
Global Feedforward Neural Network Learning

For Classification And Regression

Kar-Ann Toh, Juwei Lu and Wei-Yun Yau

Centre for Signal Processing
School of Electrical & Electronic Engineering

Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
Email: ekatoh@ntu.edu.sg

Abstract. This paper addresses the issues of global optimality and
training of a Feedforward Neural Network (FNN) error funtion incor-
porating the weight decay regularizer. A network with a single hidden-
layer and a single output-unit is considered. Explicit vector and matrix
canonical forms for the Jacobian and Hessian of the network are pre-
sented. Convexity analysis is then performed utilizing the known canon-
ical structure of the Hessian. Next, global optimality characterization
of the FNN error function is attempted utilizing the results of convex
characterization and a convex monotonic transformation. Based on this
global optimality characterization, an iterative algorithm is proposed for
global FNN learning. Numerical experiments with benchmark examples
show better convergence of our network learning as compared to many
existing methods in the literature. The network is also shown to gener-
alize well for a face recognition problem.

1 Introduction

Backpropagation of error gradients has proven to be useful in layered feedforward
neural network learning. However, a large number of iterations is usually needed
for adapting the weights. The problem becomes more severe especially when a
high level of accuracy is required. It has been an active area of research, between
late 1980s and early 1990s, to derive fast training algorithms to circumvent the
problem of slow training rate as seen in the error backpropagation algorithm.
Among the various methods proposed (see e.g. [6, 14]), significant improvement
to the training speed is seen through the application of nonlinear optimization
techniques in network training (see e.g. [1, 2, 22]). Very often, this is achieved
at the expense of heavier computational requirement.1 Here, we note that most
of them are local methods and training results are very much dependent on the
choices of initial estimates.

In light of efficient training algorithm development and network pruning (see
[5], page 150-151), exact calculation of the second derivatives (Hessian) and its
1 For example, the complexity of each step in Newton’s method is O(n3) as compared

to most first-order methods which are O(n).



2

multiplied forms were studied [4, 16]. In [4], it was shown that the elements of
the Hessian matrix can be evaluated exactly using multiple forward propagation
through the network, followed by multiple backward propagation, for a feed-
forward network without intra-layer connections. In [16], a product form of the
Hessian which took about as much computation as a gradient evaluation was pre-
sented. The result was then applied to a one pass gradient algorithm, a relaxation
gradient algorithm and two stochastic gradient calculation algorithms to train
the network. From the review in [7] specifically on the computation of second
derivatives of feedforward networks, no explicit expression for the eigenvalues
was seen. Here we note that eigenvalues are important for convexity analysis.

In view of the lack of an optimality criterion for global network learning in
classification and regression applications, we shall look into the following issues in
this paper: (i) characterization of global optimality of a FNN learning objective
incorporating the weight decay regularizer, and (ii) derivation of an efficient
search algorithm based on results of (i). We shall provide extensive numerical
studies to support our claims.

The paper is organized as follows. In section 2, the layered feedforward neural
network is introduced. This is followed by explicit Jacobian and Hessian formu-
lations for forthcoming analysis. The FNN learning error function is then regu-
larized using the weight decay method for good generalization capability. Then
convexity analysis is performed in section 3 for local solution set characterization.
This paves the way for a new approach on global optimality characterization in
section 4. In section 5, the analysis results are used to derive a search algo-
rithm to locate the global minima. Several benchmark examples are compared
in section 6 in terms of convergence properties. The learning algorithm is also
applied to a face recognition problem with good convergence as well as good
generalization. Finally, some concluding remarks are drawn.

Unless otherwise stated, vector and matrix quantities are denoted using bold
lowercase characters and bold uppercase characters respectively to distinguish
from those scalar quantities. The superscript ‘T ’ on the respective character is
used to denote matrix transposition. Also, if not otherwise stated, ‖ · ‖ is taken
to be the l2-norm.

2 Multilayer Feedforward Neural Network

2.1 Neural feedforward computation

The neural network being considered is the familiar multilayer feedforward net-
work with no recurrent or intra-layer connections. The forward calculation of
a strictly 2-layer network with one output-node, i.e. network with one direct
input-layer, one hidden-layer, and one output-layer consisting a single node (i.e.
network with (Ni-Nj-1) structure) can be written as:

y(x, w) = g

Nj�
j=0

g

Ni�
i=0

wh
jixi

 · wo
kj

 , g(zh
0 ) = g(wh

0ixi) = 1, x0 = 1, k = 1 (1)



3

where x = {xi, i = 1, 2, ..., Ni} denotes the network input vector and w =

[wo
kj ]j=0,...,Nj ;k=1, [w

h
ji]i=0,...,Ni;j=1,...,Nj denotes the weight parameters to be ad-

justed. g(·) is a sigmoidal function given by

g(·) =
1

1 + e−(·) . (2)

The superscripts ‘o’ and ‘h’ denote weights that are connected to output-nodes
and hidden-nodes respectively.

For n number of data points, input x becomes a n-tuple vector (i.e. x ∈
R(Ni+1)×n for Ni number of input-nodes plus a constant bias term) and so is
the output y (i.e. y ∈ Rn).

2.2 Explicit Jacobian and Hessian for a two-layer network with
single output

Here, we stack the network weights as a parameter vector w ∈ Rp (p = (Nj +
1) + (Ni + 1)Nj) as follows:

w = [wo
k,0, ..., w

o
k,Nj

, wh
1,0, ..., w

h
1,Ni

, · · · , wh
Nj ,0, ..., w

h
Nj ,Ni

]T . (3)

Consider a single data point, the first derivative of network output y(x, w) (1)
with respect to the weights vector can be written as

J(w) = ∇T y(x,w) =
.
g(zo

k)rT , (4)

where

r = 1, g(zh
1 ), ..., g(zh

Nj
),

.
g(zh

1 )wo
k,1u

T , · · · .
g(zh

Nj
)wo

k,Nj
uT

T

∈ Rp, (5)

u = [1, x1, ..., xNi ]
T ∈ RNi+1, (6)

.
g(·) =

e−(·)

(1 + e−(·))2
, (7)

zo
k =

Nj

j=0

g(zh
j ) · wo

kj , g(zh
0 ) = 1, k = 1, (8)

zh
j =

Ni

i=0

wh
jixi, g(zh

0 ) = g(wh
0ixi) = 1, x0 = 1, j = 1, ..., Nj . (9)

The second derivative which is also termed the Hessian for the network func-
tion y(x, w) (1) is then

Y = ∇2y(x,w) =
..
g(zo

k)P +
.
g(zo

k)Q, (10)

where

..
g(·) =

e−(·) − 1 e−(·)

(1 + e−(·))3
, (11)

P = rrT , (12)



4

Q =




0 · · · · · · 0 0 · · · 0

.

.

.
. . .

.

.

.
.
g(zh

1 )uT 0

.

.

.
. . .

.

.

.
. . .

0 · · · · · · 0 0
.
g(zh

Nj
)uT

0
.
g(zh

1 )u 0
..
g(zh

1 )wo
k,1uuT 0

.

.

.
. . .

. . .

0 0
.
g(zh

Nj
)u 0

..
g(zh

Nj
)wo

k,Nj
uuT




. (13)

2.3 Learning and generalization

Since the goal of network training is not just to learn the given sample training
data, here we adopt the weight decay (see e.g. [5, 9]) regularization method to
provide some degree of network generalization.

Consider a target learning vector given by yt
i , i = 1, ..., n, the following learn-

ing objective for FNN y(xi, w) is considered:

s(w) = s1(w) + b s2(w), b 0 (14)

where

s1(w) =

n

i=1

yt
i − y(xi,w)

2
=

n

i=1

ε2i (w) = dT (w)d(w), (15)

and

s2(w) = ‖w‖2
2 = wTw. (16)

In what follows, we shall retain s1 as the minimization objective for regression
applications (or by setting b = 0 for s in (14)) since only fitting accuracy is
required. We shall observe how the learning objective in (14) can influence gen-
eralization of FNN learning for classification in a face recognition problem.

3 Convexity Analysis

In this section, we shall analyze the convexity of the more general s such that
local optimal solutions can be found. The convexity of s1 can be directly obtained
by setting b = 0 from that of s. According to ([17],Theorem 4.5), convexity of
a twice continuously differentiable function is conditioned by the positive semi-
definiteness of its Hessian matrix.

To determine explicit conditions for our application, consider the l2-norm
training objective given n training data in (14). The Hessian of s(w) can be
written as

∇2s(w) = 2 ET (w)E(w) + R(w) + bI , (17)

where E(w) is the Jacobian of ε(w) and

ET (w)E(w) = (−J)T (w)(−J)(w) = JT (w)J(w),

R(w) = −
n

i=1

∂2y(xi,w)

∂w∂wT
εi(w) ∈ Rp×p. (18)



5

The positive semi-definiteness of ∇2s(w) is thus dependent on the matrices
JT (w)J(w), bI and R(w). By exploring the structure of the above Hessian, we
present our convexity result as follows. We shall prove two lemmas before we
proceed further:

Lemma 1. Consider v = [v1, v2, ..., vn]T ∈ Rn for some vi �= 0, i = 1, 2, ..., n.
Then, the eigenvalues of vvT are given by

λ(vvT ) =
{∑n

i=1v
2
i , 0, ..., 0

}
. (19)

Proof: Since vvT is symmetric with rank one, we have one and only one real
non-zero eigenvalue which is the trace of vvT . This completes the proof. �

Lemma 2. Consider v = [v1, v2, ..., vn]T for some vi �= 0, i = 1, 2, ..., n and

A =




0 · · · · · · 0 0 · · · 0

.

.

.
. . .

.

.

. a1v
T 0

.

.

.
. . .

.

.

.
. . .

0 · · · · · · 0 0 an−1v
T

0 a1v 0 b1vvT · · · 0

.

.

.
. . .

.

.

.
. . .

.

.

.

0 0 an−1v 0 · · · bn−1vvT



∈ Rn2×n2

. (20)

Then, the eigenvalues of A are given by λ(A) =
{
λ1, ..., λ2(n−1), 0, ..., 0

}
, where

λj = 1
2

[
bjV ±

√
(bjV )2 + 4(a2

jV )
]
, j = 1, 2, ..., n − 1 , and V =

n∑
i=1

v2
i .

Proof: Solve for the eigenvalues block by block will yield the above result. �

Now, we are ready to perform convexity analysis for local solution set char-
acterization. The FNN learning problem addressed, in a more precise manner,
is stated as:

Problem 1 The problem of FNN learning is defined by the l2-norm minimiza-
tion objective given by (14) where y(xi, w) is a (Ni-Nj-1) network defined by
(1) with sigmoidal activation functions given by (2). The Jacobian of y(xi, w),
i = 1, 2, ..., n is denoted by JT (w) = [∇y(x1, w),∇y(x2, w), ...,∇y(xn, w)] where
each of ∇y(xi, w), i = 1, 2, ..., n is evaluated using (4)-(9).

First we present a first-order necessary condition for network learning as
follows:

Proposition 1. Given Problem 1. Then, the least squares estimate ŵ of w =
[w1, w2, ..., wp]T , p = (Nj + 1) + (Ni + 1)Nj in the sense of minimizing s(w) of
(14) satisfies

ŵ − JT (ŵ)[yt − y(x, ŵ)] = 0. (21)



6

Proof: Minimizing s(w) with respect to w by setting its first derivative to zero
yields the normal equation given by (21). ŵ is the point satisfying (21). Hence
the proof. �

The convexity result is presented as follows:

Theorem 1 Given Problem 1. Then s(w) is convex on w ∈ Wc if
n

i=1

..
g(zo

k)λm(P)
i
+

.
g(zo

k)λm(Q)
i
εi b, (22)

where

λm(P) =


p�

k=1

r2
k, εi � 0

0 εi < 0

, i = 1, 2, ..., n , (23)

[r1, r2, ..., rp] =
>
1, g(zh

1 ), ..., g(zh
Nj

),
.
g(zh

1 )wo
k,1u

T , · · · .
g(zh

Nj
)wo

k,Nj
uT
"

, (24)

λm(Q) =

k
maxj λj , εi � 0
minj λj , εi < 0

, j = 1, 2, ..., Nj , (25)

λj =
1

2

�
..
g
Q

zh
j

w
wo

k,jV ±
�Q..

g
Q

zh
j

w
wo

k,jV
w2

+ 4
.
g2
Q

zh
j

w
V

c
, j = 1, ..., Nj, (26)

V = 1 +

Ni�
i=1

x2
i , (27)

with
.
g(·), ..

g(·), zo
k and zh

j being given by (7) through (9) and (11). Moreover,
when the inequality in (22) is strict, strict convexity results.

Proof: For convexity(strict convexity) of s(w), we need its Hessian to be positive
semidefinite(definite). From (10), (17)-(18), we know that matrices JTJ, R, I
are symmetric. Hence, for the Hessian [JTJ+R+ bI] to be positive semidefinite
(definite), it is sufficient to have

λmin(JT J) + λmin(R) + b 0, (28)

by Weyl’s theorem (see [10], p.181). Substitute λmin(JT J) = 0, (10), (12) and
(13) into above, and apply Weyl’s theorem again, we further have

b−
n

i=1

λm

..
g(zo

k)P
i
εi −

n

i=1

λm

.
g(zo

k)Q
i
εi 0 (29)

where λm(·) = λmax(·) when εi � 0 and λm(·) = λmin(·) when εi < 0. Denote
the trace of a matrix A by tr(A). According to Lemma 1, we have for εi < 0

λm

..
g(zo

k)P
i
= 0, i = 1, 2, ..., n, (30)

and for εi � 0

λm

..
g(zo

k)P
i
=

..
g(zo

k)tr(rrT )
i
=

..
g(zo

k)

p

k=1

r2k
i

, i = 1, 2, ..., n, (31)



7

where r is given in (5). By Lemma 2 with adaptation of A ∈ Rn2×n2
to

Q ∈ Rp×p, p = (Nj + 1) + (Ni + 1)Nj, we have 2Nj number of non-zero eigen-
values which are identified as in (26) and (27). This completes the proof. �

Remark 1:- By exploiting the known canonical structure of the Hessian of
the FNN, Theorem 1 presents an explicit convexity condition using eigenvalue
characterization. The characterization is general since it can be applied to non-
sigmoidal activation functions by replacing g and its derivatives with other ac-
tivation functions. Here, we note that local optimal solution set can be charac-
terized by Proposition 1 and Theorem 1. These results will be incorporated into
global optimality characterization in the following section. �

4 Global Optimality

In this context, we refer to the solution of a minimization problem as:

Definition 1 Let f be a function to be minimized from D to R where D ⊆ Rp

is non-empty and compact. A point θ ∈ D is called a feasible solution to the
minimization problem. If θ∗

g ∈ D and f(θ) � f(θ∗
g) for each θ ∈ D, then θ∗

g is
called a global optimal solution (global minimum) to the problem. If θ∗ ∈ D and
if there exists an ε-neighborhood Nε(θ∗) around θ∗ such that f(θ) � f(θ∗) for
each θ ∈ D∩Nε(θ∗), then θ∗ is called a local optimal solution (local minimum).
The set which contains both local optimal solutions and global optimal solutions
is called a solution set (denoted by Θ∗).

4.1 Mathematical construct

Denote R+ = (0,∞). Consider a strictly decreasing transformation φ on the
function to be minimized. We shall use the following result (see [20] for more
details) for global optimality characterization of a FNN error function.

Proposition 2. Let f : D → R be a continuous function where D ⊆ Rp is
compact. Let φ : R → R+ be a strictly decreasing function. Suppose θ∗ ∈ D.
Then θ∗ is a global minimizer of f if and only if

lim
γ→∞

φγ(f(θ))

φγ(f(θ∗))
= 0, ∀ θ ∈ D, f(θ) �= f(θ∗). (32)

Proof: This follows from the fact that φγ(f(θ))
φγ(f(θ∗)) > 0 so that limγ→∞

φγ(f(θ))
φγ(f(θ∗)) = 0

is equivalent to φ(f(θ))
φ(f(θ∗)) < 1. �

Consider the solution set given by Definition 1, and using a more structured
convex transformation φ, the following proposition is a straightforward conse-
quence.



8

Proposition 3. Let f : D → R be a continuous function where D ⊆ Rp is
compact. Let φ : R → R+ be a strictly decreasing and convex function. Denote
by Θ∗ the solution set given by Definition 1. Suppose θ∗ ∈ Θ∗. Then θ∗ is a
global minimizer of f if and only if

lim
γ→∞

φγ(f(θ))

φγ(f(θ∗))
= 0, ∀ θ ∈ Θ∗, f(θ) �= f(θ∗). (33)

4.2 Global optimality of the modified FNN error function

Consider a feedforward neural network (FNN) with the training objective given
by (14). Let v(w) be a convex monotonic transformation function given by:

v(w) = φγ(s(w)) = ρe−γs(w), w ∈ Rp, ρ > 0, γ > 1. (34)

Notice that v(w) ∈ R+ = (0,∞) for all finite values of ρ, γ and s(w). If a lower
bound or the value of global minimum of s(w) is known, then we can multiply
s(w) by ρ = eγsL for scaling purpose:

v(w) = e−γ(s(w)−sL). (35)

This means that the maximum value of v(w) can be pivot near to or at 1 while
all other local minima can be “flattened” (relative to global minima) using a
sufficiently high value of γ. For FNN training adopting a l2-norm error objective,
the ultimate lower bound of s(w) is zero. For network with good approximation
capability, the global minimum value should be a small value where this zero
bound provides a good natural scaling.

Noting that the FNN considered is a continuous function mapping on a com-
pact set of weight space w ∈ W , characterization of global optimality for the
FNN training problem is presented as follows:

Theorem 2 Consider Problem 1. Denote by W∗ the solution set which satisfies
Proposition 1 and strict convexity in Theorem 1. Let v(s(w)) = ρe−γs(w), ρ > 0.
If there exists γo > 1 such that

v(s(w))

v(s(w∗))
1

2
, s(w) �= s(w∗), (36)

for all γ � γo and for all w ∈ W∗, then w∗ is a global minimizer of s(w).

Proof: The solution set W∗ which satisfies Proposition 1 and strict convexity
in Theorem 1 defines sufficiency for local optimality of the FNN error function
(14). Let w ∈ W∗ where s(w) �= s(w∗). By the hypothesis in the theorem, there
exists γo > 1 such that (36) holds for all γ � γo. Thus v(s(w))

v(s(w∗)) � 1
2 < 1 for

γ > γo. Passing to limit, we have limγ→∞
v(s(w))
v(s(w∗)) = 0. By Proposition 3, w∗ is

a global minimizer. �

Remark 2:- Theorem 2 shows that if we can find a γ � γo such that (36) is
satisfied, then a level ζ > 0 can be found to segregate the global minima from all



9

other local minima on the transformed error function v. For FNN training prob-
lems adopting a l2-norm error function s1, the global optimal value is expected
to approach zero if network approximation capability is assumed (i.e. with suf-
ficient layers and neurons). Hence, we can simply choose a cutting level ζ to be
slightly less than 1 (since v(0) = 1 when ρ = 1) on a transformed function v with
sufficiently high value of γ. We shall utilize this observation for FNN training in
both regression and classification problems. �

5 Network Training

5.1 Global descent search

In this section, we show that the results of global optimality characterization
can be directly applied to network training problem. Here, we treat network
training as a nonlinear minimization problem. To achieve global optimality, the
minimization is subjected to optimality conditions defined by Theorem 2. Math-
ematically, the network training can be written as:

min
w

s(w) subject to w ∈ W∗
g , (37)

where W∗
g defines the solution set containing the global minima according to

Theorem 2. Here, the condition given by Proposition 1 is used for iterative search
direction design (e.g. Gauss-Newton search). While the convex characterization
can be used for verification purpose, the global condition in Theorem 2 is used
as a constraint to search for w over a high cutting level on the transformed
function:

v(s(w)) > ζ or h(w) = ζ − v(s(w)) < 0, (38)

where ζ can be chosen to be any value within (1
2 , 1).

5.2 Penalty function method

Suppose there are l constraint functions2 which are put into the following vector
form: h(w) = [h1(w), h2(w), · · · , hl(w)]T � 0. Let h̄j(w) = max{0, hj(w)},
j = 1, 2, ..., l and define for j = 1, 2, ..., l,

∇h̄j(w) =
∇hj(w) if hj(w) 0

0 if hj(w) < 0 .
(39)

Using the more compact matrix notation, (39) can be packed for j = 1, 2, ..., l

as H̄T (w) = ∇h̄(w) = [∇h̄1(w),∇h̄2(w), · · · ,∇h̄l(w)] ∈ Rp×l. By the penalty
function method [13], the constrained minimization problem of (37) can be re-
written as:

(Pc) : min q(c,w) = s(w) + cP (w) (40)

2 Apart from constraint arising from (36), the boundaries of the domain of interest
can also be included as constraints.



10

where

P (w) = ψ(h̄j(w)) =
l

j=1

h̄j(w)
2
, (41)

h̄j(w) = max{0, hj(w)}, j = 1, 2, ..., l, (42)

and c > 0 is a large penalty coefficient.
In [13], it has been shown that as c → ∞, the solution to the minimization

problem (Pc) given by (40) will converge to a solution of the original constrained
problem given by (37). In the sequel, we shall concentrate on finding the solution
of (Pc) (40)-(42).

For the unconstrained objective function given by s(w) and the penalty func-
tion given by P (w) in (40), we note that their first- and second-order partial
derivatives are written as:

∇s(w) = −2JT d + 2bw, ∇2s(w) = 2(JT J + Ry) + 2bI,

∇P (w) = 2H̄T h̄, ∇2P (w) = 2(H̄T H̄ + Rh).

The functional dependency on w (and so in the subsequent derivations) are
omitted when clarity is not affected. The following algorithms are derived to
search for the global minima.

5.3 Algorithm

It can be further assumed that the first-order partial derivatives of P (w) are
continuous including those points where h̄j(w) = 0, j = 1, 2, ..., l following [13].
Hence, by taking the quadratic approximation of q(w) (40) about wo and set
the first derivative to zero, we have

w = wo + JT J + Ry + bI + cH̄T H̄ + Rh

−1

JT d− bw − cH̄T h̄ . (43)

If we drop the second-order partial derivatives of network (Ry) and the second-
order partial derivatives of the constraint function (Rh), we can formulate a
search algorithm as follows:

wi+1 = wi + JT
i Ji + bI + cH̄T

i H̄i

−1

JT
i di − bwi − cH̄T

i h̄i . (44)

By including a weighted parameter norm in the error objective function (14),
we note that this has resulted in having a weighted identity matrix (bI) included
for the term in (44) which requires matrix inversion. This provides a mecha-
nism to avoid the search from ill-conditioning which is analogous to that of the
Levenberg-Marquardt’s method.

To further improve numerical properties, the widely distributed eigenvalues
of the penalty term can be normalized as shown:

wi+1 = wi + β
[
JT

i Ji + bI + cH̄T
i AH̄i

]−1 (
JT

i εi − bw − cH̄T
i h̄i

)
(45)

where A = (H̄iH̄T
i )−1. Here, we use the Line Search procedure (with β chosen

to minimize the objective function) for iterative search.



11

In the following, we shall compare the global descent algorithm given by (45)
(denoted as LSGO) with its local counter part, the local line search (denoted as
LS) obtained from setting c = 0 and bw = 0 in (45).

6 Numerical Experiments

6.1 Benchmark problems

For the following experiments in this subsection, the FNN learning objective is
chosen to be s1(w) rather than s(w) since only training accuracy for regression
is needed. Here the bw term in algorithm (45) is set to zero while the bI term is
retained for numerical stability. For all examples, 100 trials using random initial
points within the box [0, 1]p were carried out. Training results in terms of the
number of trials reaching a neighborhood of the desired global minimum and the
mean number of iterations for these trials are presented.

As the number of iterations required to reach a desired error goal only pro-
vides a partial picture of the training algorithm, numerical results on compu-
tational aspects are also provided. All the experiments are conducted using an
IBM-PC/Pentium compatible machine with 266Hz clock speed. In the follow-
ing, we tabulate the average CPU time required to run 10 iterations for each
algorithm.

For ease of comparison, recent results (mean number of iterations, percent-
age of trials attaining near global solution) for the XOR problem from [22] are
listed: (i) Standard error backpropagation: (332, 91.3%); (ii) Error backpropaga-
tion with line minimization: (915.4, 38%); (iii) Davidon-Fletcher-Powell quasi-
Newton minimization: (2141.1, 34.1%); (iv) Fletcher-Reeves conjugate gradient
minimization: (523, 81.5%); (v) Conjugate gradient minimization with Pow-
ell restarts: (79.2, 82.1%). The reader is referred to [22] for more results on
f(x) = sin(x) cos(2x) fitting problem which requires much more than 600 mean
iterations for the above search methods.

As for existing global optimization algorithms, similar statistical compar-
isons for these examples are not available. We note that the particular training
example for XOR given in [8] (TRUST) used about 1000 training iterations to
reach the global optimal solution. As for the global algorithm proposed by [19]
(GOTA), the convergence speed is reported to be comparable to the backprop-
agation algorithm for the XOR example.

Example 1: XOR pattern

In this example, 4 samples of the XOR input-output patterns were used for
network training. The network chosen was similar to that in [22] where 2 hidden-
units were used. The target sum of the squared error was set to be less than 0.025
which was sufficiently closed to the global optimal solution. For both local and
global methods, b was chosen to be a fixed value of 0.0001 which was sufficient
to provide a stable numerical conditioning. As for other parameters of the global



12

descent algorithm (LSGO), the following settings were used: γ = 4, ρ = 1,
ζ = 0.9999, c = 10 (γ and ρ appear in v(w), ζ is the cutting level on v(w) as
shown in (38) and c is a penalty constant).

Training results comprising of 100 trials for each of the algorithms are shown
in Table 1. The respective statistics (i.e. min: minimum value, max: maximum
value, mean: mean value, std dev: standard deviation, and GOP: percentage
of trials achieving the desired global error objective within 500 iterations) are
also included in Table 1. In order to show the core distribution for trials which
took less than 500 iterations, the statistics shown exclude those trials above 500
iterations.

Table 1. Results for the Examples 1,2 and 3

Ex. 1 CPU Number of iterations GOP
Case Algo. (sec) min max mean std dev. (%)
(a) LS 0.66 5 > 500 13.73 22.46 33
(b) LSGO 0.77 28 132 39.40 15.76 100

Ex. 2 CPU Number of iterations GOP
Case Algo. (sec) min max mean std dev. (%)
(a) LS 0.93 21 > 5000 94.70 94.76 50
(b) LSGO 1.15 29 3191 72.34 26.78 100

Ex. 3 CPU Number of iterations GOP
Case Algo. (sec) min max mean std dev. (%)
(a) LS 5.50 – > 500 – – 0
(b) LSGO 8.41 49 > 500 73.16 18.85 99

As shown in Table 1, the global descent algorithm (LSGO) have succeeded
in locating the approximate global minima within 132 iterations for all the 100
trials using different initial values. This as compared to the local line search
algorithm (LS), which scores only 33%, is a remarkable improvement. In terms
of computational cost, the global constrained method is found to take slightly
higher CPU time than that using unconstrained method.

Example 2: 1-D curve f(x) = sin(x) cos(2x)

In this example, 20 input-output patterns were uniformly chosen on 0 � x � 2π
for network training. Similar to the first example, the sum of the squared error
was set to be less than 0.025 which was sufficiently close to the global optimal
solution. A single-output network with 10-hidden units was chosen according
to [22]. As in previous example, b was set to be 0.0001 throughout. For the
global descent algorithm (LSGO), the following settings were chosen: γ = 4,
ρ = 10, ζ = 9.9999, c = 10. Training results for 100 trials are shown in Table 1,
with respective statistics and CPU times. For this example, GOP refers to the
percentage of trials achieving the desired error goal within 5000 iterations.

In this example, the global method (LSGO) has achieved a 100% GOP which
is much better than the 50% for local method (LS). The largest iteration num-
ber for the case in LSGO was found to be 3191. As for the CPU time, the
global constrained algorithm takes longer time than its local counterpart in each
iteration.



13

Example 3: 2-D shape

For this example, the network is to learn a two-dimensional sinc function. The
network size chosen was (2-15-1) and the error goal was set at 0.8 with 289 input-
output training sets. Similar to the above examples, b was chosen to be 0.0001
throughout. For the global descent algorithm (LSGO), the following settings
were chosen: LSGO: γ = 2, ρ = 10, ζ = 9.999999, c = 1000. The training results
for 100 trials are shown in Table 1. Here we note that the GOP for this example
indicates the percentage of trials reaching the error goal within 500 iterations.

From Table 1, we see that for all 100 trials, the LS method was unable to
descent towards the error goal within 500 iterations. In fact, we observed that
most of these trials had landed on local minima which are much higher than the
error goal. The LSGO had improved the situation with only one trial resulted
in SSE slightly greater than the error goal at the end of 500th iteration.

Remark 3:- Despite the remarkable convergence using random initial estimates
for all the examples, it is noted that when the initial point was chosen at some of
those local minima, the penalty based algorithms converge with extremely slow
speed and were unable to locate the global minima within 5000 iterations. �

6.2 Face recognition

Face recognition represents a difficult classification problem since it has to deal
with large amount of variations in face images due to viewpoint, illumination
and expression difference even for similar person. As such, many recognition
conditions are ill-posed because “the variations between the images of the same
face due to illumination and viewing direction are almost always larger than
image variation due to change in face identity” [15].

Here we use the ORL Cambridge database [18] for classification. The ORL
database contains 40 distinct persons, each having 10 different images taken
under different conditions: different times, varying lighting (slightly), facial ex-
pression (open/closed eyes, smiling/non-smiling) and facial details (glasses/no-
glasses). All the images are taken against a dark homogeneous background and
all persons are in up-right, frontal position except for some tolerance in side
movement. The face recognition procedure is performed in two stages, namely:

1. Feature extraction: the training set and query set are derived in the same way
as in [12] where 10 images of each of the 40 persons are randomly partitioned
into two sets, resulting in 200 images for training and 200 images for testing
with no overlapping between them. Each original image is then projected
onto the feature spaces derived from Eigenface [21], Fisherface [3] and D-
LDA [23] methods.

2. Classification: conventional nearest centre (NC), nearest neighbour (NN)
and our proposed FNN method are used for classification. The error rates



14

are taken only from the averages of test errors obtained from 8 different
runs.3

The network chosen for this application consists of 40 separate FNN (one
network per person), each with (Ni-1-1) structure considering network dilution
for good generalization [11]. The number of inputs Ni = 39 is set according to
the feature dimension obtained from projections using Eigenface, Fisherface and
D-LDA. During the training phase, each of the 40 FNN outputs was set to ‘1’
for one corresponding class (person) while the others set to ‘0’. The global FNN
was tested for 5 cases: FNN(a)-(e), each for 500 learning iterations, all using
γ = 4, ρ = 10, ζ = 9.9999. Among the 40 individual outputs of the FNNs, the
output with the highest value is assigned to the corresponding class. Training
and testing error rates were obtained from the number of mis-classified persons
divided by 200. The results corresponding to other different FNN settings and
various feature extraction methods are shown in Table 2.

Table 2. FNN settings and corresponding error rates

Settings Classification error rate (%)
Classification Method FNN settings Eigenface D-LDA Fisherface

wo c b Train Test Train Test Train Test
NC − − − − 12.25 − 5.56 − 8.12
NN − − − − 6.50 − 5.38 − 8.81

FNN(a) k × 10−4 0 10−4 3.69 25.88 34.44 45.31 69.25∗ 79.25∗

FNN(b) k × 10−4 103 10−4 3.56 26.75 34.25 47.06 69.25∗ 79.38∗

FNN(c) k × 10−4 103 0.05 0 5.38 0 5.62 0 12.56

FNN(d) k̄ × 10−8 103 0.25 0 5.06 0 5.31 0 7.81
FNN(e) R × 10−8 103 0.05-0.5 0 3.88 0 4.63 0 7.81

* : encounter singularity of matrix for some cases during training.

From Table 2, we see that poor results were obtained for both the con-
ventional FNN (FNN(a): unconstrained minimization on s1 with c = 0) and
the global descent FNN for regression (FNN(b): constrained minimization on
s1 with c = 103). However, remarkable improvement was observed when the
weightage b was set at 0.05 as seen in FNN(c). With smaller initial values (k̄
indicates k = 1, ..., p offset by its mean) and a higher b, the results were seen
to improve further in FNN(d). In FNN(e), we provide our best achievable re-
sults from random initial estimates (R× 10−8) and variations of b value. We see
that our simple training method can provide good generalization capability as
compared to best known network based method that incorporated several ideas:
local receptive fields, shared weights, and spatial subsampling [12]. In short, for
this case of using half the data set for training, our best FNN provides a good
error rate as compared to best known methods reported in [12]: Top-down HMM
(13%), Eigenfaces (10.5%), Pseudo 2D-HMM (5%) and SOM+CN (3.8%).

3 Here we note that only 3 runs were tested in [12].



15

7 Conclusion

In this paper, we propose to train a regularized FNN using a global search
method. We have presented explicit vector and matrix canonical forms for the
Jacobian and the Hessian of the FNN prior to convexity analysis of the weighted
l2-norm error function. The sufficient conditions for such convex characteriza-
tion are derived. This permits direct means to analyze the network in aspects of
network training and possibly network pruning. Results from the convex char-
acterization are utilized in an attempt to characterize the global optimality of
the FNN error function which is suitable for regression and classification appli-
cations. By means of convex monotonic transformation, a sufficient condition for
the FNN training to attain global optimality is proposed. The theoretical results
are applied directly to network training using a simple constrained search. Sev-
eral numerical examples show remarkable improvement in terms of convergence
of our network training as compared to available local methods. The network
learning is also shown to possess good generalization property in a face recogni-
tion problem. It is our immediate task to generalize these results to a network
with multiple outputs. Design of more robust constrained search remains an
issue to guarantee global convergence.

Acknowledgement

The authors are thankful to Dr Geok-Choo Tan and Dr Zhongke Wu for their
comments and assistance on various aspects of the paper. The authors are also
thankful to the anonymous reviewers for providing additional references. Last,
but not least, the authors are thankful to A/P Wee Ser for his kind support.

References

1. Etienne Barnard. Optimization for training neural nets. IEEE Trans. on Neural
Networks, 3(2):232–240, 1992.

2. Roberto Battiti. First- and second-order methods for learning: Between steepest
descent and Newton’s method. Neural Computation, 4:141–166, 1992.

3. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. “Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):711–720, July 1997.

4. Chris Bishop. Exact calculation of the Hessian matrix for the multilayer percep-
tron. Neural Computation, 4:494–501, 1992.

5. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press Inc., New York, 1995.

6. Richard P. Brent. Fast training algorithms for multilayer neural networks. IEEE
Trans. on Neural Networks, 2(3):346–354, 1991.

7. Wray L. Buntine and Andreas S. Weigend. Computing second derivatives in feed-
forward networks: A review. IEEE Tran. Neural Networks, 5(3):480–488, 1994.

8. B. C. Cetin, J. W. Burdick, and J. Barhen. Global descent replaces gradient descent
to avoid local minima problem in learning with artificial neural networks. In IEEE
Int. Conf. Neural Networks, 1993.



16

9. John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of
Neural Computation. Addison-Wesley Publishing Company, New York, 1991.

10. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, New York, 1992.

11. Peter Kuhlmann and Klaus-Robert Müller. On the generalisation ability of diluted
perceptrons. J. Phys. A: Math. Gen., 27:3759–3774, 1994.

12. Steve Lawrence, C. Lee Giles, Ah Chung Tsoi, and Andrew D. Back. Face recog-
nition: A convolutional neural-network approach. IEEE Tran. Neural Networks,
8(1):98–113, 1997.

13. David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Pub-
lishing Company, Inc., Massachusetts, 1984.

14. Martin Fodslette Moller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6:525–533, 1993.

15. Y. Moses, Y. Adini, and S. Ullman. “Face recognition: The problem of com-
pensating for changes in illumination direction”. In Proceedings of the European
Conference on Computer Vision, volume A, pages 286–296, 1994.

16. Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Compu-
tation, 4:147–160, 1994.

17. R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton,
New Jersey, 1972.

18. Web site of ORL Cambridge face database:. “http://www.cam-
orl.co.uk/facedatabase.html”. AT&T Laboratories Cambridge, 1994.

19. Zaiyong Tang and Gary J. Koehler. Deterministic global optimal FNN training
algorithms. Neural Networks, 7(2):301–311, 1994.

20. K. A. Toh. Global energy minimization: A transformation approach. In Proceedings
of Third International Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR). Springer Verlag, Sophia-Antipolis,
France, September 2001. (Lecture Notes in Computer Science).

21. Matthew A. Turk and Alex P. Pentland. “Eigenfaces for recognition”. Journal of
Cognitive Neuroscience, 3(1):71–86, March 1991.

22. P. Patrick van der Smagt. Minimisation methods for training feedforward neural
networks. Neural Networks, 7(1):1–11, 1994.

23. Jie Yang, Hua Yu, and William Kunz. “An efficient LDA algorithm for face recog-
nition”. In Proceedings of Sixth International Conference on Control, Automation,
Robotics and Vision, Singapore, December 2000.


