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Abstract

An issue of paramount importance in the development of a cost-effective face recog-

nition (FR) system is the determination of low-dimensional, intrinsic face feature repre-

sentation with enhanced discriminatory power. It is well-known that the distribution of

face images, under a perceivable variation in viewpoint, illumination or facial expression,

is highly non convex and complex. In addition, the number of available training samples

is usually much smaller than the dimensionality of the sample space, resulting in the well

documented “small sample size” (SSS) problem. It is therefore not surprising that tradi-

tional linear feature extraction techniques, such as Principal Component Analysis, often

fail to provide reliable and robust solutions to FR problems under realistic application

scenarios.

In this research, pattern recognition methods are integrated with emerging machine

learning approaches, such as kernel and boosting methods, in an attempt to overcome

the technical limitations of existing FR methods. To this end, a simple but cost-effective

linear discriminant learning method is first introduced. The method is proven to be

robust against the SSS problem. Next, the linear solution is integrated together with
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Bayes classification theory, resulting in a more general quadratic discriminant learning

method. The assumption behind both the linear and quadratic solutions is that face

patterns under learning are subject to Gaussian distributions. To break through the

limitation, a globally nonlinear discriminant learning algorithm was then developed by

utilizing kernel machines to kernelize the proposed linear solution. In addition, two

ensemble-based discriminant learning algorithms are introduced to address not only non-

linear but also large-scale FR problems often encountered in practice. The first one is

based on the cluster analysis concept with a novel separability criterion instead of tra-

ditional similarity criterion employed in such methods as K-means. The second one is

a novel boosting-based learning method developed by incorporating the proposed linear

discriminant solution into an improved AdaBoost framework. Extensive experimentation

using well-known data sets such as the ORL, UMIST and FERET databases was carried

out to demonstrate the performance of all the methods presented in this thesis.

iii



Dedication

To my wife, Julia Q. Gu.

Thanks for love, support, understanding and encouragement.

iv



Acknowledgements

I wish to express my sincere gratitude to all the people who have assisted me during

the years of my studies in University of Toronto. First, my most gratefulness goes to

my advisor, coauthor and friend, Prof. K.N. Plataniotis, for his professional guidance,

constant support and trust. Prof. Plataniotis is well experienced in the areas of image

processing, pattern recognition and machine learning. I have obtained numerous valuable

ideas from frequent discussions with him. None of the work included here could have

happened without his advice. Looking back to my graduate career, it has been a great

fortune to have Prof. Plataniotis as my supervisor. Also, I would like to thank my co-

supervisor, Dean A. N. Venetsanopoulos, who has been very supportive in many respects

over these years. From him, I have not only learned the knowledge of advanced image

processing but also the leadership, which could be a huge fortune for my future career.

I would like to thank Prof. Dimitrios Hatzinakos, Prof. James MacLean, and Prof.

Pas Pasupathy for their insightful comments and suggestions on my thesis work. I am

also grateful to Prof. Nicolas D. Georganas for his kind help to serve as an external

thesis appraiser. It was a privilege for me to have had each of them serve in my doctoral

committee. In addition, I would like to thank all the members in the DSP group for

their warm welcome and support. Special thank goes to my colleagues and friends, Ivan

Icasella, Ryan Pacheco and Jessie Wang. I benefited a lot from their friendship and help.

It has been really a great pleasure for me to study and work under the nice environment

constructed and maintained by the efforts of all the members in the DSP labs.

Special thanks to my Master supervisor and friend, Dr Stan Z. Li for introducing me

into the research areas of image processing and pattern recognition, and providing me

with many valuable ideas.

Portions of the research in this dissertation use the FERET database of facial images

collected under the FERET program [93]. I would like to thank the FERET Technical

Agent, the U.S. National Institute of Standards and Technology (NIST) for providing the

v



FERET database. Also, I would like to thank Dr. Daniel Graham and Dr. Nigel Allinson

for providing the UMIST face database, and thank AT&T Laboratories Cambridge for

providing the ORL face database.

Finally, my sincere thanks go to all the members of my family. I share with them

every piece of achievements that I have obtained.

Partial works in Chapter 3 have been published. Reprinted from Publication [74]

with permission from IEEE.

Partial works in Chapter 4 have been published. Reprinted from Publication [75]

with permission from Elsevier.

Partial works in Chapter 5 have been published. Reprinted from Publication [73]

with permission from IEEE.

vi



Contents

Abstract ii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Review 7

2.1 Geometric Feature-based Approach . . . . . . . . . . . . . . . . . . . . . 8

2.2 Appearance-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Face Databases and FR Evaluation Design . . . . . . . . . . . . . . . . . 10

2.3.1 Facial Recognition Technology (FERET) Program . . . . . . . . . 10

2.3.2 Face Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 FR Evaluation Designs . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Linear Discriminant Learning for Face Recognition 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Appearance-based Feature Extraction . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . 20

3.2.2 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . 21

3.3 LDA in the Small-Sample-Size (SSS) Scenarios . . . . . . . . . . . . . . . 23

vii



3.3.1 The Small-Sample-Size (SSS) problem . . . . . . . . . . . . . . . 23

3.3.2 Where are the optimal discriminant features? . . . . . . . . . . . 24

3.3.3 A modified Fisher’s criterion . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 A variant of direct LDA: JD-LDA . . . . . . . . . . . . . . . . . . 28

3.4 The Direct Fractional-Step LDA (DF-LDA) . . . . . . . . . . . . . . . . 31

3.4.1 Weighted between-class scatter matrix . . . . . . . . . . . . . . . 31

3.4.2 Rotation, re-orientation and dimensionality reduction of the JD-

LDA subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Quadratic Discriminant Learning with Regularization 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Bayes Classification Theory . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Determination of a low-dimensional discriminant subspace . . . . . . . . 44

4.4 Regularized Direct QDA (RD-QDA) . . . . . . . . . . . . . . . . . . . . 44

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 The Face Recognition Evaluation Design . . . . . . . . . . . . . . 47

4.5.2 The FR Performance Comparison . . . . . . . . . . . . . . . . . . 48

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Nonlinear Discriminant Learning with Kernel Machines 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Sample Space vs Kernel Feature Space . . . . . . . . . . . . . . . . . . . 57

5.3 Kernel Principal Component Analysis (KPCA) . . . . . . . . . . . . . . . 59

5.4 Generalized Discriminant Analysis (GDA) . . . . . . . . . . . . . . . . . 60

5.5 Kernel JD-LDA (KDDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Eigen-analysis of S̃b in the Feature Space . . . . . . . . . . . . . . 61

viii



5.5.2 Eigen-analysis of S̃w in the Feature Space . . . . . . . . . . . . . 62

5.5.3 Dimensionality Reduction and Feature Extraction . . . . . . . . . 63

5.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7.1 Distribution of Multi-view Face Patterns . . . . . . . . . . . . . . 66

5.7.2 Comparison with KPCA and GDA . . . . . . . . . . . . . . . . . 68

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 A Mixture of LDA Subspaces with Cluster Analysis 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 FR Sub-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Clustering with Separability Criterion (CSC) . . . . . . . . . . . . . . . . 77

6.4 Hierarchical Classification Framework (HCF) . . . . . . . . . . . . . . . . 79

6.5 Issues to Build A Robust HCF-Based FR System . . . . . . . . . . . . . 81

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6.1 The FR Evaluation Design . . . . . . . . . . . . . . . . . . . . . . 84

6.6.2 CSC vs K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6.3 The FR Performance Comparison . . . . . . . . . . . . . . . . . . 86

6.6.4 The CRR Performance Analysis . . . . . . . . . . . . . . . . . . . 91

6.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Ensemble-based Discriminant Learning with Boosting 96

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 A Strong Learner: JD-LDA . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 AdaBoost and Its Multi-class Extensions . . . . . . . . . . . . . . . . . . 101

7.4 Boosting A Strong Learner: JD-LDA . . . . . . . . . . . . . . . . . . . . 104

7.4.1 Interaction between the LDA learner and the booster . . . . . . . 104

ix



7.4.2 A Cross-validation Mechanism to Weaken the Learner . . . . . . . 109

7.4.3 Estimation of Appropriate Weakness . . . . . . . . . . . . . . . . 111

7.4.4 Determination of Convergence . . . . . . . . . . . . . . . . . . . . 112

7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.1 The FR Evaluation Design . . . . . . . . . . . . . . . . . . . . . . 113

7.5.2 The Boosting Performance in Terms of CER . . . . . . . . . . . . 114

7.5.3 Weakness Analysis of the gClassifiers . . . . . . . . . . . . . . . . 118

7.5.4 Convergence and Cumulative Margin Distribution . . . . . . . . . 122

7.5.5 A Comparison of Six FR Methods Developed in the Thesis in terms

of CER Performance . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Conclusion and Future Work 130

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Directions of Future Research . . . . . . . . . . . . . . . . . . . . . . . . 132

A Some Derivations in Chapter 5 135

A.1 Computation of Φ̃T
b Φ̃b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Computation of Φ̃T
b S̃wΦ̃b . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 139

x



List of Tables

1.1 Some applications of face recognition [16,133]. . . . . . . . . . . . . . . . 1

2.1 No. of images divided into the standard FERET imagery categories in

evaluation databases, and the pose angle (degree) of each category. . . . 12

2.2 Naming convention for the FERET imagery categories [93,94]. . . . . . 13

3.1 The average percentage (E) of the CER of DF-LDA over that of the other

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 A series of discriminant analysis algorithms derived from RD-QDA. . . . 46

4.2 A comparison of best found CRRs/STDs (%). . . . . . . . . . . . . . . . 50

4.3 A comparison of computational times, Ttrn + Ttst (Seconds). . . . . . . . 53

5.1 Some of the most widely used kernel functions, where z1 ∈ R
J and z2 ∈ R

J . 59

5.2 The average percentages of the CER of KDDA over that of KPCA or GDA. 71

6.1 Sizes of the eight test datasets and their partitions. . . . . . . . . . . . . 84

6.2 Comparison of the total within-cluster BCS St in S8. . . . . . . . . . . . 86

6.3 CRR Improvement against JD-LDA.1 ξ1 (%) with Rank 1. . . . . . . . . 88

6.4 CRR Improvement against JD-LDA.1 ξ5 (%) with Rank 5. . . . . . . . . 88

6.5 CRR Improvement against JD-LDA.1 ξ10 (%) with Rank 10. . . . . . . . 88

6.6 The improvement of the average CRRs by HCF-MSC against HCF-Kmean. 89

xi



7.1 Comparisons of the lowest CERs (%) as a function of (ρt(L), ρl(r)) ob-

tained on the database G1. . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 The best CER Performance improvement achieved by B-JD-LDA in the

tasks ρt = 3/49, · · · , 7/49. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Comparisons of the lowest CERs (%) as a function of ρl(r) obtained on

the database G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 The generalization loss R(r, L) with λ = 0.55, the best r estimate (r∗) and

the worst r estimate (r−) obtained by B-JD-LDA.A on the database G1. . 121

7.5 The generalization loss R(r, L) with λ = 0.25, the best r estimate (r∗) and

the worst r estimate (r−) obtained by B-JD-LDA.Â on the database G1. . 121
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Important Notations

G the entire evaluation database.
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C
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Q the test data set, Q = G − Z.

zij , yij the face image example and its label.

Y the label space, having yij ∈ Y = {1, · · · , C}.

R
J , J the J-dimensional real space, J = dim(zij).

Rn the correct recognition rate for rank n.

z̄i the center of the ith class Zi, z̄i = 1
Li

∑Li
j=1 zij .

Scov the covariance matrix of the training set Z.

Sb, Sw the between- and within-class scatter matrices of the training set Z.

Ψ, ψi a set of M feature basis vectors, Ψ = [ψ1, . . . , ψM ].

y the feature representation of z, y = ΨT z.
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Chapter 1

Introduction

1.1 Motivation

Face recognition (FR) has a wide range of applications from biometric identity authen-

tication to human-computer interaction. Table 1.1 lists some of these applications

Table 1.1: Some applications of face recognition [16,133].

Areas Examples of Applications

Drivers Licenses, Entitlement Programs, Smart Cards

Biometrics Immigration, National ID, Passports, Voter Registration

Welfare Fraud, Airline Industry, Bank Industry

Information Desktop Logon, Secure Trading Terminals

Security Application Security, Database Security, File Encryption

Intranet Security, Internet Access, Medical Records

Law Enforcement Advanced Video Surveillance, Portal Control

and Surveillance Postal-Event Analysis, Face Reconstruction from Remain

Shoplifting and Suspect Tracking and Investigation

Access Control Facility Access, Vehicular Access, PDA and Cell phone Access

Others Human-Computer Interaction, Information Retrieval

1
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During the past two decades, numerous FR algorithms have been proposed, and

detailed surveys of the development in this area can be found in [16,20,35,102,119,122,

133]. Although the progress made has been encouraging, FR has also turned out to be a

very difficult endeavor [119]. The key technical barriers are summarized below :

1. Immense variability of 3D face object appearance. Shape and reflectance

are intrinsic properties of a face object, but a 2D image of the 3D face appearance

is a function of several additional factors, including illumination, facial expression,

pose of face object, and various imaging parameters such as aperture, exposure time,

lens aberrations and sensor spectral response. All of these factors are confounded

in the image data, so that “the variations between the images of the same face

due to illumination and viewing direction are almost always larger than the image

variations due to changes in face identity” [87]. For the reason, extracting the

intrinsic information of the face objects from their respective images is a demanding

discriminant task.

2. Highly non convex and complex pattern distribution. From the viewpoint

of the so-called appearance-based learning [89, 119], it intuitively can be imagined

that existing in the high-dimensional real space, there is a vast convoluted face

manifold, where all noise free face images lie. The manifold, which accounts for the

immense variations of face pattern appearance, is commonly believed to be highly

non convex and complex [9,119]. The issue of how to tackle the manifold is central

to the appearance-based FR approach. During the past two decades, although

significant research efforts have been made to address the issue, it has been turned

out to be a very difficult task.

3. High dimensionality vs small size of learning samples. For the purpose of

accurate face recognition, the acquired image samples should be of sufficient res-

olutions. For example, a canonical example used in FR tasks is an image of size
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(112× 92), which exists in a 10304-dimensional real space. Nevertheless, the num-

ber (L) of examples per class available for learning is usually much smaller than

the dimensionality of the sample space, e.g. L ≤ 10 in most cases. This produces

the so-called small sample size (SSS) problem, which significantly degrades the per-

formance of the feature extractors and the classifiers, particularly those operating

in a supervised learning mode. In addition, the computational cost is very high so

that some calculations are intractable to operate directly in the high-dimensional

image space.

In summary, FR is far from being a solved problem and presents researchers with

challenges and opportunities. Despite a difficult task, the rapid advancement in learning

theories gives us much reason to be optimistic. For example, some machine learning

techniques recently emerged, such as Independent Component Analysis (ICA) [5, 8, 49,

65,101], Kernel Machines [3,6], Support Vector Machine (SVM) [123] and Boosting [28],

have been shown to be very powerful and promising in solving some pattern recognition

problems that cannot be easily approached by traditional methods. In this thesis, we

wish to explore the intersected area of traditional discriminant analysis methods and

these lately advanced learning theories, and thereby develop some novel discriminant

learning algorithms that can effectively merge their advantages to conquer the technical

barriers encountered in FR tasks.

1.2 Contributions

The contributions of this research can be outlined by the tree shown in Fig.1.1, which is

explained as follows:

• First, we proposed a novel regularized Fisher’s discriminant criterion, which is par-

ticularly robust against the SSS problem compared to the traditional one used
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Figure 1.1: The contribution tree, targeted at conquering the three technical barriers in

face recognition: high dimensionality of input images, small-size training sample, and

highly non convex pattern distribution.

in Linear Discriminant Analysis (LDA). Based on the new criterion, a linear fea-

ture extraction method, called “JD-LDA” was then developed to effectively cap-

ture low-dimensional, intrinsic discriminant features of face patterns from a high-

dimensional, small-size training sample. Since the separability criteria used in

traditional LDA algorithms are not directly related to their classification ability in

the output space, an iterative rotation strategy of linear space was introduced to

further optimize the low-dimensional face feature representation obtained from the

JD-LDA approach.

• LDA assumes that each pattern class is subjected to a Gaussian distribution with

identical covariance structure. To relax the assumption, the concept of JD-LDA

was discussed and extended under the optimal Bayes classification framework. This

leads to a more general quadratic discriminant learning method, called “RD-QDA”,

which can deal with classes subject to any Gaussian distribution. As a result, not
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only linear but also quadratic decision boundaries can be constructed by RD-QDA

during the classification process. Meanwhile, the SSS problem that becomes worse

due to increased algorithm complexity in quadratic learning is addressed by an

extended regularization scheme.

• Both JD-LDA and RD-QDA were developed using the Gaussian assumption. In ad-

dition to this, a globally nonlinear discriminant learning algorithm, called “KDDA”

was proposed by kernelizing or nonlinearizing JD-LDA with the kernel machine

technique. As a result, nonlinear decision boundaries far more complicated than

quadratic can be generalized for classification in high-dimensional, SSS settings.

• Instead of seeking a global but difficult and complex solution, we proposed two novel

ensemble-based discriminant learning methods based on the principal of “divide and

conquer”. The first method, called “HCF-MSC” is based on a novel cluster analysis

criterion developed from the viewpoint of classification. Using the criterion, the

HCF-MSC method generalizes a mixture of locally linear JD-LDA models, based

on which a hierarchical classification framework was then introduced to effectively

address nonlinear, large-scale FR problems.

• Finally, we presented another ensemble-based learning method, called “B-JD-LDA”

by incorporating JD-LDA into the boosting framework. The machine learning tech-

nique, AdaBoost, has been shown to be particularly robust in preventing overfitting

and reducing generalization error. However, it is generally believed that the tech-

nique is not suited to a stable learner, for instance LDA. To this end, some novel

concepts and theories regarding weakness analysis of a learning algorithm, gen-

eralization loss, and selection of good training examples have been introduced in

the design of B-JD-LDA. As a result, the performance of JD-LDA is significantly

boosted by B-JD-LDA, which is also shown by experimentation to outperform all

other FR methods proposed in this thesis.
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1.3 Organization

The rest of this thesis is organized as follows. First, a brief background review of FR

research is given in Chapter 2. In Chapter 3, the SSS problem, one of the biggest

challenges faced in the FR research is discussed in the context of the appearance-based

learning paradigm. Then, a simple but effective linear solution, the JD-LDA method

is introduced. In Chapter 4, the relationships between the SSS problem, regularization

and LDA are further analyzed together with the optimal Bayes classification theory.

Following that, the quadratic discriminant learning method, RD-QDA is proposed under

the Gaussian framework. In Chapter 5, the kernel machine technique is introduced and

discussed. Based on the technique, a global nonlinear FR method, KDDA, is developed by

kernelizing JD-LDA. In addition, from the viewpoint of a mixture of locally linear models,

we propose two ensemble-based discriminant learning methods using cluster analysis and

boosting techniques respectively in Chapter 6 and 7. JD-LDA is used as the base learner

in both of the two methods. Finally, Chapter 8 summarizes conclusions and provides

directions for future research.
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Background Review

Figure 2.1: A general framework for automatic face recognition.

Taking as input images or videos of face objects, a general framework for automatic

face recognition (FR) is as shown in Fig.2.1, with the face detection and the face classi-

fication forming its two central modules. Face detection provides information about the

location and scale of each located face object. In the case of video, the found faces may

be tracked. In many applications such as highly accurate face recognition and synthe-

sis, an additional face alignment part is often included in face detection. In the part,

some specific facial components, such as eyes, nose, mouth and facial outline are fur-

ther located, and then the input face image is aligned and normalized in geometry and

7
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photometry. In face classification, features useful for distinguishing between different

persons are extracted from the normalized face, and the extracted feature vector is then

matched against those of known faces, outputting the identity of the input face when a

match is found with a sufficient confidence or as an unknown face otherwise.

In the FR community, the research of the two modules, face detection and face classi-

fication, are often conducted separately. In this work, our focus is on face classification.

Thus, through the thesis we actually implement partially automatic FR algorithms, which

take as input the localized face images as shown in Fig.2.1. In general, the partially au-

tomatic FR algorithms consist of two processing parts, discriminant feature extraction

and feature matching (see the face classification module depicted in Fig.2.1). In the past,

most face research efforts have been made to address the issue of feature extraction,

which has been shown to be the key to the particular task of face recognition due to the

technique barriers summarized in Section 1.1. The main goal of feature extraction is to

develop techniques that can generalize a low-dimensional feature representation intrinsic

to face objects with enhanced discriminatory power from low-level image information,

such as intensity, color and edges. Often the approaches used for the purpose are clas-

sified into two classes: (1) geometric feature-based approaches, and (2) appearance-based

approaches.

2.1 Geometric Feature-based Approach

The geometric (also called shape) feature-based approach (see e.g. [14, 34, 50, 58, 102,

128]) is based on the traditional computer vision framework [77], whose central issue

is to abstract away from raw image data (i.e. pixel values) to higher level, invariant

representations such as 3D shape. Under the framework, facial characteristics such as

eyes, nose, mouth and chin are required to be accurately located and marked at first.

Properties and relations (e.g. areas, distances, angles) between the features are then
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used as descriptors of face patterns for recognition. Using this approach, Kanade built

the first face recognition system in the world [50]. Although this class of methods are

computationally attractive, efficient in achieving dimensionality reduction, and relatively

insensitive to variations in illumination and viewpoint, they rely heavily on the accurate

detection of facial features. Unfortunately, facial feature detection and measurement

techniques developed to date have not been reliable enough to cater to this need [21].

Also, geometric information only is insufficient for face recognition.

2.2 Appearance-based Approach

In the past twenty or so years, great progress has been made in FR research. To a

great extent, this can be attributed to advances in appearance-based approaches (see

e.g. [5,7,15,38,61,64,73,74,86,92,119,120,132]). In contrast with the geometric feature-

based approach, the appearance-based approach generally operates directly on raw image

data and processes them as 2D holistic patterns to avoid difficulties associated with 3D

modeling, and shape or landmark detection. Consequently, this class of methods tends

to be easier to implement, more practical and reliable as compared to the geometric

feature-based methods [14,119].

The source of the appearance-based approach can be backdated to the influential

Eigenfaces method [120], presented by Turk and Pentland in 1991. In [120], a low-

dimensional subspace of the original face image space, called “face space”, is constructed

to best account for the variations of the face objects. The face space is spanned by a

number of Eigenfaces [110] derived from a set of training face images by using principal

component analysis (PCA) or Karhunen-Loeve transform [33]. A face image is linearly

mapped to the face space, and then the obtained low-dimensional projection vector is used

to represent the face object. Compared to the over-abstract facial features, a great deal of

experiments have shown that such subspace features are more salient and informative for
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recognition [14, 119]. The Eigenfaces method looks simple from the viewpoints of both

theory and implementation. Nevertheless, it started the era of the appearance-based

approach to visual object recognition [119]. Thereafter, algorithms developed with the

approach have almost dominated FR research (see e.g. [16,35,119,122,133] for a detailed

survey). Due to its huge influences, [120] was awarded to be the “Most influential paper

of the decade” at the 2000 IAPR Workshop on Machine Vision Applications.

Based on the above reasons, all the research presented in this thesis were conducted

in the context of the appearance-based learning paradigm.

2.3 Face Databases and FR Evaluation Design

In addition to the advancement of the feature extraction and matching algorithms, the de-

velopment of FR research depends on the availability of other two factors: (i) a large and

representative database of face images, and (ii) a method for evaluating the performance

of FR algorithms. In this section, we first briefly review the history of FR evaluations,

and then discuss how these two issues were addressed in the subsequent work presented

in this thesis.

2.3.1 Facial Recognition Technology (FERET) Program

To date, the so-called Facial Recognition Technology (abbreviated as FERET) program

incepted in 1993 has made a significant contribution to the evaluation of FR algorithms

by building the FERET database and the evaluation protocol, which have become de

facto standards in the FR world [93,94]. Based on the FERET program, the first overall

competition of FR algorithms was launched by P.J. Phillips et al. , Army Research

Laboratory, USA in August 1994 [93]. Following that, two extensive competitions took

place in March of 1995 and September of 1996 respectively [93,94]. In these competitions,

an algorithm was given two sets of images: the target set and the query set. The target set
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is a set of known facial images, while the query set consists of unknown facial images to

be identified. Furthermore, multiple gallery and probe sets can be constructed from the

target and query sets respectively. For a given gallery and probe pair, the FR performance

measure, correct recognition rate (CRR) is computed by examining the similarity between

the two sets of images. Almost all the FR systems that attended the Sept96 evaluation

adopted the appearance-based approach. PCA and LDA were the two most popular

techniques used in these FR systems. Methods based on the two techniques [86, 120,

132] dominated among the top performers of the evaluations. The trio competitions

were highly successive. This further leads to the regular Face Recognition Vendor Tests

(FRVT) [37], which were developed to provide independent government evaluations of

commercially available and mature prototype FR systems. The information obtained

from these evaluations are used to assist U.S. Government and law enforcement agencies

in determining where and how facial recognition technology can best be deployed. The

latest FRVT 2002 reports can be found in its web site: http://www.frvt.org.

2.3.2 Face Databases

The FERET database can be considered the largest, most comprehensive and represen-

tative face database, provided to FR researchers to advance the state of the art in face

recognition [93, 94]. Since the FERET program incepted in 1993, a total of 14051 face

images of 1209 persons have been incorporated into the database. These images cover a

wide range of variations in viewpoint, illumination, facial expression/details, acquisition

time, races and others.

As mentioned earlier, through the thesis we only implement partially automatic FR

algorithms, which require that the centers of the eyes are available during a preprocessing

stage for the purpose of alignment and normalization [94]. Currently, only 3817 face

images of 1200 persons in the FERET database are provided along with the coordinate

information of eyes, nose tip and mouth center. Thus, we first extracted all the 3817
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images to form a data set denoted as G0, which was the biggest evaluation database to be

used in the experiments reported here. Also, it is required to study the sensitivity of the

CRR measure to the number of training examples per subject in many simulations such

as those depicted in Sections 4.5, 7.5. To this end, two more evaluation databases were

generalized from G0 in the sequence. The first evaluation database denoted as G1 was

formed by choosing in the set G0 all (606) images of 49 subjects with each subject having

at least ten images. Similarly, the second evaluation database denoted as G2 (including

G1) was constructed by choosing in G0 all (1147) images of 120 subjects with at least six

images per subject. The details of the images included in G0, G1 and G2 are depicted

in Table 2.1, where the naming convention for the imagery categories can be found in

Table 2.2.

Table 2.1: No. of images divided into the standard FERET imagery categories in evalu-

ation databases, and the pose angle (degree) of each category.

Category fa fb ba bj bk ql qr rb rc sum

G0 1604 1360 200 200 200 81 78 32 62 3817

G1 275 166 4 4 4 43 42 26 42 606

G2 567 338 5 5 5 68 65 32 62 1147

PoseAngle 0 0 0 0 0 -22.5 +22.5 10 -10 -

The original images in the FERET database are raw face images that include not only

the face, but also some data irrelevant for the FR task, such as hair, neck, shoulder and

background as shown in Fig.2.2:Left. In a great deal of previously reported FR works,

only simple preprocessing operations such as cropping and resizing are applied to the raw

images. As a consequence, irrelevant facial portions were retained, and presented to the

FR algorithms together with the face portion. Recently it has been quantitatively shown

that inclusion of these irrelevant facial portions may mislead the systems, resulting in in-
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Table 2.2: Naming convention for the FERET imagery categories [93,94].

Category Pose Angle Description

fa 0 Regular facial expression

fb 0 Alternative facial expression

ba 0 Frontal “b” series

bj 0 Alternative expression to ba

bk 0 Different illumination to ba

ql -22.5 Quarter left

qr +22.5 Quarter right

rb +10 Random images

rc -10 Random images

correct evaluations [18]. To this end, we follow the preprocessing sequence recommended

in the FERET protocol [94], which includes four steps: (1) images are translated, rotated

and scaled (to size 150×130) so that the centers of the eyes are placed on specific pixels;

(2) a standard mask as shown in Fig.2.2:Middle is applied to remove the nonface portions;

(3) histogram equalization is performed on the non masked facial pixels; (4) face data

are further normalized to have zero mean and unit standard deviation. Fig.2.2:Right

and Fig.2.3 depict some examples after the preprocessing sequence was applied. For

computational purposes, each image is finally represented as a column vector of length

J = 17154 prior to the recognition stage.

Figure 2.2: Left: Original samples in the FERET database. Middle: The standard

mask. Right: The samples after the preprocessing sequence.
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Figure 2.3: Some samples of eight people from the normalized FERET evaluation

databases.

Figure 2.4: Some sample images of 8 people randomly chosen from the ORL database.

In addition to the FERET database, ORL [95, 103] and UMIST [36], are two very

popular and specific face databases widely used in the literature. The ORL database

that comes from the Olivetti Research Laboratory in University of Cambridge, UK, con-

tains 40 distinct people with 10 images per person. The images were taken at different

time instances, with varying lighting conditions, facial expressions (open/closed eyes,
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Figure 2.5: Some sample images of 4 people randomly chosen from the UMIST database.

smiling/non-smiling) and facial details (glasses/no-glasses). All persons were in the up-

right, frontal position, with tolerance for some side movement. The UMIST repository

comes from the Image Engineering and Neural Computing Group in University of Manch-

ester Institute of Science and Technology, UK. It is a multi-view database, consisting of

575 images of 20 people, each covering a wide range of poses from profile to frontal views

as well as a range of race/sex/appearance. Figs.2.4-2.5 depict some samples contained

in the two databases, where each image is scaled into (112 × 92), resulting in an input

dimensionality of J = 10304.

2.3.3 FR Evaluation Designs

The test protocol is designed based on the FERET protocol and the standard FR prac-

tices in the literature [95]. Any evaluation database (G) used here is randomly partitioned

into two subsets: the training set Z and the test set Q. They correspond to the target

set and the query set in the FERET language respectively. The training set consists of

N =
∑C

i=1 Ci images: Ci images per subject are randomly chosen, where C is the number

of subjects. The remaining images are used to form the test set Q = G − Z. Any FR
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method evaluated here is first trained with Z, and the resulting face recognizer is then

applied to Q for testing. For each image qj in the query set Q, the evaluated algorithm

reports a similarity sj(k) between qj and each image zk in the target set. Then, the tar-

get images zk are sorted by the similarity scores sj(·). The top rank implies the closest

match. In the FERET protocol, the test algorithm is required to answer not only “is

the top rank correct?”, but also “is the correct answer in the top n ranks?”. Assuming

that γn represents the number of the query images whose real identification correctly

matches that of one of the top n ranked targets, the correct recognition rate (CRR) for

rank n, denoted as Rn, is given by Rn = γn/|Q|, where |Q| denotes the size of Q. It is

not difficult to see that the above criterion is equivalent to the classic nearest neighbor

rule when n = 1.

To enhance the accuracy of performance assessment, the CRRs reported in this work

are averaged over t ≥ 1 runs. Each run is executed on a random partition of the evaluation

database G into the training set Z and the test set Q. Following the framework introduced

in [26,60,61], the average CRR, denoted as R̄n, is given as follows,

R̄n =

∑t
i=1 γ

{i}
n

|Q| · t (2.1)

For simplicity, we also use another popular performance measure, classification error rate

(CER) instead of CRR in some cases. It should be noted at this point that there is no

difference between the two measures but CER=(1-CRR).



Chapter 3

Linear Discriminant Learning for

Face Recognition

3.1 Introduction

Low-dimensional feature representation with enhanced discriminatory power is of paramount

importance to face recognition (FR) systems. We have learned from Chapter 2 that the

most successful solution to the issue developed to date is the appearance-based approach.

In the approach, principal component analysis (PCA) and linear discriminant analysis

(LDA) are two powerful tools widely used for data reduction and feature extraction.

Many state-of-the-art FR methods, including the Eigenfaces method [120] and the Fish-

erfaces method [7], built on the two techniques, have been shown to be very successful

in both practical applications and the FERET competitions [94].

It is generally believed that, when it comes to solving problems of pattern classifica-

tion, LDA based algorithms outperform PCA based ones, since the former deals directly

with discrimination between classes, whereas the latter deals with optimal data compres-

sion without paying any attention to the underlying class structure [7, 17, 46]. However,

the classification performance of traditional LDA is often degraded by the fact that their

17
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separability criteria are not directly related to their classification accuracy in the output

space [70]. A solution to the problem is to introduce weighting functions into LDA. Ob-

ject classes that are closer together in the output space, and thus can potentially result

in mis-classification, should be more heavily weighted in the input space. This idea has

been further extended in [70] with the introduction of the fractional-step LDA (F-LDA)

algorithm, where the dimensionality reduction is implemented in an iterative mechanism

allowing for the relevant distances to be more accurately weighted. Although the method

has been successfully tested on low-dimensional patterns whose dimensionality is J ≤ 5,

it cannot be directly applied to high-dimensional patterns, such as those face images used

in the experiments reported here due to two factors.

1. The computational difficulty of the eigen-decomposition of matrices in the high-

dimensional face image space. It should be noted at this point that a typical

face image pattern of size (112 × 92) (see e.g. Figs.2.4-2.5) results in a vector of

dimension J = 10304. It is difficult to store a 10304×10304 matrix, which requires

a memory space of 810M bytes.

2. The considerably degenerate sample scatter matrices caused by the so-called small

sample size (SSS) problem, which widely exists in FR tasks where the number of

training samples is much smaller than the dimensionality of the samples [7,17,46].

For example, in contrast with J = 10304, only L ≤ 10 training samples per subject

are available in most FR tasks.

The traditional solution to these two problems requires the incorporation of a PCA

step into the LDA framework. In this approach, PCA is used as a pre-processing step for

dimensionality reduction and removal of the null spaces of the sample scatter matrices.

Then LDA is performed in the lower dimensional PCA subspace, as it was done for ex-

ample in Fisherfaces [7]. However, it has been shown that the discarded null spaces may

contain significant discriminatory information [17, 46]. To prevent this from happening,
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solutions without a separate PCA step, called direct LDA (D-LDA) methods have been

presented recently [17, 46]. In the D-LDA framework, data are processed directly in the

original high-dimensional input space avoiding the possible loss of significant discrimina-

tory information due to the PCA pre-processing step.

In this chapter, we introduce a new LDA-based feature representation method for

FR tasks. The method combines the strengths of the D-LDA and F-LDA approaches

while at the same time overcomes their shortcomings and limitations. In the proposed

framework, hereafter DF-LDA, we firstly lower the dimensionality of the original input

space by introducing a new variant of D-LDA that results in a low-dimensional SSS-

relieved subspace where the most discriminatory features are preserved. The variant

of D-LDA developed here utilizes a regularized Fisher’s discriminant criterion to avoid a

problem resulting from the wage of the zero eigenvalues of the within-class scatter matrix

as possible divisors in [46]. Also, a weighting function is introduced into the proposed

variant of D-LDA, so that a subsequent F-LDA process can be applied to carefully re-

orient the SSS-relieved subspace resulting in a set of optimal linear discriminant features

for face representation.

3.2 Appearance-based Feature Extraction

To date, the appearance-based learning framework has been most influential in the

face recognition (FR) research. Under this framework, the problem of learning low-

dimensional feature representation from examples can be stated as follows: Given a

training set, Z = {Zi}C
i=1, containing C classes with each class Zi = {zij}Ci

j=1 consisting

of a number of localized face images zij, a total of N =
∑C

i=1 Ci face images are available

in the set. For computational convenience, each image is represented as a column vector

of length J = Iw × Ih by lexicographic ordering of the pixel elements, i.e. zij ∈ R
J ,

where (Iw × Ih) is the image size, and R
J denotes the J-dimensional real space. Taking
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as input such a set Z, the objective of appearance-based learning is to find, based on

optimization of certain separability criteria, a transformation ϕ which produces a low-

dimensional feature representation yij = ϕ(zij), yij ∈ R
M and M � J , intrinsic to face

objects with enhanced discriminatory power for pattern classification.

Among various techniques available for the solution to the learning problem, Principal

Component Analysis and Linear Discriminant Analysis are the two most widely used in

the FR literature. Due to their huge influences and close relationship with the methods

developed later, we begin with a brief review of the two techniques and their applications

to FR research.

3.2.1 Principal Component Analysis (PCA)

In the statistical pattern recognition literature, Principal Component Analysis (PCA) [47]

is one of the most popular tools for data reduction and feature extraction. The well-known

FR method Eigenfaces [120], built on the PCA technique, has been proved to be very

successful. In the Eigenfaces method [120], PCA is applied to the training set Z to find

the N eigenvectors (with non zero eigenvalues) of the set’s covariance matrix,

Scov =
1

N

C∑
i=1

Ci∑
j=1

(zij − z̄)(zij − z̄)T (3.1)

where z̄ = 1
N

∑C
i=1

∑Ci

j=1 zij is the average of the ensemble. The Eigenfaces are the first

M(≤ N) eigenvectors (denoted as Ψef ) corresponding to the largest eigenvalues, and they

form a low-dimensional subspace, called “face space” where most energies of the original

face manifold are supposed to lie. Fig.3.1 (1st row) shows the first six most significant

Eigenfaces, which appear, as some researchers have said, as ghostly faces. Transforming

to the M -dimensional face space is a simple linear mapping: yij = ΨT
ef (zij − z̄), where

the basis vectors Ψef are orthonormal. The subsequent classification of face patterns can

be performed in the face space using any classifier.
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Figure 3.1: Visualization of two types of basis vectors obtained from a normalized subset

of the FERET database. Row 1: the first 6 most significant PCA bases. Row 2: the first

6 most significant LDA bases.

3.2.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [27] is also a representative technique for data re-

duction and feature extraction. In contrast with PCA, LDA is a class specific one that

utilizes supervised learning to find a set of M � J feature basis vectors, denoted as

{ψm}M
m=1, in such a way that the ratio of the between- and within-class scatters of the

training sample set is maximized. The maximization is equivalent to solving the following

eigenvalue problem,

Ψ = arg max
Ψ

∣∣ΨTSbΨ
∣∣

|ΨTSwΨ| , Ψ = [ψ1, · · · , ψM ], ψm ∈ R
J (3.2)

where Sb and Sw are the between- and within-class scatter matrices, having the following

expressions,

Sb =
1

N

C∑
i=1

Ci(z̄i − z̄)(z̄i − z̄)T =
C∑

i=1

Φb,iΦ
T
b,i = ΦbΦ

T
b (3.3)

Sw =
1

N

C∑
i=1

Ci∑
j=1

(zij − z̄i)(zij − z̄i)
T (3.4)

where z̄i = 1
Ci

∑Ci

j=1 zij is the mean of class Zi, Φb,i = (Ci/N)1/2(z̄i − z̄) and Φb =

[Φb,1, · · · , Φb,c]. When Sw is non-singular, the basis vectors Ψ sought in Eq.3.2 correspond

to the first M most significant eigenvectors of (S−1
w Sb), where the “significant” means
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that the eigenvalues corresponding to these eigenvectors are the first M largest ones.

For an input image z, its LDA-based feature representation can be obtained simply by a

linear projection, y = ΨTz.

Figure 3.2: PCA feature basis vs LDA feature basis obtained from a set of 2D training

samples consisting of two classes. Each sample x = [x1, x2] is represented by its projec-

tions in the two feature bases respectively. In this case, the PCA-based representation

accounts most variations of the samples, but it is entirely unsuitable for the purpose of

pattern classification.

Fig.3.1(2nd row) visualizes the first six most significant basis vectors {ψi}6
i=1 obtained

by using the LDA version of [74]. Comparing Fig.3.1(1st row) to Fig.3.1(2nd row), it

can be seen that the Eigenfaces look more like a real human face than those LDA basis

vectors. This can be explained by the different learning criteria used in the two tech-

niques. LDA optimizes the low-dimensional representation of the objects with focus on

the most discriminant feature extraction while PCA achieves simply object reconstruc-

tion in a least-square sense. The difference may lead to significantly different orientations

of feature bases as shown in Fig.3.2, where it is not difficult to see that the representation

obtained by PCA is entirely unsuitable for the task of separating the two classes. As a

consequence, it is generally believed that when it comes to solving problems of pattern

classification such as face recognition, the LDA based feature representation is usually
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superior to the PCA based one [7, 17,46].

3.3 LDA in the Small-Sample-Size (SSS) Scenarios

3.3.1 The Small-Sample-Size (SSS) problem

Statistical learning theory tells us essentially that the difficulty of an estimation problem

(e.g. for Sb and Sw) increases drastically with the dimensionality J of the sample space,

since in principle, as a function of J , one needs exponentially many patterns to sample the

space properly [88, 123, 124]. Unfortunately, in the particular tasks of face recognition,

the truth is that data are highly dimensional, while the number of available training

samples per subject is usually much smaller than the dimensionality of the sample space.

For example, a canonical example used for recognition is a 112 × 92 face image, which

exists in a 10304-dimensional real space. Nevertheless, the number (Ci) of examples per

class available for learning is not more than ten in most cases. This results in the so-

called small sample size (SSS) problem, which is known to have significant influences on

the design and performance of a statistical pattern recognition (SPR) system. During the

last three decades, considerable research efforts have been made to deal with the SSS

problem related to various SPR issues such as feature extraction, feature selection and

classifier design (see e.g. [7, 17,43,44,46,51,74,81,84,98,108,116,125,129]).

In the application of LDA into FR tasks, the SSS problem often gives rise to high

variance in the sample-based estimation for the two scatter matrices, Sb and Sw, which

are either ill- or poorly-posed. Roughly speaking, a problem is poorly-posed if the

number of parameters to be estimated is comparable to the number of observations and

ill-posed if that number exceeds the sample size. Compared to the PCA solution, the

LDA solution is much more susceptible to the SSS problem given a same training set,

since the latter requires many more training samples than the former due to the increased

number of parameters needed to be estimated [125]. As a result, the general belief that
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Figure 3.3: There are two different classes (A and B) subjected to two different “Gaussian-

like” distributions respectively. However, only two examples per class are available for

the learning procedure. Each example x = [x1, x2] is a 2D vector. In this case, the

basis vector produced by PCA is more desirable than the one produced by LDA for the

purpose of pattern classification.

LDA is superior to PCA in the context of pattern classification may not be correct in the

SSS scenarios, where it has been shown recently in [78] that there is no guarantee that

LDA will outperform PCA. The phenomenon of LDA over-fitting the training data in

the SSS settings can be further illustrated by a simple example shown in Fig.3.3, where

PCA yields a superior feature basis for the purpose of pattern classification.

3.3.2 Where are the optimal discriminant features?

From the above analysis, it can be seen that the biggest challenge that all LDA-based

FR methods have to face is the SSS problem. Briefly, there are two ways to tackle

the problem with LDA. One is to apply linear algebra techniques to solve the numerical

problem of inverting the singular within-class scatter matrix Sw. For example, the pseudo

inverse is utilized to complete the task in [116]. Also, small perturbation may be added
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to Sw so that it becomes nonsingular [44, 132]. The other way is a subspace approach,

such as the one followed in the development of the Fisherfaces method [7], where PCA

is firstly used as a pre-processing step to remove the null space of Sw, and then LDA is

performed in the lower dimensional PCA subspace. However, it should be noted at this

point that the maximum of the ratio in Eq.3.2 can be reached only when ψT
i Swψi = 0

and ψT
i Sbψi �= 0. In other words, the discarded null space that ψi belongs to may contain

significant discriminatory information. To prevent this from happening, solutions without

a separate PCA step, called direct LDA (D-LDA) methods have been presented recently

in [17, 46, 67–69]. The basic premise behind the D-LDA approach is that the null space

of Sw contains significant discriminant information if the projection of Sb is not zero in

that direction, while no significant information, in terms of the maximization in Eq.3.2,

will be lost if the null space of Sb is discarded. It is not difficult to see that when ψi

belongs to the null space of Sb, the ratio
|ψT

i Sbψi|
|ψT

i Swψi| drops down to its minimal value, 0,

due to ψT
i Sbψi = 0. In other words, assuming that A and B represent the null space

of Sb and Sw respectively, while A′ = R
N − A and B′ = R

N − B are the complement

spaces of A and B, the optimal discriminant feature bases sought by D-LDA exist in the

intersection space (A′ ∩ B).

In early D-LDA methods [67–69], only the two conditions (ψT
i Swψi = 0 and ψT

i Sbψi �=

0) are used in the search for the optimal discriminant feature bases. However, it is shown

by recent research [17] that the vectors that satisfy the two conditions may not maximize

the between-class separability. To address the shortcoming, one more condition, i.e.

arg max
ψi

(ψT
i Sbψi), is introduced in the D-LDA methods proposed recently in [17, 46].

The main difference between the two methods in [17, 46] is that, the version of [46] first

diagonalizes Sb to find A′ when seeking the solution of (3.2), while the version of [17]

as early D-LDA methods [67–69] first diagonalizes Sw to find B. Although it seems

that there is no significant difference between the two methods, it may be intractable

to calculate B when the size of Sw is large, which is the case in most FR tasks. For
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example, a typical face image of (112×92) results in the size of the two scatter matrices,

Sw and Sb, going up to (10304 × 10304). Fortunately, the rank of Sb is determined by

rank(Sb) = min(J,C − 1), with C the number of image classes, which is a much smaller

value than J the dimensionality of the images in most cases, e.g. C = 40 in the ORL

database used in the experiments reported here, resulting in rank(Sb) = 39. A′ can

be easily found by solving an eigenvalue problem of a (39 × 39) matrix rather than the

original (10304× 10304) matrix through an algebraic transformation [46,120]. Then the

intersection space (A′ ∩B) can be found by solving the null space of Sw’s projection into

A′, where the projection is a small matrix with size (39×39). Based on these reasons, we

follow the D-LDA version of [46] (hereafter YD-LDA), i.e. diagonalizing Sb first instead

of Sw in the algorithm to be developed in the following sections.

3.3.3 A modified Fisher’s criterion

The performance of the YD-LDA method [46] may deteriorate rapidly due to two prob-

lems that may be encountered when the SSS problem becomes severe. One is that the

zero eigenvalues of the within-class scatter matrix are used as possible divisors, so that

the YD-LDA process can not be carried out. The other is that the worse of the SSS

situations may significantly increase the variance in the estimation for small eigenvalues

of the within-class scatter matrix, while the importance of the eigenvectors corresponding

to these small eigenvalues is dramatically exaggerated. To avoid these two problems, a

variant of D-LDA is developed here by introducing a modified Fisher’s criterion.

The modified Fisher’s criterion, which is utilized in this work instead of the conven-

tional one (Eq.3.2), can be expressed as follows:

Ψ = arg max
Ψ

∣∣ΨTSbΨ
∣∣

|η(ΨTSbΨ) + (ΨTSwΨ)| (3.5)

where 0 ≤ η ≤ 1 is a regularization parameter. Although Eq.3.5 looks different from

Eq.3.2, it can be shown that the modified criterion is exactly equivalent to the conven-
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tional one by the following theorem.

Theorem 1 Let R
J denote the J-dimensional real space, and suppose that ∀ψ ∈ R

J ,

u(ψ) ≥ 0, v(ψ) ≥ 0, u(ψ) + v(ψ) > 0 and 0 ≤ η ≤ 1. Let q1(ψ) = u(ψ)
v(ψ)

and q2(ψ) =

u(ψ)
η·u(ψ)+v(ψ)

. Then, q1(ψ) has the maximum (including positive infinity) at point ψ∗ ∈ R
J

iff q2(ψ) has the maximum at point ψ∗.

Proof: Since u(ψ) ≥ 0, v(ψ) ≥ 0 and 0 ≤ η ≤ 1, we have 0 ≤ q1(ψ) ≤ +∞ and

0 ≤ q2(ψ) ≤ 1
η
.

1. If η = 0, then q1(ψ) = q2(ψ).

2. If 0 < η ≤ 1 and v(ψ) = 0, then q1(ψ) = +∞ and q2(ψ) = 1
η
.

3. If 0 < η ≤ 1 and v(ψ) > 0, then

q2(ψ) =

u(ψ)
v(ψ)

1 + η u(ψ)
v(ψ)

=
q1(ψ)

1 + ηq1(ψ)
=

1

η

(
1 − 1

1 + ηq1(ψ)

)
(3.6)

It can be seen from Eq.3.6 that q2(ψ) increases iff q1(ψ) increases.

Combining the above three cases, the theorem is proven.

The modified Fisher’s criterion is a function of the parameter η, which controls

the strength of regularization. Within the variation range of η, two extremes should

be noted. In one extreme where η = 0, the modified Fisher’s criterion is reduced

to the conventional one with no regularization. In contrast with this, strong regular-

ization is introduced in another extreme where η = 1. In this case, Eq.3.5 becomes

Ψ = arg max
Ψ

|ΨT SbΨ|
|(ΨT SbΨ)+(ΨT SwΨ)| , which as a variant of the original Fisher’s criterion has

been also widely used for example in [17,67–69]. The advantages of introducing the reg-

ularization will be seen during the development of the D-LDA variant proposed in the

next section.
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3.3.4 A variant of direct LDA: JD-LDA

For the reasons explained in Section 3.3.2, we start our D-LDA algorithm by solving

the eigenvalue problem of Sb. It is intractable to directly compute the eigenvectors

of Sb which is a large size (J × J) matrix. Fortunately, the first m (≤ C − 1) most

significant eigenvectors of Sb, which correspond to nonzero eigenvalues, can be indirectly

derived through an algebraic transform [120] from the eigenvectors of the matrix (ΦT
b Φb)

with size (C × C), where Φb = [Φb,1, · · · , Φb,c] defined in Eq.3.3. Let λb,i and ei be

the i-th eigenvalue and its corresponding eigenvector of (ΦT
b Φb), i = 1, · · · , C, sorted in

decreasing eigenvalue order. Since (ΦbΦ
T
b )(Φbei) = λb,i(Φbei), (Φbei) is an eigenvector

of Sb.

To remove the null space of Sb, we use only its first m (≤ C − 1) most significant

eigenvectors: Um = ΦbEm with Em = [e1, · · · , em], whose corresponding eigenvalues are

nonzero, and discard the remaining (J − m) eigenvectors. It is not difficult to see that

UT
mSbUm = Λb, with Λb = diag[λ2

b,1, · · · , λ2
b,m], a (m × m) diagonal matrix. Let H =

UmΛ
−1/2
b . Projecting Sb and Sw into the subspace spanned by H, we have HTSbH = I

and HTSwH. Then, we diagonalize HT (ηSb + Sw)H which is a tractable matrix with

size (m × m). Let pi be the i-th eigenvector of HT (ηSb + Sw)H, where i = 1, · · · ,m,

sorted in increasing order according to corresponding eigenvalues λw,i. In the set of

ordered eigenvectors, those corresponding to the smallest eigenvalues maximize the ratio

in Eq.3.5, and they should be considered as the most discriminatory features. We can

discard the eigenvectors with the largest eigenvalues, and denote the M ≤ m selected

eigenvectors as PM = [p1, · · · ,pM ]. Defining a matrix Q = HPM , we have QT (ηSb +

Sw)Q = Λw, where Λw = diag[λw,1, · · · , λw,M ], a (M × M) diagonal matrix.

Based on the derivation presented above, we can obtain a set of optimal discriminant

feature basis vectors, Ψ = HPMΛ
−1/2
w . To facilitate comparison, it should be mentioned

at this point that the YD-LDA method uses the conventional Fisher’s criterion of (3.2)

with (ηSb + Sw) replaced by Sw. However, since the subspace spanned by Ψ may contain
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the intersection space (A′∩B), it is possible that there exist zero or very small eigenvalues

in Λw(= QTSwQ for YD-LDA), so that the normalization (QΛ
−1/2
w ), which has been

shown to have a significant influence on the classification performance [132], can not be

carried out successfully. In contrast with this, due to the utilization of the modified

Fisher’s criterion, the non-singularity of QT (ηSb + Sw)Q when η > 0 can be guaranteed

by the following lemma.

Lemma 1 Suppose B is a real matrix of size (J × J). Furthermore, let us assume that

it can be represented as B = ΦΦT where Φ is a real matrix of size (J × M). Then, the

matrix (ηI + B) is positive definite, i.e. ηI + B > 0, where η > 0 and I is the (J × J)

identity matrix.

Proof: Since BT = ΦΦT = B, ηI+B is a real symmetric matrix. Let x be any J×1 non-

zero real vector, we have xT (ηI + B)x = η(xT x) + xT Bx = η(xT x) + (ΦT x)T (ΦT x) > 0.

According to [45], the matrix (ηI+B) that satisfies the above condition is strictly positive

definite, i.e. ηI + B > 0.

Similar to Sb, Sw can be expressed as Sw = ΦwΦT
w, and then QTSwQ = (QT Φw)(QT Φw)T ,

which is real symmetric. Based on the Lemma 1, it is not difficult to see that Λw =

QT (ηSb + Sw)Q = (ηI + QTSwQ) is strictly positive definite. In addition to avoid possi-

ble zero eigenvalues appearing in Λw, the regularization introduced here helps to reduce

the high variance related to the sample-based estimates, e.g. for the smallest nonzero

eigenvalues in (QTSwQ). Without the regularization, i.e. Λw = QTSwQ, often an effect

arising from the SSS problem is that the importance of the eigenvectors corresponding to

these small eigenvalues is dramatically exaggerated due to the normalization (QΛ
−1/2
w ).

For the sake of simplicity hereafter, we call “JD-LDA” the D-LDA variant developed

above. The detailed process to implement the JD-LDA method is depicted in Fig.3.4,

where it is not difficult to see that JD-LDA reduces to YD-LDA when η = 0. Also,

as a powerful weapon against the SSS problem, the regularization issue will be further
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discussed under a more general discriminant analysis framework in Chapter 4, where it

will be also shown that the JD-LDA method is a special case of the general framework.

Input: A training set Z with C classes: Z = {Zi}C
i=1, each class containing

Zi = {zij}Ci

j=1 face images, where zij ∈ R
J , and the regularization parameter η.

Output: An M -dimensional LDA subspace spanned by Ψ, an J × M matrix

with M � J .

Algorithm:

Step 1. Express Sb = ΦbΦ
T
b (Eq.3.3).

Step 2. Find the eigenvectors of ΦT
b Φb with non-zero eigenvalues, and denote

them as Em = [e1, · · · , em], m ≤ C − 1.

Step 3. Calculate the first m most significant eigenvectors (Um) of Sb and

their corresponding eigenvalues (Λb) by Um = ΦbEm and Λb = UT
mSbUm.

Step 4. Let H = UmΛ
−1/2
b . Find eigenvectors of (ηI + HTSwH), P.

Step 5. Choose the M(≤ m) eigenvectors in P with the smallest eigenvalues.

Let PM and Λw be the chosen eigenvectors and their corresponding

eigenvalues respectively.

Step 6. Return Ψ = HPMΛ
−1/2
w .

Figure 3.4: Pseudo code implementation of the JD-LDA method
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3.4 The Direct Fractional-Step LDA (DF-LDA)

3.4.1 Weighted between-class scatter matrix

The optimization process in most traditional LDA approaches including those D-LDA

methods introduced above is not directly linked to the separability of samples in the

output space, which determines the classification performance of the resulting LDA-based

FR systems. To this end, an iterative weighting mechanism has been proposed recently

in the so-called fractional-step LDA (F-LDA) algorithm [70], where a weighting function

is integrated into the between-class scatter matrix in the input space, to penalize those

classes that are close and can potentially lead to mis-classifications in the output space

generalized previously. The weighted between-class scatter matrix can be expressed as:

Ŝb =
C∑

i=1

Φ̂b,iΦ̂
T
b,i = Φ̂bΦ̂

T
b , Φ̂b =

[
Φ̂b,1, · · · , Φ̂b,c

]
(3.7)

where

Φ̂b,i = (Ci/N)1/2

C∑
j=1

(w(dij))
1/2(z̄i − z̄j) (3.8)

and dij =‖ z̄i − z̄j ‖ is the Euclidean distance between the means of class i and class

j. The weighting function w(dij) is a monotonically decreasing function of the distance

dij. The only constraint is that the weight should drop faster than the distance dij with

the authors in [70] recommending weighting functions of the form w(dij) = (dij)
−2p with

p = 2, 3, ....

3.4.2 Rotation, re-orientation and dimensionality reduction of

the JD-LDA subspace

In the input face image space, the weighting mechanism introduced in F-LDA cannot be

implemented due to high dimensionality and singularity of the between- and within-class

scatter matrices. However, in the low-dimensional JD-LDA output space spanned by
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Ψ, it can be seen that the between-class scatter matrix becomes non-singular and the

denominator in Eq.3.5 has been whitened, ΨT (ηSb +Sw)Ψ = I. Thus, following JD-LDA,

we can apply a F-LDA like method to further optimize the feature bases Ψ and reduce

the dimensionality of the final output space, for example from M to M ′(< M) now.

To this end, we firstly project the original face images into the M -dimensional JD-

LDA subspace, obtaining a representation xij = ΨTzij, whose ensemble is denoted as

X = {xij, i = 1, · · · , C; j = 1, · · · , Ci}. Let Ŝ
{M}
b (defined by Eq.3.7) be the between-

class scatter matrix of X , and ûM be the M -th eigenvector of Ŝ
{M}
b which corresponds to

the smallest eigenvalue of Ŝ
{M}
b . This eigenvector will be discarded when dimensionality is

reduced from M to (M−1). A problem may be encountered during such a dimensionality

reduction procedure. If classes Zi and Zj are well-separated in the M -dimensional input

space, where it means a large Euclidean distance dij between the two classes, this will

produce a very small weight w(dij). As a result, the two classes may be over-penalized

by the weight w(dij) so as to heavily overlap in the (M − 1)-dimensional output space,

which is orthogonal to ûM . To avoid the problem, a kind of “automatic gain control”

is introduced to smooth the weighting procedure in F-LDA [70], where dimensionality is

reduced from M to (M −1) at r ≥ 1 fractional steps instead of one step directly. In each

step, Ŝb and its eigenvectors are recomputed based on the changes of w(dij) in current

input space, which the output space of last step. In this way, the (M − 1)-dimensional

subspace is rotated and re-oriented iteratively, and severe overlap between classes in the

output space is avoided. The eigenvector ûM will not be discarded until r iterations are

done. The pseudo-code implementation of the procedure can be found in Figure 3.5,

where the dimensionality of the LDA output space is finally reduced from M to M ′, with

r iterations being applied for each dimensionality reduction by 1.

It should be noted at this point that the F-LDA approach [70] has only been applied

in small (not more than five) dimensionality pattern spaces. To the best of the author’s

knowledge the work reported here constitutes the first attempt to introduce fractional-
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Input: A training set: X =
{
xij ∈ R

M , i = 1, · · · , C; j = 1, · · · , Ci

}
, the scaling

factor α(< 1), the number of fractional steps r, and the objective

dimensionality of the output space, M ′(< M).

Output: An M ′-dimensional LDA subspace spanned by Ψ̂, an M × M ′ matrix.

Algorithm:

Initialize Ψ̂ = I, a M × M identity matrix.

For m = M to M ′ with step −1

For l = 0 to (r − 1) with step 1

Project the input data to the space spanned by Ψ̂: y = Ψ̂Tx.

Compress the last component of y by a factor αl: ym = αlym.

Compute the between-class scatter matrix of y: Ŝ
{m}
b with Eq.3.7.

Compute the ordered (in decreasing) eigenvalues [λ̂b,1, · · · , λ̂b,m] and

corresponding eigenvectors Û = [û1, · · · , ûm] of Ŝ
{m}
b .

Update Ψ̂ = Ψ̂Û.

End for loop l

Discard the last (mth) column of Ψ̂: Ψ̂ = Ψ̂(:, 1 : m − 1).

End for loop m

Figure 3.5: Pseudo-code for the computation of the F-LDA algorithm

step rotations and re-orientations in a realistic application involving large dimensionality

spaces. This becomes possible due to the integrated structure of the (JD-LDA+F-LDA)

algorithm (denoted as DF-LDA hereafter).

The effect of the space rotation strategy used in the DF-LDA method can be il-

lustrated by an example shown in Fig.3.6, where the visualized are the first two most

significant features of each image (of 170 multi-view face images of 5 subjects from the



Chapter 3. Linear Discriminant Learning for Face Recognition 34

Figure 3.6: Distribution of 170 face images of 5 subjects (classes), projected into left:

PCA-based subspace, middle: JD-LDA-based subspace and right: DF-LDA-based sub-

space. Each subspace is spanned by its two most significant feature bases. The five

subjects are randomly selected from the UMIST database.

UMIST database [36]) extracted by PCA, JD-LDA (with η = 1 to ensure sufficient reg-

ularization) and DF-LDA respectively. The PCA-based representation as depicted in

Fig.3.6-left is optimal in terms of image reconstruction, thereby provides some insight on

the original structure of image distribution, which is highly complex and non-separable

as expected for a multi-view face image set. Although the separability of subjects is

greatly improved in the JD-LDA-based subspace, some classes still overlap as shown in

Fig.3.6-middle. However, after a few fractional-step re-orientations of the JD-LDA sub-

space, it can be seen from Fig.3.6-right that the separability is further enhanced, and

different classes tend to be equally spaced.

3.5 Experimental Results

Two popular face databases in the literature, the ORL [103] and the UMIST [36], are

used to demonstrate the effectiveness of the proposed DF-LDA framework. The details

of the two databases have been described in Section 2.3.2. It should be noted that each

image was scaled into (112 × 92), resulting in an input dimensionality of J = 10304.
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To start the FR experiments, each one of the two databases is randomly partitioned

into a training set and a test set with no overlap between the two. The partition of the

ORL database is done following the recommendation of [60, 61] which call for 5 images

per person randomly chosen for training, and the other 5 for testing. Thus, a training

set of 200 images and a test set of 200 images are created. For the UMIST database,

8 images per person are randomly chosen to produce a training set of 160 images. The

remaining 415 images are used to form the test set. In the following experiments, the

figures of merit are the classification error rates (CERs) averaged over 5 runs (4 runs

in [61] and 3 runs in [60]), each run being performed on such random partitions in the

two databases. It is worthy to mention here that both experimental setups introduce SSS

conditions since the number of training samples are in both cases much smaller than the

dimensionality of the input space. Also, we have observed some partition cases, where

close-to-zero eigenvalues occurred in (QTSwQ) as discussed in Section 3.3.4. In these

cases, in contrast with the failure of YD-LDA [46], JD-LDA and DF-LDA were still able

to perform well.

In addition to YD-LDA [46], DF-LDA is compared against two popular appearance-

based FR methods, namely: Eigenfaces [120] and Fisherfaces [7]. For each of the four

methods, the FR procedure consists of: (i) a feature extraction step where four kinds

of feature representation of each training or test sample are extracted by projecting

the sample onto the four feature spaces generalized by Eigenface, Fisherface, YD-LDA

and DF-LDA respectively, (ii) a classification step in which each feature representation

obtained in the first step is fed into a simple nearest neighbor classifier. It should be

noted at this point that, since the focus in this work is on feature extraction, a very

simple classifier, namely nearest neighbor, is used in step (ii). We anticipate that the

classification accuracy of all the four methods compared here will improve if a more

sophisticated classifier is used instead of the nearest neighbor. Readers are recommended

to see e.g. [72] for the performance of DF-LDA + Support Vector Machines (SVM), [118]
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for JD-LDA + Global Feedforward Neural Network, and [26] for JD-LDA + Radial Basis

Function (RBF) Neural Network.

Figure 3.7: Comparison of CERs obtained by the four FR methods as functions of the

number of feature vectors, where w(d) = d−12 is used in DF-LDA for the ORL, w(d) = d−8

for the UMIST, and r = 20 for both.

The CER curves obtained by the four methods are shown in Fig.3.7 as functions

of the number of feature vectors used (i.e. output space dimensionality), M . In the

DF-LDA simulation, for simplicity, the regularization parameter η = 1 is set to simply

ensure sufficient regularization, the number of fractional steps used is r = 20 and the

weight function utilized is w(d) = d−8. In this work, we did not attempt to optimize the

three parameters in terms of minimizing the resulting CERs. However, it can be seen

from Fig.3.7 that the performance of DF-LDA even with such a sub-optimal parameter

configuration is still overall superior to that of any other method compared here on

both of the two databases. Let αi and βi be the CERs of DF-LDA and any one of

the other three methods respectively, where i is the number of feature vectors used.

We can obtain an average percentage of the CER of DF-LDA over that of the other

method by E =
∑M

i=5 (αi/βi) with M = 25 for the ORL database and M = 12 for the

UMIST database. The results summarized in Table 3.1 indicate that the average CER
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of DF-LDA is approximately 50.5%, 43% and 80% of that of Eigenface, Fisherface and

YD-LDA respectively. It is of interest to observe the performance of Eigenfaces vs that

of Fisherfaces. Not surprisingly, Eigenfaces outperform Fisherfaces in the ORL database,

because Fisherfaces may lose significant discriminant information due to the intermediate

PCA step. The similar observation has also been found in [66,78].

Table 3.1: The average percentage (E) of the CER of DF-LDA over that of the other

method.

Methods Eigenfaces Fisherfaces YD-LDA

Eorl 74.18% 38.51% 80.03%

Eumist 26.75% 47.68% 79.6%

(Eorl + Eumist)/2 50.47% 43.1% 79.82%

In addition to the regularization parameter η (to be further discussed under a more

general framework in Chapter 4), the weighting function w(dij) influences the perfor-

mance of the DF-LDA method. For different feature extraction tasks, appropriate values

for the weighting function exponent should be determined through experimental meth-

ods such as leave-one-out using the available training set. However, it appears that

there is a set of values for which good results can be obtained for a wide range of ap-

plications. Following the recommendation in [70] we examine the performance of the

DF-LDA method for w(dij)∈{d−4, d−8, d−12, d−16}. Results obtained through the utiliza-

tion of these weighting functions are depicted in Fig.3.8 where CERs are plotted against

the number of feature vectors selected. The lowest CER on the ORL database is approx-

imately 4.0% and it is obtained using a weighting function of w(d) = d−16 and a set of

only M = 22 feature basis vectors. This result is comparable to the best ones reported

previously in the literature [60,61].
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Figure 3.8: Classification error rates (CERs) of DF-LDA as a function of the number of

feature vectors used with different weighting functions. In this example, r = 20 is used

for each weighting function.

3.6 Summary

In this chapter, a new feature extraction method for face recognition tasks has been

developed. The method introduced here utilizes the well-known framework of linear

discriminant analysis and it can be considered as a generalization of a number of tech-

niques which are commonly in use. The new method utilizes a new variant of D-LDA

with regularization to safely remove the null space of the between-class scatter matrix

and then applies a fractional-step rotation and re-orientation scheme to enhance the dis-

criminatory power of the obtained SSS-relieved feature space. The effectiveness of the

proposed method has been demonstrated through experimentation using two popular

face databases.

The DF-LDA method presented here is a linear pattern recognition method. Com-

pared with nonlinear models, a linear model is rather robust against noise and most

likely will not overfit. Although it has been shown that distribution of face patterns is

highly non convex and complex in most cases, linear methods are still able to provide
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cost effective solutions to the FR tasks through integration with other strategies, such as

the principle of “divide and conquer” in which a large and nonlinear problem is divided

into a few smaller and local linear sub-problems. The JD-LDA and DF-LDA methods

launch the initiatives for the discriminant learning studies in the context of face recogni-

tion. Based on them, more sophisticate FR methods will be developed in the following

chapters.



Chapter 4

Quadratic Discriminant Learning

with Regularization

4.1 Introduction

Although successful in many circumstances, linear methods including the LDA-based

ones often fail to deliver good performance when face patterns are subject to large varia-

tions in viewpoints, illumination or facial expression, which result in a highly non convex

and complex distribution of face images. The limited success of these methods should be

attributed to their linear nature [9]. LDA can be viewed as a special case of the optimal

Bayes classifier when each class is subjected to a Gaussian distribution with identical

covariance structure. Obviously, the assumption behind LDA is highly restrictive so

that LDA often underfits the data in complex FR tasks. As a result, intuitively it is

reasonable to assume that a better solution to this inherent nonlinear problem could be

achieved using quadratic methods, such as the Quadratic Discriminant Analysis (QDA),

which relaxes the identical covariance assumption and allows for quadratic discriminant

boundaries to be formed. However, compared to LDA solutions, QDA solutions are more

susceptible to the Small-Sample-Size (SSS) problem discussed in Section 3.3.1, since the

40
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latter requires many more training samples than the former due to the considerably

increased number of parameters needed to be estimated [125]. To deal with such a situa-

tion, Friedman [32] proposed a regularized discriminant analysis (called RDA) technique

within the Gaussian framework. The purpose of the regularization is to reduce the vari-

ance related to the sample-based estimates for the Gaussian models at the expense of

potentially increased bias. Although RDA relieves to a great extent the SSS problem and

performs well even when the number of training samples per subject (Ci) is comparable

to the dimensionality of the sample space (J), it still fails when Ci << J , which is the

case in most practical FR applications. For example, RDA cannot be successfully im-

plemented in the experiments reported here where only Ci ∈ [2, 7] training samples per

subject are available while the dimensionality of the space is up to J = 17154. RDA’s

failure in this case should be attributed to two reasons: (1) RDA requires the sample

covariance matrices of any single class and their ensemble to be estimated. The estima-

tion results are highly inaccurate when the number of the available samples is far less

than their dimensionality. (2) The sizes of these sample covariance matrices are up to

17154× 17154. It leads to a challenging computational problem to invert these huge size

matrices. It should be added at this point that, it is even difficult to store a 17154×17154

matrix, which requires a memory space of 2245M bytes.

In this chapter, we propose a new regularized quadratic discriminant analysis method

called “RD-QDA”, which is developed by incorporating the D-LDA technique introduced

in last chapter into the RDA framework. The RD-QDA provides a more comprehensive

solution and a more general framework to the SSS problem hampering both LDA and

QDA than individual D-LDA or RDA. It will be seen that, by adjusting the parameters

of the RD-QDA, we can obtain a number of new and traditional discriminant analy-

sis methods such as YD-LDA [46], JD-LDA introduced in Section 3.3.4, direct QDA

(hereafter D-QDA), nearest center (hereafter NC) and weighted nearest center (hereafter

WNC) classifiers. Also, as will be shown in the experiments reported here, there exists an
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optimal RD-QDA solution, which greatly outperforms many successful FR approaches

including Eigenfaces [120] and YD-LDA [46] as well as the JD-LDA method.

The rest of the chapter is organized as follows. Since RD-QDA is rooted in the

optimal Bayes classifier, in Section 4.2, we start the analysis by briefly reviewing Bayes

theory. Then a pre-processing step for dimensionality reduction and feature extraction is

introduced in Section 4.3. Following that, RD-QDA is developed in Section 4.4, where the

relationship of RD-QDA to YD-LDA, JD-LDA and other discriminant analysis methods

is also discussed. In Section 4.5, a set of experiments conducted on the FERET database

are presented to demonstrate the effectiveness of the proposed methods. Conclusions are

drawn in Section 4.6.

4.2 Bayes Classification Theory

LDA has its roots in the optimal Bayes classifier. Given an input pattern z ∈ R
J , its

class label is assumed to be y ∈ Y, where Y = {1, · · · , C} denotes a label set with C

classes. Let P (y = i) and p(z|y = i) be the prior probability of class i and the class-

conditional probability density of z given the class label is i, respectively. Based on

the Bayes formula, we have the following a posteriori probability P (y = i|z), i.e. the

probability of the class label being i given that the pattern z has been measured,

P (y = i|z) =
p(z|y = i)P (y = i)∑C
i=1 p(z|y = i)P (y = i)

(4.1)

The Bayes decision rule to classify the unlabeled input pattern z is then given as,

Decide y = j if j = arg max
i∈Y

P (y = i|z) (4.2)

Eq.4.2 is also known as the maximum a posteriori (MAP) rule, and it achieves minimal

misclassification risk among all possible decision rules.

The class-conditional densities p(z|y = i) are seldom known. However, often it is

reasonable to assume that p(z|y = i) is subjected to a Gaussian distribution. Let µi and
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Σi be the mean and covariance matrix of class i. We have

p(z|y = i) = (2π)−J/2|Σi|−1/2 exp [−di(z)/2] (4.3)

where

di(z) = (z − µi)
T Σ−1

i (z − µi) (4.4)

is the squared Mahalanobis (quadratic) distance from the pattern z to the center of the

class i, µi. With the Gaussian assumption, the classification rule of Eq.4.2 turns to

Decide y = j if j = arg min
i∈Y

(di(z) + ln |Σi| − 2 ln P (y = i)) (4.5)

The decision rule of Eq.4.5 produces quadratic boundaries to separate different classes

in the J-dimensional real space. Consequently, this is also referred to as quadratic dis-

criminant analysis (QDA). Often the two statistics (µi, Σi) are estimated by their sample

analogs. For example, for the FR problem stated in Section 3.2, we have

µi = z̄i =
1

Ci

Ci∑
j=1

zij (4.6)

Σi =
1

Ci

Ci∑
j=1

(zij − z̄i)(zij − z̄i)
T (4.7)

LDA can be viewed as a special case of QDA when the covariance structure of all classes

are identical, i.e. Σi = Σ. However, the estimation for either Σi or Σ is ill-posed in

the small sample size (SSS) settings, giving rise to high variance. This problem becomes

extremely severe due to Ci � J in FR tasks, where Σi is singular with rank(Σi) ≤

(Ci − 1). To deal with such a situation, it is necessary to conduct a pre-processing step

for dimensionality reduction, so that a subsequent QDA process can be applied in a low-

dimensional subspace, where most significant discriminant information are hoped to be

kept, and whose dimensionality is comparable to Ci.
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4.3 Determination of a low-dimensional discriminant

subspace

Let us consider the appearance-based FR problem stated in Section 3.2. Based on the

D-LDA subspace theory discussed in Section 3.3.2, it can be known that the optimal

discriminant features exist in the complement space of the null space of the between-

class scatter matrix, Sb (Eq.3.3), which has M = (C − 1) nonzero eigenvalues denoted

as Λb. Let UM = [u1, · · · ,uM ] be the M eigenvectors of Sb corresponding to the M

eigenvalues Λb. Then the complement space is spanned by UM , which is furthermore

scaled by H = UMΛ
−1/2
b so as to have HTSbH = I, where I is an (M × M) identity

matrix.

For the purpose of dimensionality reduction, we can project the original face images

into the low-dimensional subspace spanned by H (called H space hereafter), where most

significant discriminant information are retained. The projection is a simple linear map-

ping: yij = HTzij, where yij ∈ R
M is the obtained feature representation of zij with

i = 1, · · · , C, j = 1, · · · , Ci. Also, in most FR tasks, the number of face classes C is

usually a small value comparable to the number of training samples N , e.g. C = 49

and N ∈ [98, 343] in the experiments reported here. Thus, it is reasonable to perform a

RDA [32] in the M -dimensional H space.

4.4 Regularized Direct QDA (RD-QDA)

In the H space, following the definition given in [32], the regularized sample covariance

matrix estimate of class i, hereafter denoted by Σ̂i(λ, γ), can be expressed as,

Σ̂i(λ, γ) = (1 − γ)Σ̂i(λ) +
γ

M
tr[Σ̂i(λ)]I (4.8)

where

Σ̂i(λ) =
1

Ci(λ)
[(1 − λ)Si + λS] (4.9)
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Ci(λ) = (1 − λ)Ci + λN (4.10)

Si =

Ci∑
j=1

(yij − ȳi)(yij − ȳi)
T (4.11)

S =
C∑

i=1

Si = N · HTSwH (4.12)

(λ, γ) is a pair of regularization parameters, and ȳi = HT z̄i is the projection of the mean

of class i in the H space.

In the FR procedure, any input query image z is firstly projected into the H space:

y = HTz. Its class label i∗ then can be inferred based on the QDA classification rule

(Eq.4.5) through

i∗ = arg min
i∈Y

(
di(y) + ln

∣∣∣Σ̂i(λ, γ)
∣∣∣− 2 ln πi

)
(4.13)

where πi = Ci/N is the estimate of the prior probability of class i, and

di(y) = (y − ȳi)
T Σ̂−1

i (λ, γ)(y − ȳi) (4.14)

is the squared Mahalanobis (quadratic) distance between the query y and the ith class

center ȳi.

The regularization parameter λ (0 ≤ λ ≤ 1) controls the amount that the Si are

shrunk toward S, the within-class scatter matrix of yij. The other parameter γ (0 ≤

γ ≤ 1) controls shrinkage of the class covariance matrix estimates toward a multiple of

the identity matrix. Under the regularization scheme, a QDA can be performed without

experiencing high variance of the plug-in estimates even when the dimensionality of the

H space is comparable to the number of available training samples. We refer to the

approach as regularized direct QDA, abbreviated as RD-QDA.

Since the RD-QDA is derived from the D-LDA and the RDA, it has close relationship

with a series of traditional discriminant analysis methods. Firstly, the four corners defin-

ing the extremes of the (λ, γ) plane represent four well-known classification algorithms,

as summarized in Table 4.1, where the prefix ‘D-’ means that all these methods are devel-

oped in the H space derived from the D-LDA technique. Based on the Fisher’s criterion
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Table 4.1: A series of discriminant analysis algorithms derived from RD-QDA.

Algs. D-NC D-WNC D-QDA YD-LDA JD-LDA

λ 1 0 0 1 1

γ 1 1 0 0 γJ

Σ̂i(λ, γ) 1
M

tr[ S
N

]I 1
M

tr[Si

Ci
]I Si

Ci

S
N

α
(

S
N

+ ηI
)

of Eq.3.2 used in YD-LDA, it is obvious that the YD-LDA feature extractor followed by a

nearest center classfier is actually a standard LDA classification rule implemented in the

H space. Also, in order to introduce certain regularization, JD-LDA as mentioned earlier

utilizes a modified optimization criterion seeking to maximize the ratio:
|ΨT SbΨ|

|ΨT (ηSb+Sw)Ψ| ,

whose kernel Sb

ηSb+Sw
has the form: I

ηI+HT SwH
after projection in the H space. Mean-

while, we have Σ̂i(λ, γ) = α
(
ηI + S

N

)
= α

(
ηI + HTSwH

)
when (λ = 1, γ = γJ), where

α =
(

tr[S/N ]
tr[S/N ]+ηM

)
and γJ = ηM

tr[S/N ]+ηM
both are constant for a given η value and a given

training sample set. In this situation, it is not difficult to see that RD-QDA is equivalent

to JD-LDA followed by a nearest center classifier. In addition, a set of intermediate dis-

criminant classifiers between the five traditional ones can be obtained when we smoothly

vary the two regularization parameters in their domains.

The objective of RD-QDA is to find the optimal (λ∗, γ∗) that give the best correct

recognition rate for a particular FR task. The optimization of (λ, γ) is associated with

the issue of model selection. A popular solution for this issue is the cross-validation

approach, for example, the leave-one-out method. The basic idea behind the method is

that generalize a model, RD-QDAv(λ, γ), based on the given (λ, γ) values and (N − 1)

training samples exclusive of zv ∈ Z, and then apply the model to classify the excluded

sample zv. Each of the training sample zv (v = 1, · · · , N) is in turn taken out and then

classified in this manner. The resulting misclassification loss averaged over the training

sample is then used as an estimate of future or generalization classification error. Let
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Ev(λ, γ) = 0 if the RD-QDAv(λ, γ) model correctly classifies its corresponding sample zv,

and Ev(λ, γ) = 1 otherwise. The optimal (λ∗, γ∗) found by the leave-one-out method is

the one that has

(λ∗, γ∗) = arg min
(λ,γ)

(
1

N

N∑
v=1

Ev(λ, γ)

)
(4.15)

4.5 Experimental Results

4.5.1 The Face Recognition Evaluation Design

A set of experiments is included in this chapter to assess the performance of the proposed

RD-QDA method. To illustrate the high complexity of the face pattern distribution, the

middle-size FERET evaluation database, G1 depicted in Section 2.3.2 is used in the

experiments. The database G1 consists of 606 gray-scale images of 49 subjects, each

one having more than 10 samples. For computational purposes, each image is finally

represented as a column vector of length J = 17154 prior to the recognition stage.

The number of available training samples per subject, Ci, has a significant influence

on the plug-in covariance matrix estimates used in all discriminant analysis methods.

For simplicity, we assume that each subject has the same number of training samples,

Ci = L. To study the sensitivity of the correct recognition rate (CRR) measure to L,

six tests were performed with various values of L ranging from L = 2 to L = 7. For a

particular L, the FERET subset G1 is randomly partitioned into two datasets: a training

set and a test set. The training set is composed of (L × 49) samples: L images per

subject were randomly chosen. The remaining (606 − L × 49) images are used to form

the test set. There is no overlapping between the two. To enhance the accuracy of the

assessment, five runs of such a partition were executed, and all of the CRRs reported

later have been averaged over the five runs. As mentioned in Section 2.3.2, there is no

difference between the two performance measures, CRR and CER (classification error

rate used in last Chapter), but CRR=(1-CER).
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4.5.2 The FR Performance Comparison

In addition to RD-QDA and its special cases listed in Table 4.1, the Eigenfaces method

[120] was also implemented to provide a performance baseline as it did in the FERET

competitions [93,94]. For JD-LDA, two special cases should be noted. One (η = 0) is JD-

LDA with no regularization. In this case, JD-LDA is equivalent to YD-LDA or RD-LDA

with (λ = 1, γ = 0). Another (η = 1) is the strong regularization case, called “JD-LDA.1”

hereafter, which is equivalent to RD-QDA with
(
λ = 1, γ = M

tr[S/N ]+M

)
. The remaining

cases (η ∈ (0, 1)) of JD-LDA correspond to RD-LDA with λ = 1 and γ ∈
(
0, M

tr[S/N ]+M

)
.

The testing grid of (λ, γ) values was defined by the outer product of λ = [10−4 :

0.0099 : 1] and γ = [10−4 : 0.0099 : 1], where [10−4 : 0.0099 : 1] denotes a spaced vector

consisting of 102 elements from 10−4 to 1 with step 0.0099: [10−4, 10−4 + 0.0099, 10−4 +

2 × 0.0099, · · · , 10−4 + 101 × 0.0099], and both of λ and γ started from 10−4 instead of

0 in case Si or even S(= N · HTSwH) is singular so that some methods such as D-QDA

and YD-LDA cannot be carried out. The CRRs obtained by RD-QDA in the grid are

depicted in Fig.4.1. Since most peaks or valleys occur around the four corners, four 2D

side faces of Fig.4.1 (only four representative cases L = 2, 3, 4, 6 are selected) are shown

in Figs.4.2-4.3 for a clearer view. Also, a quantitative comparison of the best found

CRRs and their corresponding standard deviations (STDs) (arising from the average of

the five runs) obtained by Eigenfaces, those depicted in Table 4.1, and RD-QDA with

corresponding parameters, is summarized in Table 4.2. It should be noted at this point

that the “best” CRRs are only applicable for RD-QDA and PCA (or Eigenfaces). Since

all other methods compared in Table 4.2 can be considered special cases of the RD-QDA

method, no optimal regularization parameters can be determined for them. Their CRRs

reported are the results of RD-QDA obtained using the regularization parameters shown

in Table 4.1. Since the CRR of PCA is a function of the number of the Eigenfaces, the

“best CRR” reported for PCA is the one with the best found Eigenfaces number, denoted

as m∗.
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Figure 4.1: CRRs obtained by RD-QDA as a function of (λ, γ). Top: L = 2, 3, 4;

Bottom: L = 5, 6, 7.

The parameter λ controls the degree of shrinkage of the individual class covariance

matrix estimate Si toward the within-class scatter matrix of the whole training set

(HTSwH). Varying the values of λ within [0, 1] leads to a set of intermediate classi-

fiers between D-QDA and YD-LDA. In theory, D-QDA should be the best performer

among the methods evaluated here if sufficient training samples are available. It can be

observed at this point from Fig.4.1 and Table 4.2 that the CRR peaks gradually moved

from the central area toward the corner (0, 0) that is the case of D-QDA as L increases.

Small values of λ have been good enough for the regularization requirement in many

cases (L ≥ 3) as shown in Fig.4.3:Left.

However, it is also can be seen from Fig.4.2:Right and Table 4.2 that both of D-QDA

and YD-LDA performed poorly when L = 2. This should be attributed to the high

variance in estimates of Si and S due to insufficient training samples. In these cases, Si
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Table 4.2: A comparison of best found CRRs/STDs (%).

L 2 3 4 5 6 7

PCA 59.8/0.93 67.8/2.50 73.0/2.62 75.8/3.27 81.3/1.35 83.7/1.77

(m∗) 67 103 131 151 183 227

D-NC 67.8/0.62 72.3/1.76 75.3/1.65 77.3/2.57 80.2/1.35 80.5/1.12

D-WNC 46.9/3.38 61.7/4.42 68.7/2.54 72.1/2.59 73.9/2.47 75.6/0.62

D-QDA 57.0/2.91 79.3/2.41 87.2/2.70 89.2/1.73 92.4/1.35 93.8/1.51

YD-LDA 37.8/7.03 79.5/3.24 87.8/2.70 89.5/1.71 92.4/1.23 93.5/1.24

JD-LDA.1 70.7/0.51 77.4/1.57 82.8/1.85 85.7/2.09 88.1/1.71 89.4/1.04

(γJ(η = 1)) 0.84 0.75 0.69 0.65 0.61 0.59

RD-QDA 73.2/1.05 81.6/1.85 88.5/2.22 90.4/1.38 93.2/1.35 94.4/0.87

(λ∗) 0.93 0.93 0.35 0.11 0.26 0.07

(γ∗) 0.47 0.10 0.07 0.01 1e-4 1e-4

Figure 4.2: CRRs as a function of γ with fixed λ values.

and even S are singular or close to singular, and the resulting effect is to dramatically

exaggerate the importance associated with the eigenvectors corresponding to the smallest

eigenvalues. Against the effect, the introduction of another parameter γ helps to decrease
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Figure 4.3: CRRs as a function of λ with fixed γ values.

the larger eigenvalues and increase the smaller ones, thereby counteracting for some extent

the bias. This is also why JD-LDA.1 outperforms YD-LDA when L is small. Although

JD-LDA.1 seems to be a little over-regularized compared to the optimal (λ∗, γ∗), the

method almost guarantees a stable sub-optimal solution. A CRR difference of 4.5% on

average over the range L ∈ [2, 7] has been observed between the top performer RD-

QDA(λ∗, γ∗) and JD-LDA.1. Also, it should be noted that in addition to L, the strength

of regularization is dependent on the number of subjects, C, more accurate to say, how

much the number of training examples per subject L is less than the number of subjects

C. Stronger regularization is required when the extent of L < C is larger. However,

often the correct values of the regularization parameters are difficult to be estimated

in advance. Therefore, it can be concluded that JD-LDA.1 should be preferred when

insufficient prior information about the training samples is available and a cost effective

processing method is sought. In addition to the CRRs, it can been seen from the STDs

depicted in Table 4.2 that due to the introduction of regularization both JD-LDA.1

and RD-QDA are quite stable compared to other methods across various SSS setting

scenarios.

For each of the methods evaluated here, the FR simulation process consists of 1) a

training stage that includes all operations performed in the training set, e.g. the compu-
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tations of H, Σ̂i(λ, γ) and ȳi; 2) a test stage for the CRRs determination. The compu-

tational times consumed by these methods in the two stages are reported in Table 4.3.

Ttrn and Ttst are the amounts of time spent on training and test respectively, and the

times of RD-LDA are the average ones consumed in a single point of the (λ, γ) grid. The

simulation studies reported in this work were implemented on a personal computer sys-

tem equipped with a 2.0GHz Intel Pentium 4 processor and 1.0 GB RAM. All programs

are written in Matlab v6.5 and executed in MS Windows 2000. Since the discriminant

analysis methods listed in Table 4.1 are some special cases of the RD-QDA method, it

can been seen from Table 4.3 that all these methods have similar computational require-

ments. D-NC and D-WNC are slightly faster than the others since each class covariance

matrix Σ̂i(λ, γ) in the two methods is shrunk towards an identity matrix multiplied by

a scalar. As a result, the computations of Σ̂i(λ, γ) and di(y) are simplified. It can be

also observed from Table 4.3 that the PCA method is much slower compared to those

discriminant analysis methods, especially as L increases. This is due to the fact that the

computational complexity of all these methods is determined to a great extent by the di-

mensionality of the feature space, where most computations are conducted. The feature

space for all the discriminant analysis methods is the H space, which has a dimensional-

ity of M = 48, much smaller than the dimensionality of the best found Eigenfaces space,

m∗, which is between 67 and 227 as shown in Table 4.2. Although RD-LDA is quite

effective when it is performed in a single point of the (λ, γ) grid, the determination of

its optimal parameter values is computationally demanding as it is based on exhaustive

searches in the entire grid. For example, the 102 × 102 grid used here requires 10404

RD-QDAs to be computed for each run. However, compared to the exhaustive search, it

is even more computationally expensive to use the leave-one-out method, which requires

a computational cost of (L × 49 × 10404) RD-QDAs for each run. Therefore, a fast

and cost effective RD-QDA parameter optimization method will be the focus of future

research.
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Table 4.3: A comparison of computational times, Ttrn + Ttst (Seconds).

L 2 3 4 5 6 7

PCA 1.1+2.5 2.1+3.1 3.5+3.6 5.0+3.9 7.2+4.2 9.9+6.1

D-NC 0.7+1.3 0.9+1.2 1.0+1.1 1.2+0.9 1.4+0.8 1.5+0.7

D-WNC 0.7+1.4 0.9+1.2 1.1+1.1 1.2+1.0 1.4+0.9 1.5+0.7

D-QDA 0.8+1.6 0.9+1.4 1.1+1.3 1.3+1.1 1.4+1.0 1.6+0.8

YD-LDA 0.8+1.6 0.9+1.4 1.1+1.3 1.3+1.1 1.4+1.0 1.6+0.8

JD-LDA.1 0.8+1.6 0.9+1.4 1.1+1.3 1.3+1.1 1.4+1.0 1.6+0.8

RD-QDA 0.8+1.6 0.9+1.4 1.1+1.3 1.3+1.1 1.4+1.0 1.6+0.8

4.6 Summary

A new method for face recognition has been introduced in this chapter. The proposed

method takes advantages of the D-LDA and regularized QDA techniques to effectively

address the SSS and nonlinear(quadratic) problem commonly encountered in FR tasks.

The D-LDA technique is utilized to map the original face patterns to a low-dimensional

discriminant feature space, where a regularized QDA is then readily applied.

The regularization strategy used here provides a balance between the variance and the

bias in sample-based estimates, and this significantly relieves the SSS problem. Also, it

was shown that a series of traditional discriminant analysis methods including the recently

introduced YD-LDA and JD-LDA can be derived from the proposed RD-QDA framework

simply by adjusting the regularization parameters. Experimental results indicate that

the best found RD-QDA solution outperforms the Eigenfaces method as well as other

traditional or derived here discriminant analysis methods across various SSS settings.

On the other hand, the process of how to effectively find the optimal balance between

the variance and the bias currently remains as an open research problem. Rather than
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the leave-one-out method, a promising direction to approach this problem is to take

advantage of the variable called “Learning Difficulty Degree”, which is introduced in

Section 6.6.4 as a measure for the difficult extent of a SSS learning task.

In summary, RD-QDA can be seen as a general pattern recognition method capable of

addressing both the nonlinear(quadratic) and SSS problems. We expect that in addition

to FR, RD-QDA will provide excellent performance in applications, such as image/video

indexing, retrieval, and classification.



Chapter 5

Nonlinear Discriminant Learning

with Kernel Machines

5.1 Introduction

Both linear and quadratic discriminant analysis are based on the Gaussian framework,

where each class is assumed to be subjected to a Gaussian distribution. Unfortunately,

as highlighted in the introduction chapter, the distribution of face patterns in the real-

world is far more complicated than Gaussian. For example, it is generally believed that

a highly non-convex distribution is obtained when face patterns are subjected to large

variations in viewpoints [9]. In general, such a complex distribution can be handled either

by globally nonlinear models or by a mixture of locally linear models (AMLLM). We first

investigate the globally nonlinear methods as the focus of this chapter, and then discuss

the AMLLM-based methods in the next two chapters. Compared to the AMLIM-based

approach, the globally nonlinear approach has some theoretical advantages, for example,

its ability in generalizing a more compact feature representation.

Recently, the so-called “kernel machine” technique has become one of the most popu-

lar tools to design globally nonlinear algorithms in the communities of machine learning

55
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and pattern recognition [88, 100, 107, 123]. The idea behind the kernel-based learning

methods is to construct a nonlinear mapping from the input space (RJ) to an implicit

high-dimensional feature space (F) using a kernel function φ : z ∈ R
J → φ(z) ∈ F. In the

feature space, it is hoped that the distribution of the mapped data is linearized and sim-

plified, so that traditional linear methods can perform well. A problem with the concept

is that the dimensionality of the feature space may be arbitrarily large, possibly infinite,

resulting in difficulty in computation. Fortunately, with some mathematical tricks, the

exact φ(z) is not needed, and the nonlinear mapping can be performed implicitly in R
J

by replacing dot products in the feature space F with a kernel function defined in the

input space R
J , k(zi, zj) = φ(zi) · φ(zj). The kernel functions that can be used for the

task have to satisfy Mercer’s condition [82], and typical examples include polynomial

function, radial basis function (RBF) and multi-layer perceptrons. The field of the ker-

nel machines is now extremely active. Examples based on such a design include support

vector machines (SVM) [19, 106, 123], kernel Mahalanobis (KM) Distance [100], kernel

PCA (KPCA) [3], kernel ICA (KICA) [4], and Generalized Discriminant Analysis (GDA,

also known as kernel LDA) [6].

In this chapter, motivated by the success that these kernel-based methods have ob-

tained in various regression and classification tasks, we propose a new kernel discriminant

analysis algorithm to solve nonlinear pattern recognition problems specifically in SSS sit-

uations, such as face recognition. The algorithm is developed by attempting to kernellize

the JD-LDA method introduced in Section 3.3.4, in other words, implement a JD-LDA

process in the feature space F. It is therefore supposed that the proposed algorithm is

able to generalize the strengths of both the JD-LDA method and the kernel machines.

Compared to the existing kernel discriminant analysis methods developed from the tradi-

tional LDA, such as GDA [6], the algorithm proposed here is more robust against the SSS

problem, which should be noted to become worse in the feature space F due to the sig-

nificantly increased dimensionality than in the original sample space R
J . Also, it will be
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shown that the proposed algorithm reduces to JD-LDA when the feature space is linearly

related to the sample space. Thus, following the notation conventions of kernel methods,

we call the algorithm kernel JD-LDA method, abbreviated as “KDDA” hereafter.

The rest of the chapter is organized as follows. Firstly, the principle behind the kernel

machines is introduced in Section 5.2. Then, two commonly used kernel-based feature

extraction methods, KPCA and GDA, are briefly reviewed in Sections 5.3-5.4. Following

that, KDDA is introduced and analyzed in Section 5.5. The relationship of KDDA to JD-

LDA and GDA is also discussed in Section 5.6. In Section 5.7, two sets of experiments

are presented to demonstrate the effectiveness of the KDDA algorithm in the case of

highly non convex, highly complicated face pattern distributions. Conclusions are drawn

in Section 5.8.

5.2 Sample Space vs Kernel Feature Space

The kernel machines provide an elegant way of dealing with nonlinear algorithms by

reducing them to linear ones in some high-dimensional feature space F nonlinearly related

to the sample space R
J :

φ : z ∈ R
J → φ(z) ∈ F (5.1)

The idea can be illustrated by the toy example depicted in Fig.5.1, where two-

dimensional input samples, say z = [z1, z2], are mapped to a three-dimensional fea-

ture space through a nonlinear transform: φ : z = [z1, z2] → φ(z) = [x1, x2, x3] :=[
z2
1 ,
√

2z1z2, z
2
2

]
. It can be seen from Fig.5.1 that in the sample space, a nonlinear ellip-

soidal decision boundary is needed to separate classes A and B, in contrast with this, the

two classes become linearly separable in the higher-dimensional feature space.

The feature space F could be considered as a “linearization space” [2], however, to

reach the purpose, its dimensionality could be arbitrarily large, possibly infinite. Fortu-

nately, the exact φ(z) is not needed and the feature space can become implicit by using
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Figure 5.1: A toy example of two-class pattern classification problem. Left: samples

lie in the 2-D input space, where it needs a nonlinear ellipsoidal decision boundary to

separate classes A and B. Right: Samples are mapped to a 3-D feature space, where a

linear hyperplane can separate the two classes.

kernel machine methods. The trick behind the kernel methods is to replace dot prod-

ucts in F with a kernel function in the input space R
J so that the nonlinear mapping is

performed implicitly in R
J . Let us come back to the toy example of Fig.5.1, where the

feature space is spanned by the second-order monomials of the input sample. Let zi ∈ R
2

and zj ∈ R
2 be two examples in the input space, and the dot product of their feature vec-

tors φ(zi) ∈ F and φ(zj) ∈ F can be computed by the following kernel function, k(zi, zj),

defined in R
2,

φ(zi) · φ(zj) =
[
z2

i1,
√

2zi1zi2, z
2
i2

] [
z2

j1,
√

2zj1zj2, z
2
j2

]T
=
(
[zi1, zi2] [zj1, zj2]

T
)2

= (zi · zj)
2 =: k(zi, zj)

(5.2)

In most cases, the dimensionality of the feature space is extremely high, possibly

infinite, for example those mapped by RBF kernels. As a result, the central issue to

generalize a linear learning algorithm to its kernel version is to reformulate all the com-

putations of the algorithm in the feature space in the form of dot products. Based on

the properties of the kernel functions used, the kernel generation gives rise to neural-
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network structures, splines, Gaussian, Polynomial or Fourier expansions, etc. . Any

function satisfying Mercer’s condition [82] can be used as a kernel. Table 5.1 lists some

of the most widely used kernel functions, and more sophisticated kernels can be found

in [48,106,112,124,135].

Table 5.1: Some of the most widely used kernel functions, where z1 ∈ R
J and z2 ∈ R

J .

Gaussian RBF k(z1, z2) = exp
(

−||z1−z2||2
σ2

)
, σ ∈ R

Polynomial k(z1, z2) = (a(z1 · z2) + b)d, a ∈ R, b ∈ R, d ∈ N

Sigmoidal k(z1, z2) = tanh(a(z1 · z2) + b), a ∈ R, b ∈ R

Inverse multiquadric 1√
‖z1−z2‖2+σ2

, σ ∈ R

5.3 Kernel Principal Component Analysis (KPCA)

To find principal components of a non convex distribution, the classic PCA has been

generalized to the kernel PCA (KPCA) [3]. Given the appearance-based FR problem

stated in Section 3.2, let φ : z ∈ R
J → φ(z) ∈ F be a nonlinear mapping from the input

face image space to a high-dimensional feature space F. The covariance matrix or total

scatter matrix of the training sample in the feature space F can be expressed as

S̃cov =
1

N

C∑
i=1

Ci∑
j=1

(φ(zij) − φ̄)(φ(zij) − φ̄)T (5.3)

where φ̄ = 1
N

∑C
i=1

∑Ci

j=1 φ(zij) is the average of the ensemble in F. The KPCA is actually

a classic PCA performed in the feature space F. Let g̃m ∈ F (m = 1, 2, · · · ,M) be the

first M most significant eigenvectors of S̃cov, and they form a low-dimensional subspace,

called “KPCA subspace” in F. All these {g̃m}M
m=1 lie in the span of {φ(zij)}zij∈Z , and

have g̃m =
∑C

i=1

∑Ci

j=1 aijφ(zij), where aij are the linear combination coefficients. For any

face pattern z, its nonlinear principal components can be obtained by the dot product,
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(g̃m · (φ(z) − φ̄)), computed indirectly through the kernel function k(). When φ(z) = z,

KPCA reduces to PCA, and the KPCA subspace is equivalent to the so-called “Eigenface

space” introduced in [120].

5.4 Generalized Discriminant Analysis (GDA)

As such, Generalized Discriminant Analysis (GDA, also known as kernel LDA) [6] is

a process to extract a nonlinear discriminant feature representation by performing a

classic LDA in the high-dimensional feature space F. Let S̃b and S̃w be the between- and

within-class scatter matrices in the feature space F respectively, and they have following

expressions:

S̃b =
1

N

C∑
i=1

Ci(φ̄i − φ̄)(φ̄i − φ̄)T (5.4)

S̃w =
1

N

C∑
i=1

Ci∑
j=1

(φ(zij) − φ̄i)(φ(zij) − φ̄i)
T (5.5)

where φ̄i = 1
Ci

∑Ci

j=1 φ(zij) is the mean of class Zi. In the same way as LDA, GDA deter-

mines a set of optimal nonlinear discriminant basis vectors by maximizing the standard

Fisher’s criterion:

Ψ̃ = arg max
Ψ̃

∣∣∣Ψ̃T S̃bΨ̃
∣∣∣∣∣∣Ψ̃T S̃wΨ̃
∣∣∣ , Ψ̃ = [ψ̃1, · · · , ψ̃M ], ψ̃m ∈ F (5.6)

Due to the extremely high dimensionality of F, the SSS problem is introduced essen-

tially during the optimization process of Eq.5.6. However, GDA, following traditional

subspace approach, attempts to solve the SSS problem by removing the null space of S̃w,

as was done in the Fisherfaces method [7]. As a result, it can be known from the analysis

given in Section 3.3.2 that some significant discriminant information that may exist in

the null space is lost inevitably due to such a process.
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5.5 Kernel JD-LDA (KDDA)

To overcome the problems with the GDA method in the SSS situations, a kernel version

of JD-LDA, named KDDA, is developed here.

5.5.1 Eigen-analysis of S̃b in the Feature Space

Following the JD-LDA framework, we start by solving the eigenvalue problem of S̃b,

which can be rewritten here as follows,

S̃b =
C∑

i=1

(√
Ci

N

(
φ̄i − φ̄

))(√Ci

N

(
φ̄i − φ̄

))T

=
C∑

i=1

˜̄φi
˜̄φi

T
= Φ̃bΦ̃

T
b (5.7)

where ˜̄φi =
√

Ci

N

(
φ̄i − φ̄

)
, and Φ̃b =

[
˜̄φ1, · · · , ˜̄φc

]
. Since the dimensionality of the feature

space F, denoted as J ′, could be arbitrarily large or possibly infinite, it is intractable to

directly compute the eigenvectors of the (J ′ × J ′) matrix S̃b. Fortunately, the first m

(≤ C − 1) most significant eigenvectors of S̃b, corresponding to non-zero eigenvalues, can

be indirectly derived from the eigenvectors of the matrix Φ̃T
b Φ̃b (with size C × C) (see

Section 3.3.4 for details). Computing Φ̃T
b Φ̃b, requires dot product evaluation in F. This

can be done in a manner similar to the one used in SVM, KPCA and GDA by utilizing

kernel methods. For any φ(zi), φ(zj) ∈ F, we assume that there exists a kernel function

k(·) such that k(zi, zj) = φ(zi) · φ(zj). The introduction of the kernel function allows us

to avoid the explicit evaluation of the mapping φ.

Using the kernel function, for two arbitrary classes Zl and Zh, a Cl ×Ch dot product

matrix Klh can be defined as:

Klh = (kij) i=1,···,Cl
j=1,···,Ch

(5.8)

where kij = k(zli, zhj) = φli · φhj, φli = φ(zli) and φhj = φ(zhj).

For all of C classes {Zi}C
i=1, we then define a N × N kernel matrix K,

K = (Klh) l=1,···,C
h=1,···,C

(5.9)
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which allows us to express Φ̃T
b Φ̃b as follows:

Φ̃T
b Φ̃b = 1

N
B · (AT

NC · K · ANC − 1
N

(AT
NC · K · 1NC)−

1
N

(1T
NC · K · ANC) + 1

N2 (1
T
NC · K · 1NC)) · B

(5.10)

where B = diag
[√

C1, · · · ,
√

Cc

]
, 1NC is a N × C matrix with terms all equal to one,

ANC = diag [ac1 , · · · , acc ] is a N × C block diagonal matrix, and aci
is a Ci × 1 vector

with all terms equal to: 1
Ci

(see Appendix A.1 for a detailed derivation of Eq.5.10.).

Let λ̃i and ẽi (i = 1, · · · , C) be the i-th eigenvalue and its corresponding eigenvector

of Φ̃T
b Φ̃b, sorted in decreasing order of the eigenvalues. Since (Φ̃bΦ̃

T
b )(Φ̃bẽi) = λ̃i(Φ̃bẽi),

ṽi = Φ̃bẽi is an eigenvector of S̃b. In order to remove the null space of S̃b, we only use its

first m (≤ C − 1) eigenvectors: Ṽ = [ṽ1, · · · , ṽm] = Φ̃bẼm with Ẽm = [ẽ1, · · · , ẽm], whose

corresponding eigenvalues are greater than 0. It is not difficult to see that ṼT S̃bṼ = Λ̃b,

with Λ̃b = diag[λ̃2
1, · · · , λ̃2

m], an (m × m) diagonal matrix.

5.5.2 Eigen-analysis of S̃w in the Feature Space

Let Ũ = ṼΛ̃
−1/2
b , each column vector of which lies in the feature space F. Projecting

both S̃b and S̃w into the subspace spanned by Ũ, it can easily be seen that ŨT S̃bŨ = I,

an (m × m) identity matrix, while ŨT S̃wŨ can be expanded as:

ŨT S̃wŨ = (ẼmΛ̃
−1/2
b )T (Φ̃T

b S̃wΦ̃b)(ẼmΛ̃
−1/2
b ) (5.11)

Using the kernel matrix K, a closed form expression of Φ̃T
b S̃wΦ̃b can be obtained as

follows,

Φ̃T
b S̃wΦ̃b =

1

N
(J1 − J2) (5.12)

where both J1 and J2 are defined in Appendix A.2 along with the detailed derivation of

the expression in Eq.5.12.

We proceed by diagonalizing ŨT S̃wŨ, a tractable matrix with size m × m. Let p̃i

be the i-th eigenvector of ŨT S̃wŨ, where i = 1, · · · ,m, sorted in increasing order of its

corresponding eigenvalue λ̃′
i. In the set of ordered eigenvectors, those that correspond
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to the smallest eigenvalues maximize the ratio in Eq.5.6, and should be considered the

most discriminative features. Discarding the eigenvectors with the largest eigenvalues,

the M(≤ m) selected eigenvectors are denoted as P̃M = [p̃1, · · · , p̃M ]. Defining a matrix

Q̃ = ŨP̃M , we can obtain Q̃T S̃wQ̃ = Λ̃w, with Λ̃w = diag[λ̃′
1, · · · , λ̃′

M ], a M×M diagonal

eigenvalue matrix.

Based on the calculations presented above, a set of optimal nonlinear discriminant

feature vectors can be derived through Γ̃ = Q̃(ηI + Λ̃w)−1/2, where η is the regulariza-

tion parameter introduced in Section 3.3. The feature bases Γ̃ form a low-dimensional

subspace in F, where the following regularized Fisher’s criterion (originally introduced

in Section 3.3.3) is optimized instead of the conventional one in Eq.5.6 used in GDA to

relieve the SSS problem,

Ψ̃ = arg max
Ψ̃

∣∣∣(Ψ̃T S̃bΨ̃)
∣∣∣∣∣∣η(Ψ̃T S̃bΨ̃) + (Ψ̃T S̃wΨ̃)

∣∣∣ (5.13)

5.5.3 Dimensionality Reduction and Feature Extraction

For any input pattern z, its projection into the subspace spanned by the set of feature

bases, Γ̃, derived in Section 5.5.2, can be computed by

y = Γ̃T φ(z) =
(
Ẽm · Λ̃−1/2

b · P̃M · (ηI + Λ̃w)−1/2
)T (

Φ̃T
b φ(z)

)
(5.14)

where Φ̃T
b φ(z) = [ ˜̄φ1 · · · ˜̄φc ]T φ(z). Since

˜̄φi

T
φ(z) =

(√
Ci

N

(
φ̄i − φ̄

))T

φ(z)

=
√

Ci

N

(
1
Ci

Ci∑
m=1

φT
imφ(z) − 1

N

C∑
p=1

Cp∑
q=1

φT
pqφ(z)

) (5.15)

we have

Φ̃T
b φ(z) =

1√
N

B ·
(
AT

NC · ν(φ(z)) − 1

N
1T

NC · ν(φ(z))

)
(5.16)

where

ν(φ(z)) = [ φT
11φ(z) φT

12φ(z) · · · φT
c(cc−1)φ(z) φT

ccc
φ(z) ]T (5.17)
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is a (N × 1) kernel vector obtained by dot products of φ(z) and each mapped training

sample φ(zij) in F.

Combining Eq.5.14 and Eq.5.16, we obtain

y = Θ · ν(φ(z)) (5.18)

where

Θ =
1√
N

(
Ẽm · Λ̃−1/2

b · P̃M · (ηI + Λ̃w)−1/2
)T
(
B ·
(
AT

NC − 1

N
1T

NC

))
(5.19)

is a (M × N) matrix which can be computed offline. Thus, through Eq.5.18, a low-

dimensional nonlinear representation (y) of z with enhanced discriminant power has been

introduced. The detailed steps for implementing the KDDA method are summarized in

Fig.5.2.

5.6 Comments

KDDA implements the JD-LDA method in a high-dimensional feature space using the

kernel machines. Its main advantages can be summarized as follows:

1. KDDA introduces a nonlinear mapping from the input space to an implicit high-

dimensional feature space, where the non convex and complex distribution of pat-

terns in the input space is “linearized” and “simplified” so that conventional LDA

can perform well. It is not difficult to see that KDDA reduces to JD-LDA for

φ(z) = z. Thus, JD-LDA can be viewed as a special case of the proposed KDDA

framework.

2. KDDA effectively solves the SSS problem in the high-dimensional feature space by

employing the regularized Fisher’s criterion and the D-LDA subspace technique.

With the introduction of the two issues, KDDA can exactly extract the optimal

discriminant features from both inside and outside of S̃w’s null space, while avoiding
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Input: A training set Z with C classes: Z = {Zi}C
i=1, each class containing

Zi = {zij}Ci

j=1 face images, where zij ∈ R
J , and the regularization parameter η.

Output: The matrix Θ; For an input example z, its KDDA-based feature

representation y.

Algorithm:

Step 1. Compute the kernel matrix K using Eq.5.9.

Step 2. Compute Φ̃T
b Φ̃b using Eq.5.10, and find Ẽm and Λ̃b from Φ̃T

b Φ̃b

in the way shown in Section 5.5.1.

Step 3. Compute ŨT S̃wŨ using Eq.5.11 and Eq.5.12, and find P̃M and Λ̃w

from ŨT S̃wŨ in the way depicted in Section 5.5.2;

Step 4. Compute Θ using Eq.5.19.

Step 5. Compute the kernel vector of the input z, ν(φ(z)), using Eq.5.16.

Step 6. The optimal nonlinear discriminant feature representation of z can

be obtained by y = Θ · ν(φ(z)).

Figure 5.2: KDDA pseudo-code implementation

the risk of experiencing high variance in estimating the scatter matrices at the same

time. This point makes KDDA significantly different from the existing nonlinear

discriminant analysis methods such as GDA in the SSS situations.

3. In GDA, to remove the null space of S̃w, it is required to compute the pseudo inverse

of the kernel matrix K, which could be extremely ill-conditioned when certain

kernels or kernel parameters are used. Pseudo inversion is based on inversion of the

nonzero eigenvalues. Due to round-off errors, it is not easy to identify the true null

eigenvalues. As a result, numerical stability problems often occur [100]. However,
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it can been seen from the derivation of KDDA that such problems are avoided in

KDDA. The improvement can be observed also in experimental results reported in

Fig.5.5:A and Fig.5.6:A.

5.7 Experimental Results

Two sets of experiments are included here to illustrate the effectiveness of the KDDA

algorithm. The distribution of face patterns is highly non-convex and complex, especially

when the patterns are subject to large variations in viewpoints. Thus, the multi-view

UMIST face database [36] is chosen to be utilized in the experiments reported here.

The details of the database have been described in Section 2.3.2, where some sample

images are shown in Fig.2.5. Each image (with size 112× 92) is converted to a vector of

dimensionality J = 10304 prior to being fed to an evaluation method.

5.7.1 Distribution of Multi-view Face Patterns

The first experiment aims to provide insights on how the KDDA algorithm linearizes and

simplifies the complicated face pattern distribution.

For the sake of simplicity in visualization, we only use a subset of the database, which

contains 170 images of 5 randomly selected subjects (classes). Four types of feature

bases are generalized from the subset by utilizing the PCA, KPCA, JD-LDA and KDDA

algorithms respectively. In the four subspaces produced, two are linear, produced by PCA

and JD-LDA, and two are nonlinear, produced by KPCA and KDDA. In the sequence,

all of the images are projected onto the four subspaces. For each image, its projections in

the first two most significant feature bases of each subspace are visualized in Figs.5.3-5.4.

In Fig.5.3, the visualized projections are the first two most significant principal com-

ponents extracted by PCA and KPCA, and they provide a low-dimensional represen-

tation for the samples, which can be used to capture the structure of data. Thus, we
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Figure 5.3: Distribution of 170 samples of 5 subjects projected into A: PCA-based

subspace (⊂ R
J), and B: KPCA-based subspace (⊂ F) using a RBF kernel function

with σ2 = 5e6. Each subspace is spanned by its most significant feature bases.

Figure 5.4: Distribution of 170 samples of 5 subjects projected into A: JD-LDA-based

subspace (⊂ R
J), and B: KDDA-based subspace (⊂ F) using a RBF kernel function

with σ2 = 5e6. Each subspace is spanned by its most significant feature bases.

can roughly learn the original distribution of face samples from Fig.5.3:A, which is non

convex and complex as we expected based on the analysis presented in the previous sec-

tions. In Fig.5.3:B, KPCA generalizes PCA to its nonlinear counterpart using a RBF
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kernel function : k(z1, z2) = exp
(

−||z1−z2||2
σ2

)
with σ2 = 5e6. However, it is hard to find

any useful improvement for the purpose of pattern classification from Fig.5.3:B. It can

be therefore concluded here again that the low-dimensional representation obtained by

PCA like techniques, achieve simply object reconstruction, and they are not necessarily

useful for discrimination and classification tasks [7, 114].

Unlike the PCA approaches, LDA optimizes the low-dimensional representation of

the objects based on separability criteria. Fig.5.4 depicts the first two most discriminant

features extracted by utilizing JD-LDA and KDDA respectively. Simple inspection of

Figs.5.3-5.4 indicates that these features outperform, in terms of discriminant power,

those obtained using PCA like methods. However, subject to limitation of linearity, some

classes are still non-separable in the JD-LDA-based subspace as shown in Fig.5.4:A. In

contrast to this, we can see the linearization property of the KDDA-based subspace, as

depicted in Fig.5.4:B, where all of classes are well linearly separable when a RBF kernel

with σ2 = 5e6 is used.

5.7.2 Comparison with KPCA and GDA

The second experiment compares the performance of the KDDA algorithm, in terms

of the classification error rate (CER), to two other commonly used kernel-based FR

algorithms, KPCA and GDA. Following the standard evaluation process of appearance-

based FR methods, the FR procedure is completed in two stages:

1. Feature extraction. The overall database is randomly partitioned into two subsets:

the training set and test set. The training set is composed of 120 images: 6 images

per person are randomly chosen. The remaining 455 images are used to form the

test set. There is no overlapping between the two. After training is over, both sets

are projected into the feature spaces derived from the KPCA, GDA and KDDA

methods.
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2. Classification. This is implemented by feeding feature vectors obtained in step-1

into a nearest neighbor classifier. It should be noted again at this point that, since

the focus in this work is on feature extraction, a simple classifier is always preferred

so that the FR performance is not mainly limited by the classifier but the feature

selection algorithms. To enhance the accuracy of performance evaluation, the CERs

reported in this work are averaged over 8 runs. Each run is based on a random

partition of the database into the training and test sets. Following the evaluation

protocol depicted in Section 2.3.3, the average CER is denoted as Ēave = 1 − R̄1,

where R̄1 is defined in Eq.2.1 with n = 1.

To evaluate the overall performance of the three methods, two typical kernel functions:

namely the RBF and the polynomial function, and a wide range of parameter values are

tested. Sensitivity analysis is performed with respect to the kernel parameters and the

number of used feature vectors, M . Figs.5.5-5.6 depict the average CERs (Ēave) of the

three methods compared when the RBF and polynomial kernels are used.

Figure 5.5: A comparison of average CERs (Ēave) based on the RBF kernel function. A:

CERs as a function of σ2. B: CERs as a function of M .
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Figure 5.6: A comparison of average CERs (Ēave) based on the Polynomial kernel func-

tion. A: CERs as a function of a. B: CERs as a function of M .

The only kernel parameter for RBF is the scale value σ2. Fig.5.5:A shows the CERs as

functions of σ2 within the range from 0.5e7 to 1.5e8, when the optimal number of feature

vectors, M = Mopt, is used. The optimal feature number is a result of the existence of the

peaking effect in the feature selection procedure. It is well-known that the classification

error initially declines with the addition of new features, attains a minimum, and then

starts to increase [98]. The optimal number can be found by searching the number of used

feature vectors that results in the minimal summation of the CERs over the variation

range of σ2. In Fig.5.5:A, Mopt = 99 is the value used for KPCA, while Mopt = 19 is used

for GDA and KDDA. Fig.5.5:B depicts the CERs as functions of M within the range

from 5 to 19, when optimal σ2 = σ2
opt is used. Similar to Mopt, σ2

opt is defined as the scale

parameter that results in the minimal summation of the CERs over the variation range

of M for the experiment discussed here. In Fig.5.5:B, a value σ2
opt = 1.5e8 is found for

KPCA, σ2
opt = 5.3333e7 for GDA and σ2

opt = 1.3389e7 for KDDA.

As such, the average CERs of the three methods with polynomial kernel (k(z1, z2) =

(a · (z1 · z2) + b)d) are shown in Fig.5.6. For the sake of simplicity, we only test the
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influence of a, while let b = 1 and d = 3 be fixed. Fig.5.6:A depicts the CERs as

functions of a within the range from 1e − 9 to 5e − 8, where Mopt = 100 for KPCA,

Mopt = 19 for GDA and KDDA. Fig.5.6:B shows the CERs as functions of M within

the range from 5 to 19 with aopt = 1e − 9 for KPCA, aopt = 2.822e − 8 for GDA and

aopt = 1e − 9 for KDDA, determined similarly to σ2
opt and Mopt.

Table 5.2: The average percentages of the CER of KDDA over that of KPCA or GDA.

Kernel RBF Polynomial (RBF+Polynomial)/2

KDDA/KPCA 33.669% 35.081% 34.375%

KDDA/GDA 47.866% 47.664% 47.765%

Let αM and βM be the average CERs of KDDA and any one of other two methods

respectively, where M = [5, · · · , 19]. From Fig.5.5:B and Fig.5.6:B, we can obtain an

interesting quantity comparison: the average percentages of the CER of KDDA over that

of any other method by
∑19

M=5 (αM/βM). The results are tabulated in Table 5.2, where

it can be seen that the average CER of KDDA is only about 34.375% and 47.765% of the

average CERs of KPCA and GDA respectively. It should be also noted that Fig.5.5:A and

Fig.5.6:A reveal the numerical stability problems existing in practical implementations of

GDA. Comparing the GDA performance to that of KDDA we can easily see that the later

is more stable and predictable, resulting in a cost effective determination of parameter

values during the training phase.

5.8 Summary

A new nonlinear face recognition method has been introduced in this chapter. The

proposed method combines kernel-based methodologies with discriminant analysis tech-

niques. The kernel function is utilized to map the original face patterns to a high-
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dimensional feature space, where the highly non-convex and complex distribution of face

patterns is linearized and simplified, so that linear discriminant techniques can be used for

feature extraction. The small-sample-size (SSS) problem caused by high dimensionality

of mapped patterns, is addressed by a regularized D-LDA technique which exactly finds

the optimal discriminant subspace of the feature space without suffering from problems

arising from the SSS settings, such as possible loss of significant discriminant information

and high variance of parameter estimation. Experimental results indicate that the CER

performance of the KDDA algorithm is overall superior to those obtained by the KPCA or

GDA approaches. In conclusion, the KDDA algorithm provides a general pattern recog-

nition framework for nonlinear feature extraction from high-dimensional input patterns

in the SSS situations. We expect that in addition to face recognition, KDDA will provide

excellent performance in applications where classification tasks are routinely performed,

such as content-based image indexing and retrieval, video and audio classification.



Chapter 6

A Mixture of LDA Subspaces with

Cluster Analysis

6.1 Introduction

Many state-of-the-art appearance-based methods have reported outstanding recognition

performance (usually > 90% correct recognition rate). However, the FERET evaluation

reports and other independent studies indicate that for most of these methods, such recog-

nition rates can be achieved only for limited-size face databases (usually < 50 subjects),

and that their performance deteriorates rapidly when they are applied to large-scale face

databases (LSFDs) [39, 94]. The main reason is that the appearance-based methods use

statistical pattern recognition (SPR) methodologies, which normally require face images

to follow a convex and linear distribution. This condition can be approximately met

only in small-scale databases with limited variations. Experimentation has revealed that

although the images of appearances of the face patterns may vary significantly due to

differences in imaging parameters such as lighting, scale, orientation, etc. , these differ-

ences have an approximately linear effect when they are small [119]. Nevertheless, as

the size of the database increases so that more pattern variations are introduced, the

73
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distribution of the face images dramatically becomes highly non convex and complex [9].

As a result, the feature representations obtained by these linear models are not capable

of generalizing all of these variations.

There are two approaches to handle the increased complexity of the face distribution

in the case of LSFDs.

1. Model the complex distribution using globally nonlinear techniques. In the last

Chapter, we have studied kernel machines [3,6,72,73,88,100,123], the most popular

technique recently used to design nonlinear methods. From both theoretical and

experimental analysis of KPCA, GDA and KDDA, it can be seen that the main

problem with the kernel-based methods is the difficulty in the selection of the kernel

functions and the optimization of involved parameters. All of these are issues

that could significantly influence the performance of the resulting FR systems. In

addition, given a small size training sample, these methods tend to overfit easily

due to increased algorithm complexity, and they are also more computationally

expensive compared to their linear counterparts due to the introduction of the high-

dimensional feature space F. The last point is particularly important for tasks like

face recognition performed in a high-dimensional input space R
J .

2. Piecewise learn the complex distribution by a mixture of locally linear models. This

strategy is based on the principle of “divide and conquer”, by which a complex FR

problem is decomposed into a set of simpler ones, in each of which a locally linear

pattern distribution could be generalized and dealt with by a relatively easy linear

solution (see e.g. [52,53,55,90,99,109,115,126]). Compared to the globally nonlinear

approaches, piecewise approximation is simpler, more cost effective and easier to

implement. In addition, linear models are known to be rather robust against noise

and most likely will not overfit [83]. A mixture of view-based PCA subspaces [92],

a mixture of Gaussians (for face detection) [113] and a mixture of Factor Analyzers

(MFAs) [30], are examples of piecewise learning methods that have been applied to
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databases of O(103) face images. It should be also noted at this point that attempts

to combine the strengths of both solutions for face detection and pose estimation

have been introduced recently [62,63,79].

Before we continue our presentation, it is important to distinguish two frequently

used terms in this chapter: class and cluster, where class means a set of face images

from the same person or subject, while cluster means a group of classes. Thus, all of

members in one class will have a same cluster label.

From the designer’s point of view, the central issue to the decomposition based ap-

proach is to find an appropriate criterion to partition the large-size training set. Existing

partition techniques, whether nonparametric clustering such as K-means [42] or model-

based clustering such as EM [80], unanimously adopt “similarity criterion”, based on

which similar samples are within the same cluster and dissimilar samples are in different

clusters [131]. For example, in the view-based representation [92], every face pattern is

manually assigned to one of several clusters according to its view angle with each clus-

ter corresponding to a particular view. In the method considered in [113] and [30], the

database partitions are automatically implemented using the K-means and EM clustering

algorithms respectively. However, although such criterion may be optimal in the sense

of approximating real face distribution for tasks such as face reconstruction, face pose

estimation and face detection, they may not be good for the recognition task considered

in this thesis. It is not hard to see that from a classification point of view, the database

partition criterion should be aimed to maximize the difference or separability between

classes within each “divided” subset or cluster, which as a sub-problem then can be more

easily “conquered” by a traditional FR method.

Motivated by such concerns, we first propose in this chapter a novel clustering method

specifically optimized for the purpose of pattern classification. Contrary to the conven-

tional “similarity criterion”, we introduce the concept of “separability criterion” for clus-

tering. As we know from the analysis of previous chapters, a powerful tool to optimize
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the separability criterion is the Linear Discriminant Analysis (LDA) [27], which attempts

to find optimal discriminatory feature representation by maximizing the between-class

scatter of patterns. In the proposed method, the training LSFD is partitioned into a set

of K maximally separable clusters (MSCs) by a LDA-like technique, and the separability

between classes is maximized in each MSC. We then propose a two-level classification

framework, which consists of a group of FR sub-systems to take advantage of the ob-

tained MSCs. The first level is composed of K same but separate sub-systems, each

trained with one MSC. For a given query, classification is firstly done independently in

each sub-system, and thus K outputs can be produced. The second level is a classifier,

which receives the K obtained outputs and chooses the optimum one as the final FR

result. Through this process, the complex FR problem on a large database is gradually

decomposed and addressed by a mixture of manageable FR sub-systems. Each sub-

system is only required to deal with a part of the whole problem. This is not a difficult

task for most of traditional FR methods to work as such a sub-system in a single MSC

with limited-size subjects and high between-class separability.

The rest of the chapter is organized as follows. We first talk about the FR sub-

system to be integrated into our methodologies in Section 6.2. In Section 6.3 and 6.4, the

proposed clustering method and the hierarchical classification framework are introduced

and discussed in details. Following that, Section 6.5 gives some important comments

on the proposed methodologies. In Section 6.6, a set of experiments conducted on the

FERET database are presented to demonstrate the effectiveness of the proposed methods.

Finally, Section 6.7 summarizes conclusions and provides directions for future research.

6.2 FR Sub-Systems

In theory, the FR sub-system integrated into the proposed hierarchical classification

framework could be any one of traditional appearance-based FR methods, whose per-
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formance is aimed to be improved in the case of LSFDs. In this chapter, we choose

the JD-LDA methods introduced in Section 3.3.4. The selection was based on several

considerations:

1. LDA-based methods have shown excellent performance, and outperform many other

appearance-based approaches such as those based on PCA in limited-size face

databases [7, 46, 73–75]. However, it has been also observed that the LDA-based

methods tend to be easier to overfit than PCA-based ones when they are applied

to a LSFD, and good results in this case have not been reported yet [78].

2. LDA-based methods optimize the face feature representation based on a separability

criterion, and from this point of view are closely related to the clustering method

to be proposed in Section 6.3.

3. Many LDA-based algorithms suffer from the small sample size (SSS) problem (see

Section 3.3.1). The JD-LDA method provide a simple but cost effective solution to

the SSS problem [74,75].

For all these reasons, the JD-LDA method was selected for the feature extraction task

in this work. The subsequent classification in the FR subsystem is performed by using a

classic nearest neighbor classifier (NNC) as in Sections 3.5 and 5.7.2.

6.3 Clustering with Separability Criterion (CSC)

Motivated by LDA and its successful application to FR tasks, we introduce the concept

of separability criterion in cluster analysis. Contrary to the traditional criteria, the one

proposed here is developed from the standpoint of classification, which requires classes

with more different properties to be grouped in the same cluster, so that discriminant

learning within the cluster becomes easier. Similar to LDA, the criterion is optimized by

maximizing a widely used separability measure, the between-class scatter (BCS).
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Let us assume that a large-size training set as described in Section 3.2 is available.

Furthermore, let Ωk denote the k-th cluster, where k = [1, · · · , K] with K being the

number of clusters. Representing each class Zi by its mean: z̄i = 1
Ci

∑Ci

j=1 zij, the total

within-cluster BCS of the training set Z can be defined as,

St =
K∑

k=1

∑
z̄i∈Ωk

Ci · (z̄i − wk)
T (z̄i − wk) (6.1)

where wk = (
∑

z̄i∈Ωk
Ci · z̄i)/(

∑
z̄i∈Ωk

Ci) is the center of the cluster Ωk. Eq.6.1 implies

that a better class-separability intra clusters is achieved if St has a larger value. The

clustering algorithm works as follows:

Firstly, an initial partition is formed by randomly assigning z̄i where i = [1, · · · , C] to

one of clusters {Ωk}K
k=1. Secondly, we find the class mean ẑk ∈ Ωk which has the minimal

Euclidean distance to wk by

ẑk = arg min
z̄i∈Ωk

{
(z̄i − wk)

T (z̄i − wk)
}

(6.2)

Next, we compute distances of ẑk to other cluster centers:

dkq = (ẑk − wq)
T (ẑk − wq), (6.3)

and find the cluster q̂ so that

q̂ = arg max
q

{dkq} (6.4)

where q = [1, · · · , K]. We reassign the class represented by ẑk into cluster q̂, i.e. set

ẑk ∈ Ωq̂ if q̂ �= k. The cluster centers wk and the total scatter St are then updated and

the above procedure is repeated until St stops increasing.

In summary, the clustering method (called CSC hereafter) presented above maximizes

the total within-cluster BCS St by iteratively reassigning those classes whose means

have the minimal distances to their own cluster centers, so that the overall separability

between classes is enhanced gradually within each cluster. The detailed pseudo code

implementation of the CSC method is depicted in Fig.6.1.
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Input: A training set Z with C classes: Z = {Zi}C
i=1, each class contains

Zi = {zij}Ci

j=1 face images.

Output: K maximally separable clusters {Ωk}K
k=1, each class of images

Zi are assigned into one of K clusters.

Algorithm:

Step 1. Calculate z̄i = 1
Ci

∑Ci

j=1 zij for class Zi where i = [1, · · · , C].

Step 2. Randomly partition {z̄i}C
i=1 into K initial clusters {Ωk}K

k=1,

calculate their cluster center {wk}K
k=1, and initial Ŝt by Eq.6.1.

Step 3. Find ẑk by Eq.6.2, where k = [1, · · · , K].

Step 4. Compute the distances of ẑk to other cluster centers: dkq by Eq.6.3,

where q = [1, · · · , K].

Step 5. Find the new cluster label q̂ of ẑk by Eq.6.4, and re-set ẑk ∈ Ωq̂.

Step 6. Update the cluster centers wk, and recompute the total scatter: St.

Step 7. if Ŝt < St then Ŝt = St; return to Step 3;

else proceed to Step 8; /* Maximal St has been found. */

Step 8. Return current K clusters {Ωk}K
k=1 and their centers {wk}K

k=1.

Figure 6.1: The pseudo code implementation of the CSC method.

6.4 Hierarchical Classification Framework (HCF)

The original training database Z is partitioned into a set of smaller and simpler subsets,

called maximally separable clusters (hereafter MSCs) by the CSC method. Based on

these MSCs, we then propose a hierarchical classification framework (hereafter HCF),

which is able to take advantage of these obtained MSCs.

The two-level architecture of the HCF is as shown in Fig.6.2, where (·)(l)
k denotes the
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Figure 6.2: The architecture of the hierarchical classification framework (HCF), where

the cluster number K = 4.

component corresponding to the l-th level and the k-th MSC (i.e. Ωk), k = [1, · · · , K].

The first level is composed of K JD-LDA FR sub-systems, each containing a JD-LDA

feature extractor followed by a nearest neighbor classifier (NNC). The K sub-systems

correspond to the K MSCs. During the learning stage, the k-th sub-system is trained

with the k-th MSC in order to find a M
(1)
k -dimensional feature space spanned by Ψ

(1)
k

(for Ωk). Upon completion, the training images zij are mapped to their corresponding

feature spaces by yij = (Ψ
(1)
k )Tzij where zij ∈ Ωk respectively. These feature spaces are

low-dimensional with enhanced discriminatory power.

In the FR procedure, any input query z is firstly fed to the first level of K FR

sub-systems. Classification is independently performed in each sub-system by measuring

Euclidean distances between z’s projection y
(1)
k = (Ψ

(1)
k )Tz and the known examples

yij ∈ Ωk based on the nearest neighbor rule. Thus, K classification results {θk}K
k=1

are produced, and they generalize a new subset, {Zθk
}K

k=1, which is then passed to the

next level. The second level contains only one NNC, (NNC)(2), which operates in the
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derived subset {Zθk
}K

k=1. Here, we use a
(∑K

k=1 M
(1)
k

)
-dimensional joint feature space

spanned by Ψ(2) = [Ψ
(1)
1 , · · · , Ψ(1)

K ] to take advantage of the K feature representations

obtained from the first level. The input query z is projected onto the joint feature space

by y(2) = (Ψ(2))Tz as well as those training samples belonging to classes {θk}K
k=1 by

the same projecting operations. Finally, the classification result θ(2) is given as one of

classes {θk}K
k=1 by performing the (NNC)(2) in the joint feature space. The feature fusion

method is based on serial strategy, which is simple and easy to implement but may not

be optimal. Future work will focus on more sophisticated fusion rules, such as parallel

strategy and majority voting [52,53,130].

It should be noted that the proposed HCF is a flexible framework that can be used

in conjunction with other clustering methodologies. For example, clusters generalized

by utilizing the K-means approach can be used instead of those MSCs formed through

the CSC approach. For the sake of simplicity in the sequence, we call the MSCs based

HCF as HCF-MSC, while the K-means-clusters based HCF as HCF-Kmean. We intend to

compare the two schemes in the experimental section to verify the claim that the proposed

CSC method offers certain advantages over the popular similarity-based method K-means

in large-scale FR tasks.

6.5 Issues to Build A Robust HCF-Based FR System

In the derivation of the HCF, a number of designing parameters have been introduced.

They include: (1) the number of clusters selected, (2) the iterative method for the max-

imization of the total within-cluster BCS, St, (3) the type of partition, (4) the type of

classifiers selected. All these elements affect the performance since they determine the

features extracted and the classification accuracy. In the sequence, we provide some

insights on the way we handle them in the context of this work.
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1. Determining the optimal number of clusters, K. The problem of the cluster

number determination is a major challenge in cluster analysis, underlined by the

fact that there is no clear definition of a cluster [117]. In the experiments reported

here, the optimal K is the one that gives the best CRR in the query sets, and is

found through an exhaustive search within a relatively small range, K = [4, · · · , 25].

On the other hand, the experiments show that the performance of the two methods,

HCF-Kmean and HCF-MSC, tends to be closer as the cluster number increases.

This reveals that the two clustering criteria, similarity and separability, may not be

completely independent. An extreme example is that the same result is obtained

by the CSC and K-mean methods when the cluster number K is equal to the class

number C.

2. Searching for the global maximum of the total within-cluster BCS, St.

The iterative procedure used for St maximization is quite often trapped in local

maxima, so that multiple restarts for the CSC method are required to find a good

solution in our experiments. This is a well-known problem that CSC shares with

traditional clustering schemes such as K-means and EM. Future work in this area

will focus on the introduction of parameterized re-weighting using methods such as

deterministic annealing in order to avoid trapping of the iterative procedure in local

minima [121]. It is worth pointing out in advance that, even if the clustering method

(whether CSC or K-means) converges to a local minimum, significant performance

improvement is delivered by the HCF strategy as opposed to a single JD-LDA FR

system as shown in our experiments.

3. The “soft split” of the training LSFD into a set of overlapping MSCs.

Like K-means, the proposed CSC method performs a “hard” database partition,

and it does not impose any constraints between clusters. Extensions of the CSC

method to “soft” partition using an EM-like algorithm is straightforward. The
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soft-split approach will allow overlapping MSCs, and apply preferred weights to

different MSCs.

4. Potential improvement in the design of the second level of classifier.

For simplicity, the (NNC)(2) is used as the second level of classifier in this work.

Instead it is possible to infer the cluster label of the query z in a probabilistic way

by utilizing the optimal Bayes classifier [25]. We have noted that mixtures of linear

subspaces (MLSes) such as PCAs and Factor Analyzers have been directly applied

to class-level for face detection [113], handwritten character recognition [31] and

FR [30] as well. However, it is worthy to mention here that, it is appropriate to

model each class of samples using the MLSes only when the number of available

training samples per class is large, e.g. 100 training face images for every person

used in [30], a condition impossible to meet in practical FR tasks. For example,

in the FERET evaluation protocol, only 1− 3 face images per person are available

for learning. Due to the small sample number per class, it will be extremely ill-

posed to apply a single or mixture probabilistic model to any single class. On the

other hand, under the HCF, a mixture model can be applied to each MSC, which

consists of many classes of face images. Thus, the density of the k-th mixture model

trained with the k-th MSC can be described as p(z|Ωk) =
∑

t

∫
p(z,v, t|Ωk)dv,

where v denotes the latent variables and t the component number in the mixture

model. Then, the cluster label of z can be inferred using a posteriori probabilistic

assignment, P (Ωk|z) = p(z|Ωk)P (Ωk)
p(z)

.

6.6 Experimental Results

To assess the performance of the proposed CSC and HCF methodologies, we utilize the

largest FERET subset, G0, which consists of 3817 gray-scale images of 1200 subjects as

depicted in Section 2.3.2. To the best of the authors’ knowledge such a database is among
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the largest utilized for the evaluation of FR algorithms. For computational convenience,

each image is finally represented as a column vector of length J = 17154 prior to the

recognition stage.

6.6.1 The FR Evaluation Design

To study the performance changes of the FR algorithms as the size of the test database

increases, we further generalize eight test subsets with varying sizes (see Table 6.1 for

details) from the evaluation database G0, and denote them as S1,S2, · · · ,S8. The rela-

tionship between the eight subsets can be described as S1 ⊂ S2 · · · ⊂ S7 ⊂ S8 = G0.

Each test dataset Si is partitioned into two subsets: the training set Ti and the query set

Qi. The LDA based algorithms require at least two training samples for each class. To

meet the requirement, two frontal face images per person were chosen: one was from the

fa set (regular facial expression, see [93, 94] for details) of the person, and another was

from its corresponding fb set (alternative facial expression to fa), thus a training set with

|Ti| = 2 × |Pi| images was obtained, where |Ti| denotes the size of Ti, and |Pi| denotes

the number of persons in Si. The remaining |Si −Ti| images in Si were used to form the

query set Qi. There was no overlapping between the two sets. Table 6.1 summarizes the

details of the eight test databases and their partitions, and Fig.2.3 depicts some training

and query samples.

Table 6.1: Sizes of the eight test datasets and their partitions.

Subsets S1 S2 S3 S4 S5 S6 S7 S8

|Ti| 362 788 1028 1308 1504 1784 2188 2400

|Qi| 137 212 473 692 998 1219 1314 1417

|Si| 499 1000 1501 2000 2502 3003 3502 3817

|Pi| 181 394 514 654 752 892 1094 1200
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The test protocol is same to the standard one depicted in Section 2.3.3. In addition

to the CRR for top match, we tested the CRR for top n ranked matches, denoted as Rn

with n ≥ 1 in the experiments reported here.

6.6.2 CSC vs K-means

As required by the HCF-Kmean and HCF-MSC schemes, the training set Ti of the test

database Si was firstly partitioned into K clusters by using the standard K-means and

the CSC method proposed here respectively. As the analysis given in Section 6.5, it

may be easy for St to get trapped in local maximums during the clustering procedures.

To relieve this, five runs of each method were executed on the training set Ti. Since the

cluster centers were randomly initialized, each run might converge to a different partition.

All of the CRRs of HCF-Kmean and HCF-MSC reported later have been averaged over

the five runs. It should be pointed out that the later experiments revealed a relative

insensitivity of the CRR measure to the clustering initialization process.

Figure 6.3: Means of K = 10 clusters obtained by performing the standard K-means

(Top) and the CSC method (Bottom) on the training set T8 of S8.

Fig.6.3 and Table 6.2 (where St is calculated by Eq.6.1) depict quite different results

obtained by the CSC method and the standard K-means. The total scatter St indicates

the difference between classes within each cluster, while the cluster centers let us roughly

know how different these clusters are. Not surprisingly, due to different clustering crite-

ria, St obtained by CSC is approximately eight times of that by K-means as shown in
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Table 6.2: Comparison of the total within-cluster BCS St in S8.

Cluster # 5 8 11 14 17 20 23 25

Kmean (×107) 1.53 1.45 1.39 1.35 1.33 1.30 1.28 1.27

CSC (×107) 10.50 10.49 10.47 10.45 10.45 10.43 10.42 10.41

Table 6.2. On the other hand, K-means obtained more compact clusters, each having

its own certain common properties such that the difference between the clusters is more

obvious compared to those clusters obtained by CSC as shown in Fig.6.3. The influence

on the FR performance due to these difference will be embodied in the later simulation

results obtained by HCF-Kmean and HCF-MSC.

6.6.3 The FR Performance Comparison

Since only two training examples are available for each subject, it can be seen from the

experimental results presented in Section 4.5 that a strong regularization is required for

the JD-LDA method in such a situation. Considering the high computational complexity

to optimize the regularization parameter, η, we use in this work, JD-LDA.1, a special

case of JD-LDA with η being set to 1, recommended in Section 4.5.2, where it has been

shown that JD-LDA.1 provides a stable and cost-effective sub-optimal solution of JD-

LDA across various SSS settings.

Both HCF-Kmean and HCF-MSC while employing JD-LDA.1 FR sub-systems can

be considered as “a mixture of JD-LDA.1s”, and they should be compared to the single

JD-LDA.1 system to measure boosting performance in the case of LSFDs. Again, the

Eigenfaces method [120] was implemented to provide a performance baseline. For all of

the four methods evaluated here, the CRR (Rn) is a function of the number of feature

vectors or dimensionality of feature spaces, M . In addition, the CRR of both HCF-Kmean

and HCF-MSC is a function of the number of the clusters K as well. The best values of M
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Figure 6.4: Comparison of CRRs (Rn) obtained by the four FR methods as functions of

the number of face images (S1 −S8). Left: Rank 1 (R1). Middle: Rank 5 (R5). Right:

Rank 10 (R10).

and K can be found through exhaustive search with reasonable computational complexity.

All of the four methods were tested on the eight test datasets, and CRRs obtained using

the best found M and K are depicted in Fig.6.4, where HCF-MSC is clearly the top

performer. It is worthy to mention that the results of Eigenfaces depicted in Fig.6.4 are

comparable to those previously reported in [94] under similar test conditions. From the

baseline results, we can roughly learn how difficult these test datasets are.

Algorithm performance depends critically on the test datasets selected. Since most

query samples added to Q3 and Q4 were from the FB set, the simplest one in the

FERET database (see [94] for definitions of various imagery categories), the CRRs of all

methods were significantly improved in the corresponding sets: S3, S4. Especially, the

CRR difference between HCF-MSC and HCF-Kmean was greatly reduced in the points:

S3, S4 and S5 due to the introduction of these simple test samples.

To facilitate the performance comparison, let R
(JD−LDA.1)
n and R

(·)
n denote the CRRs

with rank n obtained by JD-LDA.1 and any one of other three methods respectively.

Let us further define a quantitative statistic with respect to performance improvement

against JD-LDA.1, denoted as ξ
(·)
n = R

(·)
n − R

(JD−LDA.1)
n . The results, summarized in
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Table 6.3: CRR Improvement against JD-LDA.1 ξ1 (%) with Rank 1.

ξ1 (%) S1 S2 S3 S4 S5 S6 S7 S8 Average

PCA -7.30 2.36 15.43 17.20 16.63 17.97 17.58 15.95 11.98

HCF-Kmean -2.92 11.16 22.90 27.60 24.38 25.81 25.44 23.10 19.67

HCF-MSC 3.89 14.94 22.90 27.41 25.15 25.49 26.99 27.64 21.80

Table 6.4: CRR Improvement against JD-LDA.1 ξ5 (%) with Rank 5.

ξ5 (%) S1 S2 S3 S4 S5 S6 S7 S8 Average

PCA -11.68 7.55 23.89 26.30 23.45 25.27 24.43 22.72 17.74

HCF-Kmean -2.92 15.09 26.43 34.20 29.53 31.83 31.10 30.39 24.46

HCF-MSC 5.60 20.76 28.61 34.44 30.96 31.94 33.66 34.42 27.55

Table 6.5: CRR Improvement against JD-LDA.1 ξ10 (%) with Rank 10.

ξ10 (%) S1 S2 S3 S4 S5 S6 S7 S8 Average

PCA -7.30 9.43 25.79 31.50 27.96 30.52 28.31 26.54 21.59

HCF-Kmean -1.46 13.21 25.72 36.90 31.33 34.02 32.95 32.93 25.70

HCF-MSC 8.03 17.30 30.02 36.03 32.67 34.24 35.72 36.98 28.87

Tables 6.3, 6.4, 6.5 clearly indicate that HCF-MSC, and even HCF-Kmean (except for

in the case of S1) greatly outperform the single JD-LDA.1 system. The improvement

is gradually enhanced with the size of the test dataset increasing. Also, it is of interest

to observe the performance difference between JD-LDA.1 and Eigenfaces. LDA-based

algorithms have shown many superior properties to PCA-based ones in the tasks of

pattern classification [7, 17, 46, 74]. Not surprisingly, JD-LDA.1 outperforms Eigenfaces,
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even HCF-Kmean in the smallest test dataset, S1, however, its performance advantage

disappears rapidly, and JD-LDA.1 is outperformed by Eigenfaces as |Si| increases. This

is because LDA-based algorithms usually do not generalize as well as PCA-based ones

and tend to be easier to overfit when they are applied to databases with a large number

of classes and a small number of training samples per class. Results presented here are

in line with those reported in [66,78]. It will be further discussed at this point in Section

6.6.5. In addition, it is obvious in Fig.6.4 and Tables 6.3-6.5 that both of HCF-Kmean and

HCF-MSC indeed can boost the performance of JD-LDA.1 in those larger test datasets.

Thus, the advantage of the proposed HCF strategy is demonstrated.

Table 6.6: The improvement of the average CRRs by HCF-MSC against HCF-Kmean.

ζn (%) S2 S5 S8 Average

R1 1.8491 0.42011 2.6981 1.6558

R5 5.6352 1.718 3.7817 3.7116

R10 6.3711 2.0264 3.4961 3.9645

Since the number of clusters is a design parameter in the proposed HCF, an exper-

imental evaluation regarding the influence of the number on the performance of HCF-

Kmean and HCF-MSC is performed here. The results obtained in three representative

in size databases, S2, S5 and S8, are as shown in Figs.6.5, 6.6, 6.7. Let Rn,i be the CRR

obtained utilizing i clusters. Similar to ξn, we define

ζn =
∑

i

(
R

(HCF−MSC)
n,i − R

(HCF−Kmean)
n,i

)
, (6.5)

which quantitatively compares the CRRs of HCF-MSC and HCF-Kmean, as summarized

in Table 6.6. It can be been seen from Figs.6.5-6.7 and Table 6.6 that HCF-MSC is far

superior to HCF-Kmean in most cases, especially when the number of clusters used is

small, and the averages of ζn obtained in the three test datasets are up to 1.66% (rank 1),
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3.71% (rank 5) and 3.96% (rank 10). This indicates the advantage of performing cluster

analysis using the proposed CSC method.

Figure 6.5: Comparison of CRRs obtained by HCF-MSC and HCF-Kmean in S2 as

functions of the number of the clusters. Left: Rank 1 (R1). Middle: Rank 5 (R5).

Right: Rank 8 (R8).

Figure 6.6: Comparison of CRRs obtained by HCF-MSC and HCF-Kmean in S5 as

functions of the number of the clusters. Left: Rank 1 (R1). Middle: Rank 5 (R5).

Right: Rank 10 (R10).
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Figure 6.7: Comparison of CRRs obtained by HCF-MSC and HCF-Kmean in S8 as

functions of the number of the clusters. Left: Rank 1 (R1). Middle: Rank 5 (R5).

Right: Rank 10 (R10).

6.6.4 The CRR Performance Analysis

Compared with previously published FR studies [7, 17, 46, 61, 74, 75, 120], the CRRs re-

ported here are low, less than 70% even for the best performer HCF-MSC. In addition

to the difficulty of the FERET database itself, which has been proved in the FERET

FR competitions [94], there are two other reasons to which the weak performance of the

algorithms evaluated here can be attributed, namely:

1. The very small number of training samples per subject or class. It is well-

known that the learning capacity of the discriminant feature extraction machines

(DFEMs) and the classifiers is directly proportional to the number of training

samples per subject denoted as L, while reciprocally proportional to the number

of the training subjects denoted as |P|. Combining the two factors, we can define

a variable called “Learning Difficulty Degree” (LDD): ρ = L
|P| , to roughly estimate

the difficulty of a discriminant learning task. Obviously, a smaller ρ value implies

a more difficult task for both of the DFEMs and classifiers. In most previous FR

studies that have reported outstanding CRRs, the LDD range is usually not less

than 1
25

(see e.g. [7,17,46,61,74,75,120]). However, it should be noted at this point
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the LDD is between 1
600

and 1
90.5

(2/1200 in S8 → 2/181 in S1) for the experiments

presented here.

2. A more general training process. Of 1200 training/target subjects, only 482

were included in the query sets Qi. This would force each algorithm to some extent

to have a general representation for faces, not a representation tuned to a specific

query set. Compared with most previous FR research reports where the query sets

usually contained all of training subjects, the simulation setting used in this set of

experiments is more difficult. It is however a more realistic set up and matches the

practical environment described by the FERET program [94].

3. Insufficient representation of training samples for test samples. In the

experiments reported here, all the training samples were chosen from two frontal

face categories, fa and fb, while most of the test samples come from the other,

much more difficult to recognize, categories such as ba, bj, bk, ql etc. as shown

in Table 2.1. As a result, it is significantly insufficient for the training samples

to represent the test samples. In other word, the training data non-uniformly

sample the underlying distribution. This is one of cases when LDA may fail and

be outperformed by PCA as shown recently in [78].

To further substantiate our conclusions, it should be noted that another experiment

conducted on a compound database using HCF-MSC with the D-LDA sub-systems inside

has been reported in [71]. The compound database with 1654 face images of 157 subjects

is composed of six widely used databases in the literature: the ORL database [103],

the Berne database [1], the Yale database [7], the Harvard database [41], the UMIST

database [36], and an Asian database constructed by our own [61]. In the experiment

reported in [71], most subjects had 5 − 8 samples chosen for learning, giving rise to

ρ = 1/35 on average. The best found CRRs with rank 1 were 85.5% by D-LDA, 89.8%

by HCF-Kmean, and 92.1% by HCF-MSC respectively.
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6.6.5 Discussion

The following important conclusions can be drawn from the results presented above:

1. The size, type, and LDD of the evaluation database are the three factors that sig-

nificantly impact the performance of all the FR algorithms evaluated here. The

performance of the LDA-like algorithms deteriorates more rapidly than the PCA-

like ones as the LDD decreases, although it is generally believed that algorithms

based on LDA are superior in the FR tasks. This can be explained by the fact

that PCA is an unsupervised learning method without paying any attention to

the underlying class structure of the training set, so that compared to LDA, it is

less sensitive to different values of the two factors, L and |P|, defining the LDD.

Therefore, we can draw here a conclusion similar to the one in [78] to some extent,

that is, PCA may outperform LDA when the LDD value of the data set considered

for learning is very small or when the training data non-uniformly sample the un-

derlying distribution (see the example of Fig.3.3 in Section 3.3). However, through

the utilization of the hierarchical scheme, it can be seen from the experiments that

it is possible to consistently boost the performance of traditional LDA methods to

acceptable levels across a number of environmental scenarios.

2. The hierarchical scheme introduced here seems to be relatively robust to settings

of their design parameters, such as the number of clusters in which the LSFD is

partitioned. Although an optimal number of clusters can be determined empirically

or through the “leaving-one-out” strategy, performance is rather consistent for a

class of values. On the other hand, the clustering criterion has an impact on the

performance. The results summarized in Table 6.6 indicate that the separability-

based criterion should be preferred to the similarity-based one for FR tasks.

3. Considering the computational complexities required for the implementation of the

proposed HCF, it should be noted that it is comparable, if not less, to that of
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traditional FR methods. Training at the different MSCs can be done in parallel

reducing the overall processing time and memory space. The clustering procedure

and the projection process at the second stage do not introduce significant addi-

tional computational cost. To the best of the authors’ knowledge the partitioning

mechanism introduced in this work is the only one capable of providing this form

of parallel processing capability.

4. The proposed design is a scalable one. The designer controls the complexity of the

procedure by determining the number and form of the individual feature learners.

Depending on the problem specification and the computational constraints imposed

by the design the appropriate number of clusters can be selected. Furthermore, it is

possible to incorporate additional knowledge in the training process by augmenting

the cluster set rather than re-training all existing learners. The exploitation of

this important features, a direct result of the framework’s parallel structure, is

of paramount importance in practical implementations and it is currently under

investigation.

6.7 Summary

This chapter introduced a general framework to improve performance of traditional FR

methods when applied to LSFDs. The proposed framework utilizes a hierarchical classi-

fication scheme on top of traditional FR systems trained on database partitions obtained

using a novel separability-based clustering method. Through the hierarchical design the

problem of determining the appropriate distribution of the face patterns in a LSFD is

transformed into the problem of combining a collection of admissible solutions obtained

via traditional discriminant learning methods. This constitutes a problem of consider-

ably reduced complexity since prior experimentation and analysis indicate that linear

methods such as LDA or PCA provide cost effective solutions in smaller size databases.
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Although the hierarchical implementation reported here was based on the JD-LDA ap-

proach, other appearance-based FR methods such as ICA [5], PCA, or their variants can

be accommodated.

Experimentation with a set of FERET style large databases indicates that the pro-

posed framework may be able to improve the performance of traditional FR methods

in the case of LSFDs. It is anticipated that the performance enhancement obtained via

the utilization of the proposed scheme will be more evident when larger sized databases

are considered. Verification of the above claim, along with theoretical evaluation of the

performance is currently under consideration. Future research in this area will also focus

on the application of the proposed framework to content based indexing and retrieval

tasks, and audio/video classification in large-scale databases.



Chapter 7

Ensemble-based Discriminant

Learning with Boosting

7.1 Introduction

In this chapter, we continue the discussion of the approaches based on a mixture of locally

linear models (AMLLM), but from the viewpoint of machine learning. It can be seen from

previous presentations that most existing AMLLM-based FR methods, including the two

just introduced in last chapter, HCF-MSC and HCF-Kmean, are developed based on tra-

ditional cluster analysis. As a consequence, a disadvantage to pattern classification tasks

is that the sub-models’ division/combination criteria used in these clustering techniques

are not directly related to the classification error rate (CER) of the resulting classifiers,

especially the true CER, which is often referred to as the generalization error rate in the

machine-learning literature.

Recently, a machine-learning technique known as “boosting” has received consider-

able attention in the pattern recognition community, due to its usefulness in designing

AMLLM-based classifiers, also called “ensemble-based classifiers” in the machine-learning

literature [29,56,104]. The idea behind boosting is to sequentially employ a base classifier

96
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on a weighted version of the training sample set to generalize a set of classifiers of its

kind. Often the base classifier is also called the “learner”. These weights are updated at

each iteration through a classification-error-driven mechanism. Although any individual

classifier produced by the learner may only perform slightly better than random guessing,

the formed ensemble can provide a very accurate (strong) classifier. It has been shown,

both theoretically and experimentally, that boosting is particularly robust in preventing

overfitting and reducing the generalization error by increasing the so-called margins of

the training examples [13, 24, 104, 105]. The margin is defined as the minimal distance

of an example to the decision surface of classification [123]. For a classifier, a larger

expected margin of training data generally leads to a lower generalization error. How-

ever, the machine-learning community generally regards ensemble-based learning rules,

including boosting and bagging [12], not suited to a stable learner, for instance LDA

as shown in [13]. This reason is that the effectiveness of these rules depends to a great

extent on the learner’s “instability”, which means that small changes in the training set

could cause large changes in the resulting classifier. More recent simulation studies also

demonstrated that boosting is not an effective method to be used in conjunction with

the LDA-based learners [111].

In this chapter, we propose a new ensemble-based method to boost the performance

of the traditional LDA-based algorithms in complex FR tasks. The main novelty is the

introduction of the boosting technique, which is applied to address two issues central

to all the ensemble-based approaches: 1) the generalization of a set of simple linear

solutions, each of them targeting a particular sub-problem; 2) the formation of a globally

strong solution through the aggregation of the multiple, relatively weak, local solutions.

In this work, the JD-LDA method is again chosen as the learner due to its robustness

against the SSS problem. However, the utilization of boosting with a strong learner

such as JD-LDA contradicts the popular belief in the machine learning literature. To

break this limitation, a novel weakness analysis theory is developed here. The theory
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attempts to boost a strong learner by increasing the diversity between the classifiers

created by the learner, at the expense of decreasing their margins, so as to achieve a

trad-off suggested by recent boosting studies [91] for a low generalization error. To this

end, the so-called “Learning Difficulty Degree” (LDD), originally introduced in Section

6.6.4, is utilized in the theory to control and regulate the trade-off between the margins

and the diversity of the classifiers produced during the boost process. Correspondingly,

a novel loss function with respect to the LDD is proposed to quantitatively estimate the

generalization power of the formed ensemble classifier. In addition, a new variable called

“pairwise class discriminant distribution” (PCDD) is introduced to build an effective

interaction mechanism between the booster and the learner. The PCDD is designed

specifically for the LDA-based learner, so that the learner can be always manipulated to

conquer current most hard-to-separate pairs (HTSP) of classes in each boosting iteration.

In this way, the final result obtained by the boosting process is an ensemble of multiple

relatively weak but very specific LDA solutions. The ensemble-based solution is able to

take advantage of both boosting and LDA. It is shown by the FR experiments to greatly

outperform any single solution created by the JD-LDA learner in various difficult learning

scenarios, which include the cases with different SSS settings and the case with increased

nonlinear variations.

The rest of this chapter is organized as follows. In Section 7.2, we design a learner

based on the JD-LDA algorithm following the requirement of the boosting technique. In

Section 7.3, we briefly review the classic AdaBoost method, and its multi-class extensions.

Then, in Section 7.4, the theory and algorithm of how to boost a strong learner such as

LDA are introduced and described in detail. Section 7.5 reports on a set of experiments

conducted on the FERET database to demonstrate the effectiveness of the proposed

methodologies. In addition, an experiment of comparing all the six discriminant learning

algorithms developed in the thesis is introduced in Section 7.5.5. Finally, Section 7.6

summarizes conclusions and provides directions for future research.
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7.2 A Strong Learner: JD-LDA

From the viewpoint of machine learning, the task of learning from examples can be

formulated in the following way: Given a training set, Z = {Zi}C
i=1, containing C classes

with each class Zi = {(zij, yij)}Ci

j=1 consisting of a number of face images zij ∈ R
J and

their class labels yij, a total of N =
∑C

i=1 Ci face images are available in the set. The

class label of the example zij is yij = i, which is in the label set Y = {1, · · · , C}. Taking

as input such a set Z, the objective of learning is to estimate a function or classifier

h(z) : R
J → Y, such that h will correctly classify unseen examples (z, y).

Under the boosting framework, the learner works like a classifier generator, which

iteratively creates classifiers of its kind, ht, but each one with a different focus on ac-

counting for the patterns under learning. In this work, the JD-LDA method [74] is chosen

as the learner due to its cost-effective solution to the SSS problem. However, as we know

from previous chapters, JD-LDA mainly functions as a feature extractor, which outputs

an M -dimensional feature space spanned by Ψ, where any face image z is represented as

y = ΨTz, y ∈ R
M with enhanced discriminant power. To act as a learner, a subsequent

classifier is needed. In theory, the classification in the feature space can be performed by

using any classifier. However, from the viewpoint of reducing the overfitting chances in

the context of boosting, a simple discriminant function that explains most of the data is

preferable to a complex one. Consequently, a classic nearest center classifier (NCC) is

adopted here for the classification task. Thus the so-called JD-LDA learner is a complete

FR system consisting of a feature extractor followed by a classifier. For simplicity in the

following presentations, we denote the feature extraction part of the JD-LDA learner in

the form of a function L(·), which has (Ψ, {z̄i}C
i=1) = L(Z), where z̄i = 1

Ci

∑Ci

j=1 zij is the

known center of the class i. For completeness, the detailed pseudo code implementation

of the JD-LDA feature extractor embedded in the boosting process is depicted in Fig.7.1.

The NCC adopted here is based on a normalized Euclidean distance, which is equiv-

alent to the linear form of a generalized membership function defined in [96]. The nor-
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Input: A training set Zt with C classes: Zt = {Zi,t}C
i=1, each class containing

Zi,t = {zij}Ci

j=1 face images, zij ∈ R
J ; the regularization parameter η.

Output: A M -dimensional LDA subspace spanned by Ψt, a M × J matrix with

M � J , and the class centers {z̄i,t}C
i=1.

Algorithm:

Step 1. Re-write Ŝb,t of Eq.7.12: Ŝb,t = WbW
T
b , where Wb = [φ1, · · · , φc].

Step 2. Find the eigenvectors of WT
b Wb with non-zero eigenvalues, and

denote them as Em = [e1, . . . , em], m ≤ C − 1.

Step 3. Calculate the first m most significant eigenvectors (V) of Ŝb,t and their

corresponding eigenvalues (Λb) by V = WbEm and Λb = VT Ŝb,tV.

Step 4. Let U = VΛ
−1/2
b . Find eigenvectors of UT (Ŝb,t + η · Ŝw,t)U, P, where

Ŝw,t is defined in Eq.7.14.

Step 5. Choose the M(≤ m) eigenvectors in P with the smallest eigenvalues.

Let PM and Λw be the chosen eigenvectors and their corresponding

eigenvalues respectively.

Step 6. Return Ψt = UPMΛ
−1/2
w and {z̄i,t}C

i=1.

Figure 7.1: The pseudo code implementation of the JD-LDA feature extractor: L(Zt)

in the t-th boosting iteration, where the input Zt = Rt, and Rt ⊂ Z is an adaptively

updated subset defined in Section 7.4.2.

malized Euclidean distance can be expressed as

d(z, i,L) = (dmax − dz,i)/(dmax − dmin) (7.1)

where dz,i =
∥∥ΨT (z − z̄i)

∥∥, dmax = max({dz,i}C
i=1), and dmin = min({dz,i}C

i=1). Based on

the NCC rule, the class label y(z) of an input example z can be inferred through

y(z) = arg max
i

d(z, i,L). (7.2)
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The classification score d(z, i,L) has values in [0, 1], and thus it can fulfill the functional

requirement of the boosting algorithm (AdaBoost.M2 [29]), indicating a “degree of plau-

sibility” for labeling z as the class i. Since a classifier h such as the NCC discussed here

usually yields two outputs, the classification score d(z, i,L) and the class label y(z), we

denote

h(z) = y(z), (7.3)

and

h(z, i) = d(z, i,L) (7.4)

for the distinguishing purposes.

7.3 AdaBoost and Its Multi-class Extensions

Since the boosting method proposed here is developed from AdaBoost [29]. We begin

with a brief review of the algorithm and its multi-class extensions.

To find a strong (accurate) classifier h(z) : R
J → Y, AdaBoost works by applying

a given weak learner to a weighted version of the training set repeatedly in a series of

rounds t = 1, · · · , T , and then linearly combines these classifiers ht produced by the

learner into a single composite classifier hf . On each round t, the weights, also called

“sample distribution” over Z, denoted Dt(zij), are updated through an error-driven

mechanism. The weights of incorrectly classified examples are increased by

Dt+1(zij) = Dt(zij) ·
√

(1 − εt)/εt (7.5)

where εt =
∑

i,j:ht(zij) �=yij

Dt(zij) is the training error of ht. In this way, during the next

round the learner is forced to focus on the hard-to-classify examples. The pseudo code

implementation of solving a general two-class problem using the AdaBoost algorithm is

depicted in Fig.7.2.
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Input: A set of N training samples, (x1, y1), · · · , (xN , yN), where xi ∈ R
J and

yi ∈ Y = {−1, +1} for two classes.

Initialize sample distribution D1(xi) = 1
N

.

Do for t = 1, · · · , T :

1. Train weak learner using the sample distribution Dt.

2. Get weak classifier ht : R
J → Y with training error: εt =

∑
i:ht(xi) �=yi

Dt(xi).

3. Choose αt = 1
2
ln
(

1−εt

εt

)
.

4. Update: Dt+1(xi) = Dt(xi) ×




e−αt if ht(xi) = yi

eαt if ht(xi) �= yi

5. Normalize Dt+1 so that it will be a distribution, Dt+1(xi) ← Dt+1(xi)∑N
i=1 Dt+1(xi)

.

Output the final composite classifier,

hf (x) = sign

(
T∑

t=1

αtht(x)

)
.

Figure 7.2: The AdaBoost algorithm.

One of the most interesting features of AdaBoost is its ability to reduce the potential

of overfitting and the generalization error, even as T becomes large. Schapire et al. [105]

show that the following upper bound on the generalization error Perr

Perr ≤ PZ(�hf
(z, y) ≤ θ) + O



√

κ log2(NC/κ)

Nθ2
− log(δ)

N


 (7.6)

holds with probability at least 1 − δ for all θ > 0, where 0 < δ < 1, κ is the Vapnik-

Chervonenkis (VC)-dimension of the function space or class that the weak learner belongs

to, �hf
(z, y) denotes the margin of example (z, y) classified by the final classifier hf , and

PZ(�hf
(z, y) ≤ θ) is the so-called “cumulative margin distribution” (CMD). The VC di-

mension κ is used to capture the complexity of a function class [123,124]. Roughly speak-

ing, the VC dimension measures how many (training) points can be shattered (i.e. sepa-

rated) for all possible labellings using functions of the class. The CMD, PZ(�hf
(z, y) ≤ θ),
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represents the fraction of the training examples with margin �hf
(z, y) ≤ θ. Following the

definition given in [105], �hf
(z, y) is the quantity

�hf
(z, y) = hf (z, y) − max{hf (z, k) : k ∈ Y, k �= y} (7.7)

where hf (z, k) is the classification score produced when z is identified as the class k. The

example (z, y) is misclassified by hf if and only if �hf
(z, y) < 0. The upper bound of

Eq.7.6 with respect to the margin links Adaboost with Vapnik’s maximal margin classifier

theory [123], and helps to understand why often the generalization error of AdaBoost

continues to decrease even after the training data has been fitted perfectly [105].

AdaBoost is originally developed to support binary classification tasks. Its multi-class

extensions include two variants, AdaBoost.M1 and AdaBoost.M2 [29]. AdaBoost.M1 is

the most straightforward generalization. However, the algorithm has to be halted if the

training CER of the weak classifier ht produced in any iterative step is ≥ 50%. For the

multi-class problems, this means that these weak classifiers ht need to be much stronger

than random guessing, whose expected error is (1 − 1/C) with C being the number of

classes. The requirement is quite strong and may often be hard to meet. For example, our

experimental analysis indicates that the limitation often stops the algorithm too early,

resulting in insufficient classification capabilities [104,105]. To avoid the problem, rather

than the ordinary CER εt, AdaBoost.M2 targets minimization of a more sophisticated

error measure called “pseudo-loss”, ε̂t, which has the following expression,

ε̂t =
1

2

∑
(zij ,y)∈B

Υt(zij, y) (1 − ht(zij, yij) + ht(zij, y)) (7.8)

where Υt(zij, y) is the so-called “mislabel distribution” defined over the set of all misla-

bels:

B = {(zij, y) : zij ∈ Z, zij ∈ R
J , y ∈ Y, y �= yij}. (7.9)

Let βt = ε̂t/(1 − ε̂t), the mislabel distribution is updated through,

Υt+1(zij, y) = Υt(zij, y) · β(1+ht(zij ,yij)−ht(zij ,y))/2
t (7.10)
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With the pseudo-loss ε̂t, the boosting process can continue as long as the classifier

produced has pseudo-loss slightly better than random guessing. Also, the introduction

of the mislabel distribution enhances the communication between the learner and the

booster, so that AdaBoost.M2 can focus the learner not only on hard-to-classify examples,

but more specifically, on the incorrect labels [29]. Based on these reasons, we develop the

ensemble-based discriminant algorithm proposed in the next section under the framework

of AdaBoost.M2.

In this work, we choose the LDA variant, JD-LDA, as the learner. Compared to

traditional learners used in the boosting algorithms, the LDA-based learner should be

emphasized again at the following two points. (1) The utilization of JD-LDA obviously

contradicts the common belief of weak learners in the boosting literature, given the fact

that JD-LDA has been shown to be a rather strong and particularly stable learner in FR

tasks [74, 75]. (2) The JD-LDA learner is composed of a LDA-based feature extractor

and a nearest center classifier. However, it can be seen in Section 7.2 that the learning

focus of JD-LDA is not on the classifier but on the feature extractor. It is rather different

at this point from earlier boosting designs where the weak learners are used only as pure

classifiers without concerning feature extraction. Therefore, accommodating a learner

such as JD-LDA requires a more general boosting framework, which should be able to

break the limitation of weak learners. To highlight these significant difference, we call

“gClassifier” the more general classifier created by the JD-LDA learner in the rest of the

chapter.

7.4 Boosting A Strong Learner: JD-LDA

7.4.1 Interaction between the LDA learner and the booster

To boost a learner, we first have to build a strong connection between the learner and

the boosting framework. In AdaBoost, this is implemented by manipulating the so-called
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“sample distribution”, which is a measure of how hard to classify an example. However,

we need a more specific connecting variable in this work, given the fact that the nature

of LDA is a feature extractor, whose objective is to find a linear mapping to enhance

the separability of different subjects under learning. For this purpose, a new distribution

called “pairwise class discriminant distribution” (PCDD), Apq, is introduced here. The

PCDD is developed from the mislabel distribution Υt of AdaBoost.M2. Defined on any

one pair of classes {(p, q) : p, q ∈ Y}, the PCDD can be computed at the t-th iteration

as:

At(p, q) =

{ 1
2

(
Cp∑
j=1

Υt(zpj, q) +
Cq∑
j=1

Υt(zqj, p)

)
, if p �= q

0, otherwise
(7.11)

where Cp and Cq are the element number in classes Zp and Zq respectively. As it is known

from the AdaBoost.M2 development, the mislabel distribution Υt(zij, y) indicates the ex-

tent of difficulty in distinguishing the example zij from the incorrect label y based on the

feedback information from the preceding (t− 1) gClassifiers. Thus, At(p, q) can be intu-

itively considered as a measure of how important it is to discriminate between the classes

p and q when designing the current gClassifier ht. Obviously, a larger value of At(p, q)

implies worse separability between the two classes. It is therefore reasonable to drive a

LDA-based learner such as JD-LDA through At(p, q), so that it is focused specifically

on the hard-to-separate pairs (HTSP) of classes. To this end, rather than the ordinary

definition of the between-class scatter matrix Sb(= (1/N)
∑C

i=1 Ci(z̄i − z̄)(z̄i − z̄)T where

z̄ = 1
N

∑C
i=1

∑Ci

j=1 zij is the average of the ensemble), we introduce a variant of Sb, which

can be expressed as:

Ŝb,t =
C∑

p=1

φpφ
T
p (7.12)

where

φp = (Cp/N)1/2

C∑
q=1

A
1/2
t (p, q)(z̄p − z̄q). (7.13)

It should be noted at this point that the variant Ŝb,t weighted by At embodies the design

principle behind the so-called “fractional-step” LDA presented in [70] (see also Section



Chapter 7. Ensemble-based Discriminant Learning with Boosting 106

3.4.2). According to this principle, object classes that are difficult to be separated in

the low-dimensional output spaces (Ψ1, · · · , Ψt−1) generalized in previous rounds can

potentially result in mis-classification. Thus, they should be paid more attention by

being more heavily weighted in the high-dimensional input space of the current (t-th)

round, so that their separability is enhanced in the resulting feature space Ψt. It can be

easily seen that the variant Ŝb,t reduces to Sb when At(p, q) is equal to a constant.

Similarly, the weighted version of the within-class scatter matrix Sw can be given as

follows,

Ŝw,t = N ·
C∑

i=1

Ci∑
j=1

D̂t(zij)(zij − z̄i)(zij − z̄i)
T (7.14)

where

D̂t(zij) =
∑
y �=yij

Υt(zij, y) (7.15)

is defined over Z as the sample distribution, similar to the Dt(zij) given in AdaBoost.

Since D̂t(zij) is derived indirectly from the pseudo-loss (ε̂) through Υt, we call D̂t(zij)

a “pseudo sample distribution” for the purpose of distinguishing it from Dt(zij). It is

not difficult to see that a larger value of D̂t(zij) implies a harder-to-classify example for

those preceding gClassifiers.

Often the upper bound of Eq.7.6, which is only concerned with maximizing the mar-

gin, is found to be too loose in practical applications [91, 105]. Recently, Murua [91]

proposed an improved bound with respect to the margin and the dependence between

the classifiers involved in the linear combination. The theory behind Murua’s bound

reveals that, to achieve a low generalization error, the boosting procedure should not

only create classifiers with large expected margins, but also keep their dependence low

or weak. Obviously, classifiers trained with more overlapping examples will result in

stronger dependence between them. A way to avoid building similar gClassifiers repeat-

edly is to artificially introduce some randomness in the construction of the training data.
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To this end, we can introduce a modified PCDD, given by

Ât(p, q) =

{ 1
2

( ∑
j:gt(zpj)=q

D̂t(zpj) +
∑

j:gt(zqj)=p

D̂t(zqj)

)
, if p �= q

0, otherwise
(7.16)

where gt(z) = arg max
y∈Y

ht(z, y). As a result of using Ât(p, q) instead of Eq.7.11, it can

be seen that only those subject sets Zi that include the mislabeled examples by the

last gClassifier ht−1 are contributing to the construction of the current gClassifier ht

(through Ŝb,t). Thus, by manipulating Ât(p, q), we can reduce the overlapping extent

of training examples used to build different gClassifiers, and thereby reach the goal of

weakening the dependence among these gClassifiers. Also, this has the effect of forcing

every gClassifier to focus only on the HTSP classes indicated by its preceding gClassifier,

resulting in a more diverse committee of gClassifiers to be generalized in the end. On

the other hand, the classification ability of the individual gClassifier ht is to some extent

weakened due to less training examples being involved. This weakening may result in

decrease in the examples’ margins as will be shown in the experimental section 7.5.4.

However, it should be noted at this point that there appears to be a trade-off between

weak dependence and large expected margins to achieve a low generalization error as

suggested by Murua’s bound [91]. Experimentation to be reported later indicates that

in many cases, the utilization of Ât(p, q) may yield a better balance than that obtained

by At(p, q), improving the classification performance.

Based on the introduction of At(p, q), Ât(p, q), D̂t(zij), Ŝb,t and Ŝw,t, we can now

give a new boosting algorithm, as depicted in Fig.7.3, from which it can be seen that

the JD-LDA learner at every iteration is tuned to conquer a particular sub-problem

generalized by the feedback Υt in a manner similar to “automatic gain control”. As an

effect, every produced solution (gClassifier) can offer complementary information about

the patterns to be classified. The final solution can be considered as a mixture of T

JD-LDA based recognizers obtained by linearly weighted combination. Either At(p, q)

or Ât(p, q) can be used during the boosting process. In the remainder of the chapter, we
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Input: A set of training images Z = {(zij, yij)
Ci
j=1}C

i=1 with labels yij = i ∈ Y, where

Y = {1, · · · , C}; the chosen weak learner, JD-LDA; and the iteration number, T .

Let B = {(zij, y) : zij ∈ Z, zij ∈ R
J , y ∈ Y, y �= yij}.

Initialize Υ1(zij, y) = 1
|B| = 1

N(C−1)
, the mislabel distribution over B.

( For simplicity, we denote the JD-LDA feature extractor as a function L(·), which

has (Ψt, {z̄i,t}C
i=1) = L(Rt, D̂t, At). )

Do for t = 1, · · · , T :

1. Update the pseudo sample distribution: D̂t(Υt), and the PCDD: At with Eq.7.11.

2. If t = 1 then randomly choose r samples per class to form a learning set R1 ⊂ Z.

else choose r hardest samples per class based on D̂t to form Rt ⊂ Z.

3. Train a JD-LDA feature extractor with L(Rt, D̂t, At) to obtain (Ψt, {z̄i,t}C
i=1).

4. Build a gClassifier ht = d(Ψt, {z̄i,t}C
i=1) with Eq.7.1, apply it into the entire

training set Z, and get back corresponding hypotheses, ht : R
J × Y → [0, 1].

5. Calculate the pseudo-loss produced by ht:

ε̂t = 1
2

∑
(zij ,y)∈B

Υt(zij, y) (1 − ht(zij, yij) + ht(zij, y)).

6. Set βt = ε̂t/(1 − ε̂t). If βt = 0, then set T = t − 1 and abort loop.

7. Update the mislabel distribution Υt:

Υt+1(zij, y) = Υt(zij, y) · β(1+ht(zij ,yij)−ht(zij ,y))/2
t .

8. Normalize Υt+1 so that it is a distribution,

Υt+1(zij, y) ← Υt+1(zij ,y)∑
(zij ,y)∈B Υt+1(zij ,y)

.

Output the final composite gClassifier,

hf (z) = arg max
y∈Y

T∑
t=1

(
log 1

βt

)
ht(z, y).

Note: the above pseudo code is for B-JD-LDA.A, simply replacing all At with Ât

to obtain B-JD-LDA.Â.

Figure 7.3: The Algorithm of Boosting JD-LDA (B-JD-LDA).
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call “B-JD-LDA.A” the algorithm utilizing At(p, q), while “B-JD-LDA.Â” indicates the

one employing Ât(p, q).

7.4.2 A Cross-validation Mechanism to Weaken the Learner

As we mentioned earlier, JD-LDA itself has been a rather strong and stable learner in

terms of classification ability. As a consequence, two problems are often encountered: (1)

the gClassifiers created exhibit a high similarity or mutual dependence, given the same

training data; (2) the pseudo-loss ε̂t = 0 is often obtained halting the boosting process too

early. To solve the problems, we have to artificially weaken the gClassifiers and increase

their diversity accordingly. Generally speaking, the learning capacity of any LDA-like

algorithm is directly proportional to the number of training examples per subject, L, and

reciprocally proportional to the number of the subjects, C. To take advantage of the two

factors, we can utilize the so-called Learning Difficulty Degree (LDD): ρ = L
C

, originally

introduced in Section 6.6.4. With the LDD, it can be seen from previous experiments

(Section 6.6) that we can roughly estimate the degree of difficulty for the discriminant

learning task on hand. It should be noted that the average L = 1
C

∑C
i=1 Ci is considered

as subjects are allowed to have different number of training examples, Ci. Obviously, a

smaller ρ value implies a more difficult learning task. In other words, if a learner is trained

with different sample sets, the classification strength of the obtained gClassifiers will be

different: a sample set with a smaller ρ value leads to a weaker gClassifier. Thus, from

the training data point of view, the LDD provides a qualitative measure of the weakness

of the gClassifiers created by the same learner. For the purpose of distinguishing the two

meanings, we denote the LDD as ρt when it is used to express the difficulty degree of a

learning task (see e.g. Section 6.6.4), while ρl denotes the weakness of a gClassifier.

Based on the above analysis, we can introduce into the proposed B-JD-LDA frame-

work the cross-validation mechanism depicted in Fig.7.4. With the mechanism in place,

only a subset of the entire training set Z, Rt ⊂ Z, is used to train the JD-LDA learner.



Chapter 7. Ensemble-based Discriminant Learning with Boosting 110

Figure 7.4: The flow chart of the cross-validation mechanism embedded in B-JD-LDA

to weaken the JD-LDA learner. The flow chart is based on one iteration, and the NCC

denotes the nearest center classifier.

The subset Rt is formed in each iteration by choosing the r ≤ L hardest to classify ex-

amples per class based on current values of D̂t(zij). Please note that |Rt| = C · r, where

|Rt| denotes the size of Rt. In the sequence, the obtained JD-LDA feature extractor

(Ψt, {z̄i,t}C
i=1) = L(Rt, D̂t, At or Ât) are used to build a gClassifier, ht = h(Ψt, {z̄i,t}C

i=1),

based on the nearest center rule. The gClassifier is applied to the entire training set Z

including those unseen, to the learner, examples (Z −Rt). All the variables defined on

Z such as ε̂t, Υt+1, D̂t, and At/Ât are then reported and used in the next iteration. The

detailed implementation steps of the mechanism have been embedded in Fig.7.3.

It can be seen that under the proposed cross-validation strategy, the LDD (ρt) value

of the sample set used to train the JD-LDA learner decreases to r
C

from L
C

(note: r ≤ L)

in each iteration. Following the weakness analysis described above, this equivalently

weakens the gClassifiers produced by the learner. At the same time, since each iteration

feeds the learner a different subset of the entire training set, this essentially increases the



Chapter 7. Ensemble-based Discriminant Learning with Boosting 111

diversity among these gClassifiers. Also, it should be added at this point that one of side-

effects of using only r examples per subject during the construction of each gClassifier

is obtaining a better estimate of the pseudo-loss ε̂t. This is achieved by using what Leo

Breiman calls the “out-of-bag” samples (those samples not used during the training of

the classifier) to estimate the error rate [11]. Hence finding the optimal r also provides a

balance between good classifier performance and an improved estimate of the CER.

7.4.3 Estimation of Appropriate Weakness

The cross-validation mechanism introduced above greatly enhances the strength of the

proposed boosting algorithm, but also raises the problem of model selection, that is, the

determination of the optimal ρl(r)(=r/C). As we know from the analysis in last section,

a smaller/larger ρl value will equivalently lead to a weaker/stronger gClassifier, given

the same learner. However, boosting may fail when either too weak (e.g. r = 2) or

too strong (e.g. r = L) classifiers are constructed for combination [104]. Consequently,

we can conjecture that a gClassifier produced with appropriate weakness should have

a ρl value in between 2
C

and L
C

. Intuitively it is reasonable to further assume that a

stronger gClassifier should lead to a lower empirical CER, while a learner, trained on a

smaller fraction of the training set (i.e. a smaller size Rt), should generalize a weaker

but more diverse committee of gClassifiers with each one having a more honest estimate

of misclassification. Thus, a sort of loss function with respect to r that balances the two

factors can be used to drive the model selection process. To this end, the proposed here

function is defined as follows,

R(r) =

(
1

T

T∑
t=1

∑
i,j

Pr[ht,r(zij) �= yij]

)
+ λ ·

√
ρl(r)

ρl(L)
(7.17)

where
∑
i,j

Pr[ht,r(zij) �= yij] is the empirical CER obtained by applying the gClassifier

ht constructed by L(Rt,r) to the training set Z, ρl(r) = r
C

, ρl(L) = L
C

, and λ is a

regularization parameter that controls the trade-off between the classification strength
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and the diversity of the gClassifiers. It can be seen that the trade-off embodied in

Eq.7.17 implements the design principles described earlier in the sense that in order to

compensate for high empirical error, the gClassifiers should have low mutual dependence,

and vice versa. The square root introduced in the last (penalty) term of Eq.7.17 embodies

the traditional relationship between the empirical error and the number of the training

samples as they appear in a loss function (see e.g. Eq.7.6) for the purpose of pattern

classification [54, 76]. With the introduction of the loss, the task of finding gClassifiers

with the appropriate weakness or the optimal ρl(r) value can be translated to minimizing

R(r) with respect to r. As will be seen in the experiments reported here, the estimation

results through R(r) look rather accurate across various settings of the parameters (r, L).

In this work, the weakness analysis theory, including the cross-validation mechanism

of weakening a strong learner and the subsequent estimation method of appropriate

weakness, is developed for the JD-LDA learner. However, it can be seen from the above

presentations that both the two methods are dependent only on the training set, where

each subject is required to have at least two examples. As a result, a traditional boosting

framework enhanced with the weakness analysis theory is applicable to work with any

general (weak/strong) learners. This exhibits a considerably promising approach to break

the traditional limitation of the weak learners in the boosting literature.

7.4.4 Determination of Convergence

Besides the weakness extent of the individual gClassifier, the iteration number T , i.e.

the number of the gClassifiers considered in the mixture, significantly influences the

performance of the final composite gClassifier hf . As it was mentioned earlier, since

boosting is particularly effective in increasing the fraction of training examples with

large margin, the generalization error of hf often continues to drop as T becomes large

even long after the training error reaches zero [105]. However, the phenomenon also leads

to the difficulty in determining when the boosting procedure should be stopped in order
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to avoid possible overfitting.

Considering the relationship between boosting and the margin theory, intuitively, it

is reasonable to use the cumulative margin distribution of the training examples as an

indicator to roughly estimate an appropriate value of T . In other words, we can observe

the changes of the margins of the training examples at every boosting iteration, and

consider it convergent when the margins of most training examples stop increasing or

are increasing slowly. However, the upper bound of Eq.7.6 on which the margin theory

of boosting was built has been shown to be quite coarse in many practical applications.

It is therefore unrealistic to expect that the heuristic approach can accurately estimate

the optimal value of T . It should be noted at this point that the determination of the

optimal T value is still an open research problem for the machine learning community,

the solution of which is beyond the scope of this chapter.

7.5 Experimental Results

7.5.1 The FR Evaluation Design

To show the high complexity of the face pattern distribution, in the experiments we use

the two evaluation databases, G1 and G2 (see Section 2.3.2 for details), taken from the

FERET database [93,94]. In the database G1, each subject has at least ten images so that

we can generalize a set of learning tasks with wide LDD (ρt(L)) values, ranging from 3
C

to 7
C

, to study the corresponding performance changes of the boosting algorithms. The

other database, G2 ⊃ G1 consisting of more subjects but with less images per subject,

is utilized to test the learning capacity of the algorithms as the size of the evaluation

database becomes larger. The details of the images included in G1 and G2 are depicted

in Table 2.1. For computational purposes, each image is again represented as a column

vector of length J = 17154 prior to the recognition stage.

Following the FR evaluation design in Section 2.3.3, the database G(= G1 or G2) is
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randomly partitioned into two subsets: the training set Z and test set Q. The training

set is composed of |Z| = L ·C images: L images per subject are randomly chosen, where

|Z| denotes the size of Z. The remaining images are used to form the test set Q = G−Z.

Any FR method evaluated here is first trained with Z, and the resulting face recognizer

is then applied to Q to obtain a CER. To enhance the accuracy of the assessment, all the

CERs reported later are averaged over five runs. Each run is executed on such a random

partition of the database G into Z and Q.

7.5.2 The Boosting Performance in Terms of CER

In general, both the LDD ρ and the size of the evaluation dataset |G| significantly in-

fluence the CER characteristics of any learning-based FR method. In order to study

the overall boosting performance, two experiments corresponding to the two issues re-

spectively are designed and reported here. Besides the two proposed boosting schemes,

B-JD-LDA.A and B-JD-LDA.Â, the stand-alone JD-LDA FR method (without boosting,

hereafter S-JD-LDA) was performed to measure the improvement brought by boosting.

Meanwhile, two FR algorithms, the Eigenfaces method [120] and the Bayes matching

method [86], were also implemented to provide performance baselines. The Bayes method

is the top performer in the 1996/1997 FERET competitions [94]. Considering the high

computational complexity to optimize the regularization parameter, η, we use again in

this work, JD-LDA.1, the cost-effective special case of JD-LDA with η being set to 1,

recommended in Section 4.5.2. To be fair, the nearest center rule is used for classification

in all of these methods compared here.

The first experiment conducted on G1 is designed to test the sensitivity of the CER

measure to ρt(L) (i.e. various SSS learning tasks arising from different database parti-

tions) and ρl(r) (i.e. various weakness extents of gClassifiers in each task). For all the

five methods compared here, the CER is a function of the number of extracted feature

vectors, M , and the number of available training examples per subject, L. In addition,
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Table 7.1: Comparisons of the lowest CERs (%) as a function of (ρt(L), ρl(r)) obtained

on the database G1.

ρt(L) = ρl(r) = B-JD-LDA.A B-JD-LDA.Â S-JD-LDA Eigenfaces Bayes

L/C r/C ē15(T̄
∗) ē15(T̄

∗) ē∗(M∗) ē∗(M∗) ē∗(M∗)

3/49 2/49 15.73(35) 17.47(22) 20.09(39) 32.33(120) 21.61(88)

4/49 2/49 9.71(38) 9.80(51) 13.17(35) 29.22(124) 13.02(137)

3/49 7.95(29) 10.59(15)

2/49 8.37(51) 9.31(54)

5/49 3/49 6.54(30) 5.76(29) 11.69(35) 30.03(159) 9.97(179)

4/49 7.20(36) 6.87(21)

2/49 6.73(42) 7.24(47)

6/49 3/49 4.49(42) 3.97(44) 9.04(32) 25.13(140) 6.28(206)

4/49 4.42(32) 3.97(16)

5/49 5.19(39) 5.38(10)

2/49 6.54(53) 6.92(54)

3/49 4.26(35) 3.80(42)

7/49 4/49 3.73(34) 3.19(16) 7.38(28) 24.94(137) 5.02(235)

5/49 3.88(41) 3.73(23)

6/49 4.87(40) 4.71(11)

B-JD-LDA’s performance is affected by r, the number of examples per subject that is

used to control the weakness of the produced gClassifiers during the boosting process.

Considering the huge computational cost, we simply fixed the feature number M = 15

(the value was chosen based on the trade-off between the computational cost and the

CER) for B-JD-LDA rather than seek the optimal M∗, which yields the lowest CER.

The maximal iteration number used in boosting was set as T = 60, beyond which it
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Table 7.2: The best CER Performance improvement achieved by B-JD-LDA in the tasks

ρt = 3/49, · · · , 7/49.

Method ρt(L) 3/49 4/49 5/49 6/49 7/49

B-JD-LDA.A ξ̄∗/r∗ -4.36/2 -5.22/3 -5.15/3 -4.62/4 -3.65/4

B-JD-LDA.Â ξ̄∗/r∗ -2.61/2 -3.37/2 -5.93/3 -5.06/3,4 -4.18/4

was empirically observed that boosting is very likely to overfit. The lowest CERs finally

obtained by the five methods under various settings of ρt(L) and ρl(r) are depicted in

Table 7.1, where ē15(T̄
∗) denotes the CER of B-JD-LDA with M = 15 and the best found

iteration number T̄ ∗, while ē∗(M̄∗) denotes the CER of the three non-boosting methods

with the best found feature number M̄∗. All these variables have been averaged over five

runs as we mentioned earlier. To further facilitate the comparison of boosting perfor-

mance, we define a quantitative statistic regarding the best found CER improvement of

B-JD-LDA against S-JD-LDA, denoted as

ξ̄∗(L) = ē
{b}
15 (r∗, T̄ ∗, L) − ē∗{s}(M̄∗, L) (7.18)

where (·){b} and (·){s} mean B-JD-LDA and S-JD-LDA respectively, and r∗ is the value:

r∗ = arg min
r

{ē{b}15 (r, L)}. The results are summarized in Tables 7.2, from which it can

be clearly seen that both of B-JD-LDA.A and B-JD-LDA.Â with appropriate r values

have greatly boosted the performance of S-JD-LDA across various SSS learning scenarios

ranging from ρt = 3/49 to ρt = 7/49. The biggest improvement, ξ̄∗ = −5.93%, is achieved

by B-JD-LDA.Â when ρt = 5/49 and r∗ = 3.

The second experiment conducted on G2 is designed to test the performance changes

as size of the evaluation dataset increases. Due to the computational demand, all the five

methods are performed only in a representative partition case, i.e. L = 5, which leads

to a SSS learning task with ρt = 5/120. Correspondingly, the lowest CERs obtained

by the five methods are shown in Table 7.3. It can be seen from these results that the
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Table 7.3: Comparisons of the lowest CERs (%) as a function of ρl(r) obtained on the

database G2.

ρl(r) = B-JD-LDA.A B-JD-LDA.Â S-JD-LDA Eigenfaces Bayes

r/C ē15(T̄
∗) ē15(T̄

∗) ē∗(M∗) ē∗(M∗) ē∗(M∗)

3/120 6.98(48) 9.32(51) 15.14(87) 30.71(258) 9.51(336)

4/120 7.13(52) 6.36(36)

a bigger boosting performance is reached by the B-JD-LDA approach than in the first

experiment. The quantitative statistic ξ̄∗ goes up to 8.15% and 8.78% for B-JD-LDA.A

and B-JD-LDA.Â respectively. The reason is not difficult to be seen. As the size of

the database increases so that more pattern variations are introduced, the non convex

extent of the face distribution grows rapidly [9]. As a result, only a single linear feature

representation generalized by S-JD-LDA appears too weak to account for the increased

variations. In contrast with the deterioration of S-JD-LDA, the B-JD-LDA approach

indicates a stable performance given a similar learning task in the two experiments. This

should be attributed to the ensemble-based design of the approach.

In both of the two experiments, Eigenfaces1 is the worst performer among the five

methods. From the results delivered by the most popular benchmark method, we can

roughly learn how difficult it is to conduct face recognition on the two evaluation datasets,

G1 and G2. Also, it is of interest to compare the performance of B-JD-LDA with that

of the Bayes method. Researches have shown that the latter generally outperforms, in

terms of CER, most subspace-based FR approaches including those using traditional

LDA, kernel PCA or ICA techniques by a margin of at least 10 percent [85]. However, it

1The performance of Eigenfaces in Table 7.1 differs from that in Table 4.2, due to two reasons: (1)
The classification here is based on the nearest center rule instead of the nearest neighbor rule used in
the experiment depicted in Table 4.2; (2) It should be noted that each of database partitions is done
randomly.
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can be seen from Table 7.1, 7.3 that both the two B-JD-LDA methods are overall superior

to the Bayes method. Especially, B-JD-LDA.Â leads the state-of-the-art method up to

5.88% in the task with the worst SSS setting (ρt(L) = 3/49). This further shows that

it is possible to boost a traditional FR algorithm to the state-of-the-art level under the

proposed framework. Finally, it should be mentioned again at this point that unlike the

four non-boosting methods, we did not seek the CERs with the optimal M∗ values for

the B-JD-LDA approach. Obviously the ē15, as a substitute for ēM∗ , is only sub-optimal.

We expect that a higher boosting performance gain can be obtained when a better M

value is found.

7.5.3 Weakness Analysis of the gClassifiers

As it was mentioned earlier, B-JD-LDA would fail, in theory, to perform well when too

weak or too strong gClassifiers are utilized. Clearly, it can be experimentally observed at

this point from the results shown in Table 7.1 and Figs.7.5,7.6, where the lowest CERs

always appear along with the gClassifiers having ρl(r) values in between 2
49

and L−1
49

.

Based on the theory developed in Section 7.4.3, the gClassifiers with the best weakness

or the optimal ρl(r
∗) can be found by minimizing a generalization loss function R(r)

(Eq.7.17) with respect to r, i.e. r∗ = arg min
r

R(r). To test the estimation accuracy of

the method, we applied the loss function to the various learning tasks designed in the

first experiment. The obtained results including R(r), r∗, and the worst r value (r−)

are depicted in Table 7.4,7.5 for B-JD-LDA.A and B-JD-LDA.Â respectively, where the

values of λ were found empirically. It should be mentioned here that it is not a difficult

task to find an appropriate λ value within [0, 1]. In fact, our experiments reveal that

there exist a range of λ values which produce the same estimation for the preference

rankings of the r values, for example, λ ∈ [0.5, 0.61] for B-JD-LDA.A and λ ∈ [0.01, 0.34]

for B-JD-LDA.Â found in the experiment. Comparing the results of the r rankings to

those shown in Table 7.1, it is not difficult to see that the values of the losses correctly



Chapter 7. Ensemble-based Discriminant Learning with Boosting 119

Figure 7.5: Training/test CER comparisons of B-JD-LDA.A with varying weakness ex-

tents of gClassifiers as a function of T in the task ρt(L) = 6/49. Min-CER-S-JD-LDA

denotes the CER of S-JD-LDA with M = M∗.

indicate the optimal r∗, the worst r−, and even the r rankings between them such as the

2nd, 3rd and 4th best r values in most cases. The unique mis-estimate occurs in the task

ρt(L) = 4/49 for B-JD-LDA.Â. From Table 7.1, it can be observed that the test CER

difference between the two candidate gClassifiers (with r = 2 and r = 3 respectively) in

the mis-estimate case is only 10.59% − 9.80% = 0.79%, clearly indicating the difficulty

of predicting which candidate could be better in advance.

Also, it is of interest to analyze the performance difference between B-JD-LDA.A

and B-JD-LDA.Â with Murua’s theory regarding the generalization error [91], that is,
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Figure 7.6: Training/test CER comparisons of B-JD-LDA.Â with varying weakness ex-

tents of gClassifiers as a function of T in the task ρt(L) = 6/49. Min-CER-S-JD-LDA

denotes the CER of S-JD-LDA with M = M∗.

to achieve a low generalization error, a trade-off between weak dependence and large

expected margins has to be maintained for the gClassifiers involved in the combination.

As we analyzed in Section 7.4, B-JD-LDA.Â creates the gClassifiers with lower weakness

and lower mutual dependence than B-JD-LDA.A does given the same ρl(r) value. As

a consequence, it seems reasonable to conjecture that when the individual gClassifier

produced in both algorithms has been sufficiently strong, the one with lower mutual

dependence may outperform the other. The demonstration at this point can be seen from

Table 7.1, where B-JD-LDA.Â is obviously superior to B-JD-LDA.A when they trained
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Table 7.4: The generalization loss R(r, L) with λ = 0.55, the best r estimate (r∗) and

the worst r estimate (r−) obtained by B-JD-LDA.A on the database G1.

ρt(L) r = 2 r = 3 r = 4 r = 5 r = 6 Estimation

4/49 0.5540 0.5068 − − − r∗ = 3 r− = 2

5/49 0.5563 0.4965 0.5031 − − r∗ = 3 r− = 2

6/49 0.5636 0.4897 0.4770 0.5050 − r∗ = 4 r− = 2

7/49 0.5635 0.4860 0.4599 0.4727 0.5106 r∗ = 4 r− = 2

Table 7.5: The generalization loss R(r, L) with λ = 0.25, the best r estimate (r∗) and

the worst r estimate (r−) obtained by B-JD-LDA.Â on the database G1.

ρt(L) r = 2 r = 3 r = 4 r = 5 r = 6 Estimation

4/49 0.4173 0.3111 − − − r∗ = 3 r− = 2

5/49 0.4562 0.3128 0.4062 − − r∗ = 3 r− = 2

6/49 0.4882 0.3512 0.2819 0.4574 − r∗ = 4 r− = 2

7/49 0.5047 0.3725 0.2779 0.3194 0.4398 r∗ = 4 r− = 2

the JD-LDA learner with ρl(r) ≥ ρ̄ = 3/49 in most cases, where ρ̄ denotes certain

weakness threshold. On the other hand, the large margin factor in the balance may

play a more important role than the mutual dependence when the individual gClassifier

is very weak. It can be also observed at this point from Table 7.1 that B-JD-LDA.A

performed much better than B-JD-LDA.Â in those cases of ρl(r) = 2/49. Therefore,

the preference for B-JD-LDA.A or B-JD-LDA.Â should be dependent on the ρl(r) value.

Similar observations can be also found in the experiments on G2. The only difference is

that the weakness threshold is changed to ρ̄ = 4/120 due to the increased class number

C = 120.
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7.5.4 Convergence and Cumulative Margin Distribution

It can be observed from Figs.7.5,7.6 that during the iteration, B-JD-LDA continued to

improve the test CERs (hf (Q)) when appropriately weak gClassifiers (e.g. ρl(r) = 3/49

for B-JD-LDA.Â in Fig.7.6) were produced, even long after the training CERs (hf (Z))

had dropped down to zero, clearly showing the beautiful property of boosting as a large

margin classifier against overfitting. However, similar to ρl(r), boosting may fail to

perform well given both too few (underfit) or too many (overfit) iterations T . It can

be also seen at this point from Figs.7.5,7.6 that there obviously exists an optimal T ∗ in

between. As discussed in Section 7.4.4, a simple method to roughly estimate T ∗ is to

observe the changes of the cumulative margin distribution (CMD) of training examples.

Taken as a representative example, the CMDs of S-JD-LDA, B-JD-LDA.A and B-JD-

LDA.Â obtained in the task ρt(L) = 5/49 of the first experiment are shown in Fig.7.7,

where it can be seen that there were almost no improvements in terms of the CMDs

after the iteration T = 40 for B-JD-LDA.A and T = 20 for B-JD-LDA.Â in the cases

of r = 3, 4. Meanwhile, small improvement is still observable for both the two methods

after T = 40 in the case of r = 2. These observations are roughly in agreement with those

results of T ∗ as depicted in Table 7.1. However, it should be noted again at this point

that, due to the incompleteness of the boosting margin theory, the estimation method is

quite coarse, for example, S-JD-LDA with the best found M∗ yielded much better CMDs

than both the two boosting algorithms in all cases shown in Fig.7.7.

Another observation from Table 7.1 and Figs.7.5,7.6 is that B-JD-LDA.Â generally

needs fewer iterations to reach the best performance than B-JD-LDA.A except for the

case when the individual gClassifier is too weak, e.g. ρl(r) = 2/49. This can be explained

by B-JD-LDA.Â’s property of lower mutual dependence, which helps to produce a more

effective combination of gClassifiers with each one having less overlapping performance,

compared to B-JD-LDA.A. Also, it should be noted at this point that only around T ∗ ≤

45 iterations are required to find an excellent result using the B-JD-LDA algorithm for
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Figure 7.7: Cumulative margin distributions (CMDs) obtained in the task ρt(L) = 5/49

by Left: B-JD-LDA.A, and Right: B-JD-LDA.Â. (T1, T5, T20, T40, T60) are the

CMDs after 1, 5, 20, 40, 60 iterations respectively. e∗ is the result obtained by S-JD-

LDA with M = M∗.



Chapter 7. Ensemble-based Discriminant Learning with Boosting 124

most cases shown in Table 7.1. Considering that each gClassifier works in a considerably

lower-dimensional subspace (M = 15) compared to the four non-boosting methods, such

a computational cost is affordable for most existing personal computers.

7.5.5 A Comparison of Six FR Methods Developed in the The-

sis in terms of CER Performance

So far, we have developed six appearance-based discriminant learning algorithms for face

recognition in this thesis, and they are JD-LDA, DF-LDA, RD-QDA, KDDA, HCF-MSC

and B-JD-LDA. Each of them has its own theoretical properties, and advantages on some

specific applications. Consequently, we believe that it is of interest and desire for readers

to give a brief evaluation and benchmarking of these algorithms in FR tasks before we

finish the presentations of the thesis.

Table 7.6: A comparison of eight FR methods in terms of CER (%) performance obtained

with Rank=1 on the database G2.

Algs. Min. CER M̄ Values of Parameters Involved

Eigenfaces 30.71 258 −

Bayes 9.51 336 −

JD-LDA 15.14 87 η = 1

DF-LDA 12.36 49 η = 1, w(d) = d−8, r = 10

RD-QDA 12.03 119 λ = 0.25, γ = 1e − 4

KDDA 12.58 103 Kernel=RBF, σ2 = 3e5

HCF-MSC 10.97 82 K = 3

B-JD-LDA 6.36 15 with Ât(p, q), ρl(r) = 4/120, T = 36

To this end, we built six FR systems corresponding to the six algorithms. Each
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Figure 7.8: CER performance comparison of four FR methods, B-JD-LDA, S-JD-LDA,

PCA-NC(Eigenfaces) and Bayes matching.

Figure 7.9: CER performance comparison of six FR methods developed in the thesis,

B-JD-LDA, S-JD-LDA, DF-LDA, RD-QDA, KDDA and HCF-MSC.

system was constructed as did in previous simulations by one algorithm followed by a

simple classifier, the NCC, so as to emphasize the contribution of the feature extractor in
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the FR performance. Also, two systems based on the Eigenfaces method and the Bayes

matching method, were implemented again to provide performance baselines. All of the

eight FR systems were applied to the evaluation database G2 with the same settings

(partitions and runs) as the experiment reported in Table 7.3. The obtained results are

summarized in Table 7.6, where the performance of Eigenfaces, Bayes matching, JD-LDA,

and B-JD-LDA are the same as those reported in Table 7.3 due to the same experimental

settings. JD-LDA is the base, from which other five discriminant learning methods are

developed. To facilitate a comparison, we set η = 1 in all JD-LDA related methods, such

as DF-LDA, HCF-MSC and B-JD-LDA etc. , although the optimization with respect to

η = 1 could result in a better performance for each of them. A common parameter among

all the methods evaluated here is the number of feature vectors used, M . The best found

values of M , averaged over 5 runs, are shown as M̄ in Table 7.6. In addition, Figs.7.8-

7.9 depict the CER performance as a function of the rank number of top matching (see

similar presentations in Section 6.6.3). It can be seen from these results that B-JD-LDA

is the top performer, although it is the only method without being optimized with respect

to M (M = 15 is set in each gClassifier as did in previous experiments). All the five

methods developed from JD-LDA have shown certain performance improvement against

JD-LDA, although these improvement may not be as big as those reported previously on

other evaluation databases. The most impressive thing that can be observed here is that

all the six discriminant methods have significantly outperformed the Eigenfaces method

by a margin up to ≥ 15.57%. This demonstrates again the effectiveness of these methods

proposed here.

In addition, it may be of interest to readers to observe those test examples wrongly

classified in this experiment. For this purpose, Figs.7.8 depicts two test examples misclas-

sified in terms of the top rank matching by four representative methods compared here,

Eigenfaces, S-JD-LDA and B-JD-LDA. In the example A, the smiled query looks very

similar to the top 1 rank returned by Eigenfaces, KDDA and B-JD-LDA, and actually



Chapter 7. Ensemble-based Discriminant Learning with Boosting 127

Figure 7.10: Two examples misclassified by Eigenfaces, JD-LDA, KDDA and B-JD-

LDA. In each example, the most left image is the query, and the right images are its top

ten matches ranked by matching scores obtained by Eigenfaces (1st row), JD-LDA(2nd

row), KDDA(3rd row) and B-JD-LDA (4th row) with the parameter settings described

in Table 7.6, respectively. Only circled images share the same label with the queries.

it is a difficult task even for a person to identify their difference. However, compared

to the failure of Eigenfaces in this case, JD-LDA, KDDA and B-JD-LDA still returned

the correct answering within the top 10, 5 and 3 ranks respectively. Similar observations

can be found in the example B, where the difficulty is due to the big difference in pose
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angle between the query and its corresponding target. To improve the performance in

this case, it may have to rely on the introduction of more sophisticated preprocessing

technologies such as 3-D warping or 3-D face models.

Before we proceed to the conclusion, one point is worth mentioning here. Although

the six discriminant learning algorithms proposed in the thesis gave different CERs on

the evaluation database G2, it should be noted at this point that the performance of a

learning-based pattern recognition system is very data/application-dependent, and there

is no theory that is able to accurately predict them for unknown-distribution data/new

applications. In other words, some methods that have reported almost perfect perfor-

mance in certain scenarios may fail in other scenarios.

7.6 Summary

The contribution of the works presented in this chapter is twofold. (1) A novel weakness

analysis theory has been developed to overcome the limitation of the weak learners in tra-

ditional boosting techniques. The theory proposed here is composed of a cross-validation

mechanism of weakening a strong learner and a subsequent estimation method of appro-

priate weakness for the classifiers created by the learner. With the introduction of the

weakness analysis theory, a traditional boosting algorithm can be used to work effectively

with a general (strong or weak) learner. (2) The new boosting framework is applied to

boost a strong and stable learner, JD-LDA. This leads to a novel ensemble-based discrim-

inant learning approach, B-JD-LDA. In this approach, a novel variable accounting for the

pairwise class discriminant information is also introduced to build an effective connec-

tion between the booster and the LDA-based learner. As a result, by manipulating the

B-JD-LDA process, a set of specific LDA feature spaces can be constructed effectively

in a manner of similar to “automatic gain control”. Unlike most traditional mixture

models of linear subspaces that are based on cluster analysis, these LDA subspaces are
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generalized in the context of classification error minimization.

The effectiveness of the proposed B-JD-LDA approach including boosting power, esti-

mation accuracy of the loss function, and robustness against the overfitting and SSS prob-

lems has been demonstrated through the FR experimentation performed on the FERET

database. It is further anticipated that in addition to JD-LDA, other existing traditional

face recognizers such as those based on PCA or ICA techniques may be boosted to the

state-of-the-art level through integration into the proposed boosting framework. On the

other hand, the booster, AdaBoost, in the framework could be replaced by its superior

variants such as the so-called Soft Margins AdaBoost [97], which has recently been shown

to outperform the original AdaBoost in head pose classification [40].



Chapter 8

Conclusion and Future Work

8.1 Conclusion

The focus of this research was on the development of discriminant learning methods capa-

ble of providing solutions to small-size-sample (SSS), high-dimensional face recognition

problems. In this work, a simple but effective, linear discriminant analysis algorithm,

called JD-LDA was first introduced. The algorithm is based on a regularized Fisher’s

criterion, and has been shown to be effective and stable in capturing the optimal linear

discriminant features across various SSS scenarios. Based on the JD-LDA solution, a

series of discriminant analysis algorithms were developed through the integration of ad-

vanced learning theories, such as Bayes discriminant analysis, kernel machines, mixture

of multi-models, and AdaBoost. Each of the solutions proposed here has its own theo-

retical properties, and advantages on some specific applications. The DF-LDA method

can be considered as a generalization of a number of linear techniques which are com-

monly in use. It can be chosen for use when the variations of patterns under learning

are not too complex and a cost-effective solution is sought. RD-QDA takes advantages

of the JD-LDA and regularized Bayes discriminant analysis techniques, and it is capa-

ble of dealing with patterns subject to general Gaussian distributions with an affordable

130
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computational cost. In addition, KDDA, HCF-MSC and B-JD-LDA are three methods

developed to address recognition problems when the pattern distribution is far more

complicated than Gaussian. KDDA is a globally nonlinear solution. In the method,

the kernel function is utilized to map the original face patterns to a high-dimensional

feature space, where the highly non-convex and complex distribution of face patterns is

linearized and simplified, so that the JD-LDA can be applied for feature extraction. Due

to extremely high dimensionality of the feature space, KDDA is more susceptible to the

overfitting problem compared to other two solutions: HCF-MSC and B-JD-LDA, which

are based on a mixture of linear models. Therefore, KDDA is recommended for use only

if sufficient training samples are available. Otherwise both HCF-MSC and B-JD-LDA

could be better choices especially when very small size, for example only L ≤ 5 training

samples per subject are available. HCF-MSC is a hierarchical classification scheme which

operates on top of traditional FR systems trained on database partitions obtained using

a novel separability-based clustering method. HCF-MSC is able to address large-scale

FR problems with low computational complexity. During the course of this work, an-

other ensemble-based algorithm, B-JD-LDA has been shown to be superior to HCF-MSC

whether from a theoretical or experimental analysis point of view. A boosting technique

is introduced in B-JD-LDA. As a result, the LDA sub-models can be generalized and

mixed in the context of direct minimization of the generalization error instead of only

the empirical error. A great deal of FR simulations have been presented to demonstrate

the effectiveness of these proposed methods in various SSS situations.

It should be worthy to mention again that in this work, the proposed algorithms were

designed, analyzed and tested specifically by using the face recognition paradigm. How-

ever, the recognition methods researched here may be proven useful in other applications

where classification tasks are routinely performed, such as content-based image/video in-

dexing and retrieval, face detection (generally considered a binary classification problem),

and video/audio classification.
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8.2 Directions of Future Research

In this section, a set of topics are presented to extend the discriminant learning algorithms

developed in the thesis.

1. Automatic parameter selection. Automatic parameter optimization remains an

open research problem in the pattern recognition and machine learning communities

[134]. The difficulty arises from the following unknown facts regarding the patterns

under learning:

(i) What is the actual distribution of the patterns?

(ii) How have the training data sampled the underlying distribution of the pat-

terns?

(iii) How many training samples are sufficient to capture all the variations of the

patterns?

Due to a lack of prior knowledge and the application-specific nature of the process,

there is no systematic criteria capable of accurately predicting the generalization

performance of chosen parameter values before a test set is provided and used for

evaluation.

Thus, in the experiments performed in this work, the design parameters in all the

algorithms have been selected using heuristic and/or exhaustive searches. Although

some routine techniques, such as leave-one-out, can be used to find good (yet subop-

timal) parameter values in a systematic way, they often lead to significant increase

in computational cost as it can be seen from the analysis in Chapter 4. Therefore,

rather than develop some generic but complex parameter optimization methods, it

may be of interest to determine a simple and application-dependent relationship

between the parameters to be optimized, the CER, and prior information regarding

the training data (such as the LDD) using a combination of analysis and heuristic
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knowledge. The introduction of the generalization loss (Eq.7.17), which is designed

to find the best number (r) of training samples per subject for building a gClassifier

in Chapter 7, can be seen as a step towards this direction. Similar developments

are envisioned for the determination of the parameters involved in the JD-LDA,

DF-LDA, KDDA and HCF-MSC methods introduced here.

2. A mixture of multiple discriminant learning algorithms with boosting. It

can be seen from the previous analysis that each kind of facial feature representa-

tions discussed here, such as PCA, LDA, KPCA, KDDA and even ICA and KICA,

has its own theoretical properties, and advantages on some specific problems. It is

therefore reasonable to inquire if, “Is it possible to merge all these useful features

into one FR system?”. The boosting framework constructed for B-JD-LDA seems

to provide a promising way to answer the above question. In the current frame-

work, the learner always remains unchanged, although each gClassifier produced by

the learner could be different. Alternatively, we can design a scheme to adaptively

update the learner at each iteration either. For example, let

F = {PCA, JD-LDA, KPCA, KDDA, ICA, KICA}

be a set of candidate learners. As we know from Chapter 7, boosting generalizes

a different discriminant sub-problem at every iteration. Thus, we can choose a

learner from F to best conquer the specific sub-problem produced in the current

iteration. The best learner can be found, for example, by comparing the pseudo-

loss ε̂t of the gClassifiers produced by these learners in F . In this way, the final

solution of boosting is a mixture of the gClassifiers generalized by various learners

included in F . On the other hand, the complexity of the entire boosting algorithm

is inevitably increased due to the introduction of multiple learners. Therefore, it

could be the focus of the research to solve the problems arising from the increased

algorithmic complexity.



Chapter 8. Conclusion and Future Work 134

3. A mixture of shape- and appearance- based models. In the appearance-

based methods, a face image is generally processed as a 2D holistic pattern rep-

resented by an array of its pixel values (i.e. image intensities), and the feature

extraction is conducted directly on the pixel array. Obviously, in such an approach

any structural information, such as the shapes of eyes, nose and mouth, and their

geometric configuration, is ignored. As a result, these kind of methods are sensible

to variations in illuminations and head poses. In contrast, shape-based methods

(see Section 2.1) focus on the construction of a 3D facial shape model, completely

removed from the pixel values by locating and analyzing the structure information.

Thus, it should be advantageous to develop systems that are able to effectively

merge the best aspects of both approaches. Initial efforts such as the works of

Craw et al. [22, 23], Von der Malsburg et al. [57, 127, 128], Cootes et al. [59] and

Blanz et al. [10] suggest that improvement in performance should be expected.

Particularly, the method of [127] was one of the top performers among the partially

automatic FR algorithms included in the 1996/1997 FERET competitions [94].

Therefore, it is only reasonable to assume that the incorporation of more powerful

appearance-based methods such as those introduced in this work, will boost further

the performance of such hybrid solutions.
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Some Derivations in Chapter 5

A.1 Computation of Φ̃T
b Φ̃b

Expanding Φ̃T
b Φ̃b, we have
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We develop each term of Eq.A.2 according to the kernel matrix K as follows,
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Applying the above derivations into Eq.A.2, we obtain the Eq.5.10.
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We then develop each term of Eq.A.5 according to the kernel matrix K as follows,
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Using the kernel matrix K, the terms in Eq.A.7 can be developed as follows,
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