plotted in Fig.1. The face
images used for testing are carefully selected from the
database of the Vision and Autonomous System Center
(VASC) of CMU (http://www.cs.cmu.edu/afs/cs.cmu.edu
/user/har/Web/faces.html), representing the images with
expressions, different rotation angles, and complex im-
age background. In the experiments, the initial contours
are properly placed manually as a common practice for
snakes. For BM, in the coarse matching stage, facial
feature points other than the outline points are passively
updated according to the matching results, such that a
quite large initial range of the face contour can be tol-
erated. Further in the fine tuning stage, all the facial
feature points are utilized to give an accurate matching
result of the full face. In each iteration, the contour of
every facial feature is smoothed. The results of ASM is
obtained by using the ASM Toolkit (Version 1.0) of the
Visual Automation Ltd.

Fig. 2 shows the results obtained by using the BM and
ASM models respectively, where the faces to be detected
can not be seen in advance and the training data used for
both the models are the same. Because ASM matches
objects exactly using the reconstructed shape, it may not
match the new objects accurately. For comparison, since
the BM considers not only the global prior information,
but also local deformations, better performance is ob-
served from the figure. Some other experiment results,
including the initial contours and the final matching re-
sults, are shown in Fig. 3. It can be seen from the figures
that the BM matches the faces closely even when they
are in different positions and in-plane rotation angles.



4 Conclusion

An effective deformable model, Bayesian Model, is de-
veloped in the general Bayesian framework. The global
shape variation is modeled using the prior shape knowl-
edge, and a transformational invariant internal energy is
utilized to describe the shape deformations between the
prototype contour and the deformable contour. Com-
pared with the ASM algorithm, experimental results
based on facial feature extraction verify the effective-
ness of the proposed BM model. It also worth noting
that as long as a set of training samples of object shapes
is available, the BM can be applied to other applications
such as object segmentation and tracking.
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