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ABSTRACT

It is well-known that the applicability of Linear Discriminant Anal-
ysis (LDA) to high-dimensional pattern classification tasks such as
face recognition (FR) often suffers from the so-called “small sam-
ple size” (SSS) problem arising from the small number of available
training samples compared to the dimensionality of the sample
space. In this paper, we propose a new LDA method that effec-
tively addresses the SSS problem using a regularization technique.
In addition, a scheme of expanding the representational capacity
of face database is introduced to overcome the limitation that the
LDA based algorithms require at least two samples per class avail-
able for learning. Extensive experimentation performed on the
FERET database indicates that the proposed methodology outper-
forms traditional methods such as Eigenfaces and Direct LDA in a
number of SSS setting scenarios.

1. INTRODUCTION

Face recognition (FR) systems, utilizing linear discriminant anal-
ysis (LDA) techniques have been shown to be very successful [4,
3, 6]. However, LDA-based methods often suffer from the so-
called “small sample size” (SSS) problem, which exists in high-
dimensional pattern recognition tasks where the number of train-
ing samples available for each subject is smaller than the dimen-
sionality of the samples. For example, only L ∈ [1, 5] training
samples per subject are available while the dimensionality is up to
J = 17154 in the FR experiments reported here. As a result, the
sample-based estimation for the between- and within-class scatter
matrices is often extremely ill-posed. Traditional solutions to the
SSS problem require the incorporation of a principal component
analysis (PCA) step into the LDA framework. In this approach,
PCA is used as a pre-processing step for dimensionality reduc-
tion and removal of the null spaces of the two scatter matrices.
Then LDA is performed in the lower dimensional PCA subspace,
as it was done for example in Fisherfaces [4]. However, it has
been shown that the discarded null spaces may contain significant
discriminatory information. To prevent this from happening, so-
lutions without a separate PCA step, called direct LDA (D-LDA)
methods have been presented recently in [3, 6].

The basic premise behind the D-LDA approaches is that the in-
formation residing in (or close to) the null space of the within-class
scatter matrix is more significant for discriminant tasks than the in-
formation out of (or far from) the null space. Generally, the null
space of a matrix is determined by its zero eigenvalues. However,
due to insufficient training samples, it is very difficult to identify
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the true null eigenvalues. As a result, high variance is often intro-
duced in the estimation for the zero or very small eigenvalues of
the within-class scatter matrix, while the eigenvectors correspond-
ing to these eigenvalues are considered the most significant feature
bases in the D-LDA approaches.

To overcome the above problem, we propose a new LDA method
for FR tasks in this paper. The LDA method developed here is
based on a novel regularized Fisher’s discriminant criterion, which
is particularly robust against the SSS problem compared to the tra-
ditional one used in LDA. The purpose of regularization is to re-
duce the high variance related to the eigenvalue estimates of the
within-class scatter matrix at the expense of potentially increased
bias. It will be shown that, by adjusting the regularization param-
eter, we can obtain many LDA variants such as the D-LDA of [3]
(hereafter YD-LDA) and the D-LDA of [6] (hereafter JD-LDA).
The strength of regularization is dependent on the SSS situations.
Extensive experiments indicate that there exists an optimal reg-
ularization solution for the proposed method, which outperforms
some existing FR approaches including Eigenfaces [1], YD-LDA
and JD-LDA. In addition, a scheme of expanding the represen-
tational capacity of face database is introduced to overcome the
limitation that traditional LDA based algorithms cannot be applied
to the extreme case where only one sample per class is available
for learning. Furthermore, experimentation shows that the scheme
also enhance the FR performance of the proposed LDA method.

2. METHODS

2.1. A regularized Fisher’s criterion

Given a training set, Z = {Zi}
C
i=1, containing C classes with

each classZi = {zij}Ci

j=1 consisting of a number of localized face
images zij , a total of N =

∑C
i=1 Ci face images are available in

the set. For computational convenience, each image is represented
as a column vector of length J(= Iw × Ih) by lexicographic or-
dering of the pixel elements, i.e. zij ∈ R

J , where (Iw× Ih) is the
image size, and R

J denotes the J-dimensional real space.
Let Sb and Sw be the between- and within-class scatter ma-

trices of the training set, respectively. The regularized Fisher’s
criterion, which is utilized in this work instead of the conventional

one (Ψ = argmax
Ψ

|ΨT
SbΨ|

|ΨT SwΨ|
), can be expressed as follows:

Ψ = argmax
Ψ

∣

∣ΨTSbΨ
∣

∣

|η(ΨTSbΨ) + (ΨTSwΨ)|
(1)

where 0 ≤ η ≤ 1 is a regularization parameter. Although Eq.1
looks different from the conventional Fisher’s criterion, it can be
shown that they are exactly equivalent by the following theorem.



Theorem 1 Let R
J denote the J-dimensional real space, and sup-

pose that ∀ψ ∈ R
J , u(ψ) ≥ 0, v(ψ) ≥ 0, u(ψ) + v(ψ) > 0

and 0 ≤ η ≤ 1. Let q1(ψ) = u(ψ)
v(ψ)

and q2(ψ) = u(ψ)
η·u(ψ)+v(ψ)

.
Then, q1(ψ) has the maximum (including positive infinity) at point
ψ∗ ∈ R

J iff q2(ψ) has the maximum at point ψ∗.

Proof: Since u(ψ) ≥ 0, v(ψ) ≥ 0 and 0 ≤ η ≤ 1, we have
0 ≤ q1(ψ) ≤ +∞ and 0 ≤ q2(ψ) ≤

1
η

.

1. If η = 0, then q1(ψ) = q2(ψ).

2. If 0 < η ≤ 1 and v(ψ) = 0, then q1(ψ) = +∞ and
q2(ψ) = 1/η.

3. If 0 < η ≤ 1 and v(ψ) > 0, then q2(ψ) = u(ψ)/v(ψ)
1+ηu(ψ)/v(ψ)

=

q1(ψ)
1+ηq1(ψ)

= 1
η

(

1− 1
1+ηq1(ψ)

)

. It can be seen that in this

case, q2(ψ) increases iff q1(ψ) increases.

Combining the above three cases, the theorem is proven.
The modified Fisher’s criterion is a function of the parame-

ter η, which controls the strength of regularization. Within the
variation range of η, two extremes should be noted. In one ex-
treme where η = 0, the modified Fisher’s criterion is reduced to
the conventional one with no regularization. In contrast with this,
the strongest regularization is introduced in another extreme where

η = 1. In this case, Eq.1 becomes Ψ = argmax
Ψ

|ΨT
SbΨ|

|ΨT (Sb+Sw)Ψ)|
,

which as a variant of the original Fisher’s criterion has been also
widely used for example in [5, 6]. The advantages of introducing
the regularization will be seen during the development of the new
LDA algorithm proposed below.

2.2. A regularized LDA: R-LDA

Let us assume thatA and B represent the null spaces of Sb and Sw
respectively, whileA′ = R

J −A and B′ = R
J −B denote the or-

thogonal complements ofA and B. The maximization of Eq.1 can
be achieved by solving the eigenvalue problem of (ηSb+Sw)

−1Sb
if sufficient training samples are available. Due to the SSS prob-
lem, often a degenerated (ηSb+Sw) is obtained in FR tasks. Tra-
ditional methods, for example Fisherfaces [4], attempt to solve the
problem by utilizing an intermediate PCA step to remove A and
B. However, it should be noted at this point that the maximum
of the ratio in Eq.1 can be reached only when ΨTSwΨ = 0 and
ΨTSbΨ 6= 0. This means that the discarded null spaceBmay con-
tain the most significant discriminatory information. On the other
hand, there is no significant information, in terms of the maximiza-
tion in Eq.1, to be lost if A is discarded. It is not difficult to see

at this point that when Ψ ∈ A, the ratio |
ΨT

SbΨ|
|ΨT SwΨ|

drops down to

its minimal value, 0. Therefore, the intersection space (A′ ∩ B)
is considered the optimal discriminant feature bases in the D-LDA
approaches [3, 6].

In this work, we propose a regularized LDA (hereafter R-
LDA) method, which following the D-LDA process of [3, 6], at-
tempts to optimize the regularized Fisher’s criterion of Eq.1. To
this end, we first solve the complement space of Sb, A′. Let
Um = [u1, · · · , um] be the eigenvectors of Sb corresponding
to its first m(≤ C − 1) largest nonzero eigenvalues Λb. The
complement space A′ is spanned by Um, which is furthermore
scaled by H = UmΛ

−1/2
b so as to have HTSbH = I, where I

is the (m × m) identity matrix. In the subspace spanned by H,

we then seek a set of feature bases, which minimize the denom-
inator of Eq.1, ηI + HTSwH. It is not difficult to see that the
sought feature bases correspond to the M(≤ m) eigenvectors of
HTSwH, PM = [p1, · · · ,pM ], with the smallest eigenvalues
Λw. Combining these results, we can obtain the final solution,
Ψ = HPM (ηI + Λw)

−1/2, which is a set of optimal discrimi-
nant feature basis vectors. The detailed process to implement the
R-LDA method is depicted in Fig.1.

It can be seen from Fig.1 that R-LDA reduces to YD-LDA and
JD-LDA when η = 0 and η = 1, respectively. Varying the values
of η within [0, 1] leads to a set of intermediate D-LDA variants
between YD-LDA and JD-LDA. Since the subspace spanned by Ψ
may contain the intersection space (A′∩B), it is possible that there
exist zero or very small eigenvalues in Λw, which has been shown
to be high variance for estimation in the SSS situations. As a re-
sult, any bias arising from the eigenvectors corresponding to these
eigenvalues is dramatically exaggerated due to the normalization
(PMΛ

−1/2
w ). Against the effect, the introduction of the regular-

ization helps to decrease the importance of these highly unstable
eigenvectors, thereby reducing for some extent the variance.

Input: A training set Z with C classes: Z = {Zi}
C
i=1, each

class containing Zi = {zij}Ci

j=1 face images, where
zij ∈ R

J , and the regularization parameter η.
Output: An M -dimensional LDA subspace spanned by Ψ, an
J ×M matrix with M ¿ J .

Algorithm:
Step 1. Express Sb = ΦbΦ

T
b , with Φb = [Φb,1, · · · ,Φb,c],

Φb,i = (Ci/N)1/2(z̄i − z̄), z̄i = 1/Ci
∑Ci

j=1 zij , and
z̄ = 1/N

∑C
i=1

∑Ci

j=1 zij .
Step 2. Find the m eigenvectors of ΦTb Φb with non-zero

eigenvalues, and denote them as Em = [e1, · · · , em].
Step 3. Calculate the first m most significant eigenvectors

(Um) of Sb and their corresponding eigenvalues (Λb)
by Um = ΦbEm and Λb = UT

mSbUm.
Step 4. Let H = UmΛ

−1/2
b . Find eigenvectors of HTSwH,

P = [p1, · · · ,pm] sorted in increasing eigenvalue order.
Step 5. Choose the first M(≤ m) eigenvectors in P. Let PM

and Λw be the chosen eigenvectors and their corresponding
eigenvalues, respectively.

Step 6. Return Ψ = HPM (ηI + Λw)
−1/2.

Fig. 1. The pseudo code implementation of the R-LDA method

2.3. Expansion of Representational Capacity of Face Database

The works described above are focused on the attempt to address
the SSS problem from the viewpoint of improving the LDA al-
gorithm. On the other hand, the problem can be approached by
expanding the representational capacity of the available training
database. For example, given a pair of prototype images belonging
to a same class, Stan et al. [7] proposed a linear model, called the
nearest feature line (NFL), to virtually generalize an infinite num-
ber of variants of the two prototypes under variations in illumina-
tion and expression. However, like LDA, the NFL method requires
at least two training samples per subject to be available. To deal
with the extreme case where only one training image per subject
is available, J. Huang et al. [8] recently proposed a method, which



constructs more samples by rotating and translating the prototype
image. However, the method of [8] also introduces bias inevitably
when face recognition is performed on a set of well-aligned face
images for example along with the centers of the eyes as did in the
experiments reported here.

To avoid the bias, an alternative approach to double the size of
the training set is to introduce the mirrored versions of the train-
ing samples. Based on the symmetrical property of face object,
intuitively it is reasonable to consider the mirrored view of a face
image to be a real and bias-free sample of the face pattern. In
addition to the training samples, the mirrored version of any test
sample can be also utilized to enhance the FR performance. For
example, we can verify the classification result of an given query
with the result of its mirror. A recognition process is accepted only
when the query and its mirror are given a same class label, other-
wise the query is rejected to recognition. More sophisticated rules
to combine the two results can be found in [9].

3. EXPERIMENTAL RESULTS

3.1. The FR Evaluation Design

A set of experiments are included in the paper to assess the per-
formance of the proposed R-LDA method. To show the high com-
plexity of the face patterns’ distribution, a medium-size subset of
the FERET database [2] is used in the experiments. The subset
consists of 1147 gray-scale images of 120 people, each one hav-
ing at least 6 samples. These images as depicted in Table 1 cover a
wide range of variations in illumination, facial expression/details,
pose angels and others. We follow the preprocessing sequence rec-
ommended in [2], which includes four steps: (1) eyes alignment,
(2) removal of nonface portions, (3) histogram equalization, and
(4) data normalization. Fig.2 depicts some sample images after
the preprocessing sequence is applied. For computational conve-
nience, each image is finally represented as a column vector of
length J = 17154 prior to the recognition stage.

Table 1. No. of images divided into the standard FERET imagery
categories, and the pose angle, α (degree), of each category.

Ct. fa fb ba bj bk ql qr rb rc
No. 567 338 5 5 5 68 65 32 62
α 0 0 0 0 0 -22.5 +22.5 10 -10

Fig. 2. Some samples of eight people come from the normalized
FERET evaluation database.

The number of available training samples per subject, L, has a
significant influence on the strength of regularization. To study the
sensitivity of the performance, in terms of correct recognition rate

(CRR), to L, five tests were performed with various L values rang-
ing from L = 1 to L = 5. For a particular L, the FERET subset is
randomly partitioned into two datasets: a training set and a test set.
The training set is composed of (L× 120) samples: L images per
person were randomly chosen. The remaining (1147 − L × 120)
images are used to form the test set. There is no overlapping be-
tween the two. To enhance the accuracy of the assessment, five
runs of such a partition were executed, and all of the CRRs re-
ported later have been averaged over the five runs.

3.2. The FR Performance Comparison

Besides YD-LDA, JD-LDA and R-LDA, the so-called Eigenfaces
method [1], was implemented to provide a performance baseline.
The CRRs obtained by R-LDA as a function of (M,η) are de-
picted in Fig.3, where η started from 10−4 instead of zero in case
HTSwH is singular. Also, a quantitative comparison of the best
CRRs obtained by the four methods with corresponding parameter
values, is summarized in Table 2.

Fig. 3. CRRs obtained by R-LDA as a function of (M,η). Top:
L = 2, 3; Bottom: L = 4, 5.

The parameter η controls the strength of regularization, which
balances the tradeoff between variance and bias in the estimation
for the small eigenvalues of the within-class scatter matrix. Vary-
ing the values of η within [0, 1] leads to a set of intermediate LDA
variants between YD-LDA and JD-LDA. In theory, YD-LDA with
no bias introduced should be the best performer among these vari-
ants if sufficient training samples are available. It can be observed
at this point from Fig.3 and Table 2 that the CRR peaks gradually
moved from the right side toward the left side (η = 0) that is the
case of YD-LDA asL increases. Small values of λ have been good
enough for the regularization requirement in many cases (L ≥ 4)
as shown in Fig.3. However, it also can be seen from Fig.3 and
Table 2 that YD-LDA performed poorly when L = 2, 3. This
should be attributed to the high variance in the estimate of Sw due
to insufficient training samples. In these cases, even HTSwH is



singular or close to singular, and the resulting effect is to dramat-
ically exaggerate the importance associated with the eigenvectors
corresponding to the smallest eigenvalues. Against the effect, the
introduction of regularization helps to decrease the larger eigenval-
ues and increase the smaller ones, thereby counteracting for some
extent the bias. This is also why JD-LDA outperforms YD-LDA
when L is small. Although R-LDA is the top performer amongst
all the methods compared in Table 3, the determination of its opti-
mal parameter values is computationally demanding as it is based
on exhaustive searches. A fast and cost effective R-LDA parameter
optimization method will be the focus of future research.

Table 2. Comparison of best found CRRs (%) and their corre-
sponding parameter values without using mirrored samples.

L = 1 2 3 4 5

PCA 47.50 59.58 66.71 67.92 68.85
(M∗) 119 159 217 289 327

YD-LDA − 38.85 76.85 84.02 89.07
(M∗) − 116 117 114 114

JD-LDA − 70.32 78.14 81.95 85.78
(M∗) − 116 114 115 112

R-LDA − 70.36 79.70 84.14 89.07
(M∗) − 116 117 116 114
(η∗) − 0.867 0.22 0.016 1e-4

Table 3. Comparison of best CRRs (%) and their correspond-
ing parameter values obtained by R-LDA using different mirror
schemes. In R-LDAm3, Rej. denotes the reject rate (%).

L = 1 2 3 4 5

R-LDAm1 56.69 70.80 82.49 86.93 91.12
(M∗) 118 118 117 114 108
(η∗) 0.092 0.30 0.016 1e-4 1e-4

R-LDAm2 56.79 71.16 82.36 86.93 90.90
(M∗) 119 118 119 112 112
(η∗) 0.7 0.3 0.016 1e-4 1e-4

R-LDAm3 60.19 74.16 84.09 88.18 91.91
Rej. 7.95 6.13 2.90 2.07 1.50

(M∗) 119 119 119 112 111
(η∗) 1 0.4 0.016 1e-4 1e-4

The LDA based algorithms require at least two training sam-
ples for each class. However, with the introduction of the mirrored
training samples, it becomes possible to break the limitation. In
the results depicted in Table 3, where R-LDAm1, R-LDAm2 and
R-LDAm3 denote the versions of R-LDA that is trained with a
combined set consisting of the training samples and and their mir-
rors. The difference between the three versions is that R-LDAm1

uses only the test set, R-LDAm2 uses only the mirrored test set,
while R-LDAm3 combines the results of the test set and its mir-
ror in a way introduced in Section 2.3. Not surprisingly, it can be
seen from Table 3 that R-LDAm1 and R-LDAm2 have a very close
performance. This means that to recognize a test sample, we can
use either the sample or its mirror. Compared to R-LDA in Table
2, the performance improvement of R-LDAm1 and R-LDAm2 is
up to 2.02% in average over L = 2 ∼ 5. Also, the reject rates
obtained by R-LDAm3 indicate that the recognition is incorrect in
most cases when the sample and its mirror are given different la-

bels. Therefore, compared to R-LDAm1 and R-LDAm2, another
CRR improvement up to 2.1% in average over L = 1 ∼ 5 is ob-
tained by R-LDAm3. These results obtained by the three R-LDA
versions demonstrate that the mirrors of face images provide not
only more samples, but also complemental information, which is
useful to enhance the FR performance.

4. CONCLUSION

A new LDA method for face recognition has been introduced in
this paper. The proposed method is based on a novel regularized
Fisher’s discriminant criterion, which is particularly robust against
the SSS problem compared to the traditional one used in LDA. It
has been shown that a series of traditional LDA variants including
the recently introduced YD-LDA and JD-LDA can be derived from
the proposed R-LDA framework by adjusting the regularization
parameter. Also, a scheme to double the size of face databases
is introduced, so that R-LDA can be carried out in the extreme
case where only one training sample available for each subject.
The effectiveness of the proposed method has been demonstrated
through experimentation using the FERET database.

R-LDA can be seen as a general pattern recognition method
capable of addressing the SSS problem. We expect that in addition
to FR, R-LDA will provide excellent performance in applications,
such as image/video indexing, retrieval, and classification.
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