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ABSTRACT

In this paper, we propose a new algorithm to boost performance of
traditional Linear Discriminant Analysis (LDA)-based face recog-
nition (FR) methods in complex FR tasks, where highly nonlinear
face pattern distributions are often encountered. The algorithm
embodies the principle of “divide and conquer”, by which a com-
plex problem is decomposed into a set of simpler ones, each of
which can be conquered by a relatively easy solution. The Ad-
aBoost technique is utilized within this framework to: 1) gener-
alize a set of simple FR sub-problems and their corresponding
LDA solutions; 2) combine results from the multiple, relatively
weak, LDA solutions to form a very strong solution. Experimen-
tation performed on the FERET database indicates that the pro-
posed methodology is able to greatly enhance performance of the
traditional LDA-based method with an averaged improvement of
correct recognition rate (CRR) up to 9% reported.

1. INTRODUCTION

Face recognition (FR) systems, utilizing linear discriminant anal-
ysis (LDA) techniques have been shown to be very successful [1,
2]. However, the so-called “plug-in” covariance matrix estimates
widely used in the LDA-based approaches often suffer from the
so-called “small sample size” (SSS) problem often seen in high-
dimensional pattern recognition tasks where the number of avail-
able training samples per subject (L) is smaller than the dimen-
sionality of the samples (J). Recently, an effective SSS solution
called Direct LDA (D-LDA), have been presented [1, 2]. Although
may not be optimal in terms of CRR in some cases, the D-LDA of
[2] (hereafter JD-LDA), enhanced by a simple regularization strat-
egy, has been shown to be the more robust than the one of [1]
against the SSS problem, performing well even when L << J ,
which is the case in many FR tasks.

Although successful in many cases, linear methods including
the LDA-based ones often fail to deliver good performance when
face patterns are subject to large variations in viewpoints, illumi-
nation or facial expression, which result in a highly nonlinear and
complex distribution. The limited success of these methods should
be attributed to their linear nature. There are two ways to han-
dle the complex pattern distribution: 1) with nonlinear models, or
2) with a mixture of locally linear models (AMLLM). The main
problem with most nonlinear methods such as those based on ker-
nel machines is that the involved nonlinear parameters which sig-
nificantly influence the performance of the FR systems, are very
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difficult to be optimized. In addition, these methods are com-
putationally expensive compared to their linear counterparts, and
tend to overfit quite often. On the other hand, AMLLM-based ap-
proaches embody the principle of “divide and conquer”, by which
a complex FR problem is decomposed into a set of simpler ones,
in each of which a locally linear face distribution can be general-
ized and dealt with by a relatively easy linear solution. As such,
the AMLLM-based methods are simpler, more cost effective and
easier to implement compared to the nonlinear ones.

In this paper, we propose a new AMLLM-like method to boost
the performance of the traditional LDA-based approaches in com-
plex FR tasks. The main novelty existing in the method is the intro-
duction of the machine-learning technique known as “boosting”,
which is able to boost an ensemble of weak learners slightly bet-
ter than random guessing to a very accurate learner [3]. Boosting
seems ideal to deal with two issues central to the AMLLM-like ap-
proaches: 1) the generalization of a set of simple linear solutions,
each one aimed to a particular sub-problem; 2) the formation of a
globally strong solution through the combination of the multiple
local solutions. However, it is widely believed that boosting-like
algorithms are not suited to a stable base learner such as LDA,
because their effectiveness depends to a great extent on the base
learner’s “instability”. To challenge the popular belief, we first
propose a variable called “pairwise class discriminant distribu-
tion” (PCDD), which is used to build a strong connection between
boosting and the LDA-based learner. Through PCDD, boosting
can effectively manipulate the learner, so that it is focused on the
hard to separate pairs of classes. Then, a cross-validation mecha-
nism (CVM) is introduced to control the weakness (also function
to a certain extent as instability) of the learner. With the integra-
tion of PCDD and CVM, both the ability that boosting controls
the learner and the diversity of local LDA solutions produced are
greatly enhanced. This, as will be seen in the experiments reported
here, results in a significant boost to the FR performance.

2. METHODS

2.1. A JD-LDA Learner

Considering the robustness in the SSS conditions, the LDA ap-
proach chosen as the base learner is JD-LDA [2], which is briefly
described here for completeness.

Given a training set containing C classes, Z = {Zi}C
i=1, with

each class consisting of a number of face images: Zi = {zij}Ci
j=1,

a total of N =
∑C

i=1 Ci face images are available in the set. Each
image is represented as a column vector of length J(= Iw × Ih),
i.e. zij ∈ R

J , where Iw×Ih is the image size, and R
J denotes the

J-dimensional real space. JD-LDA finds a set of optimal discrim-
inant basis vectors, denoted as {ψm}M

m=1 where ψm ∈ R
J and



M � J , by optimizing a separability criterion, or equivalently
solving the following eigenvalue problem,

Ψ = arg max
Ψ

∣∣ΨT SbΨ
∣∣

|ΨT SbΨ + ΨT SwΨ| (1)

where Ψ = [ψ1, . . . , ψM ], Sb and Sw are the between- and within-
class scatter matrices of the training set respectively. For any input
face images z, its JD-LDA based representation y can be obtained
by projecting z into a M -dimensional feature space spanned by
Ψ, where the separability of different subjects is enhanced, thus
y = ΨT z, where y ∈ R

M . Since JD-LDA is only a feature
extractor, the subsequent classification in the JD-LDA learner is
implemented using a classic nearest center classifier in the feature
space based on a normalized Euclidean distance, which is given by

h(z, i) = (dmax − dz,i)/(dmax − dmin) (2)

where dz,i =
∥∥ΨT (z − z̄i)

∥∥, dmax = max({dz,i}C
i=1), dmin =

min({dz,i}C
i=1), and z̄i = 1

Ci

∑Ci
j=1 zij is the ith class center.

The distance-based hypothesis h(z, i) has values in [0, 1], and thus
can function as required by the AdaBoost.M2 algorithm to indicate
a “degree of plausibility” for labelling z as the class i.

2.2. Boosting the JD-LDA Learner (B-JD-LDA)

Since the boosting scheme proposed here (see Fig.1) is developed
from AdaBoost.M2 [3], a sophisticated extension of the classic
AdaBoost to the multi-class case, we first briefly review the Ad-
aBoost.M2 algorithm, which attempts to overcome some limita-
tions existing in those straightforward multi-class extensions such
as AdaBoost.M1 [3] by introducing a sophisticated error measure
called “pseudo-loss” (see step 5 in Fig.1) instead of the usual pre-
diction error. The pseudo-loss is computed with respect to a dis-
tribution called “mislabel distribution”, D̂, defined over the set of
all mislabels: B (see input in Fig.1). By manipulating the distri-
bution, the boosting algorithm can focus the base learner not only
on hard-to-classify samples, but more specifically, on the incorrect
labels that are hardest to discriminate [3].

With these concepts and theories, we can start to design the
algorithm to boost JD-LDA. First, we have to build the connec-
tion between the base learner and the boosting algorithm by in-
troducing a new distribution called “pairwise class discriminant
distribution” (PCDD), Apq , which is defined on any pair of classes
{(p, q) : p, q ∈ {1, · · · , C}}, and computed at the t-th iteration
by

At(p, q) =




Cp∑
j=1

D̂t(zpj , q) +
Cq∑
j=1

D̂t(zqj , p), if p �= q

0, otherwise
(3)

Since D̂t(zij , y) indicates the difficult extent of distinguishing the
incorrect label y on the sample zij based on the feedback from
the hypothesis produced previously, intuitively At(p, q) can be
considered as a measure of how important it is to discriminate
between classes p and q when design the current hypothesis ht.
A larger At(p, q) value implies a worse separability between the
two classes. It is therefore reasonable to manipulate the JD-LDA
learner through At(p, q), so that it is focused on the hard to sep-
arate pairs of classes. To this end, we define a variant of the
between-class scatter matrix, which can be given as follows,

Ŝb,t =
C∑

p=1

φpφT
p (4)

where φp = (Cp/N)1/2 ∑C
q=1 A

1/2
t (p, q)(z̄p − z̄q). It should

be noted at this point that the variant Ŝb,t weighted by At em-
bodies the principle behind the so-called “fractional-step” LDA
depicted in [2, 4], that is, object classes that are difficult to be sep-
arated in the low-dimensional output spaces (Ψ1, · · · , Ψt−1) gen-
eralized in previous rounds, and thus can potentially result in mis-
classification, should be paid more attentions through more heavily
weighting in the high-dimensional input space of the current (t-th)
round, so that their separability is enhanced in the resulting fea-
ture space Ψt. Also, it is not difficult to see that the variant Ŝb,t is
equivalent to Sb when At(p, q) is equal to a constant.

Similarly, the weighted within-class scatter matrix can be given
as follows,

Ŝw,t = N ·
C∑

i=1

Ci∑
j=1

Dt(zij)(zij − z̄i)(zij − z̄i)
T (5)

where Dt(zij) =
∑

y �=yij
D̂t(zij , y) is defined over Z as the

sample distribution with similar meanings to the one defined in
AdaBoost. As such, a larger value of Dt(zij) implies a harder
sample to those hypotheses generalized previously.

In addition to large margins, it has been found that the general-
ization error in boosting-like methods depends on the low or weak
dependence among the hypotheses produced [5]. Obviously, hy-
potheses obtained through training with more overlapping samples
will result in a stronger dependence among them. A way to avoid
building similar hypotheses repeatedly is to artificially introduce
some randomness in the construction of the training data. To this
end, a modified PCDD is proposed below

Ât(p, q) =

{ ∑
j:gt(zpj)=q

Dt(zpj) +
∑

j:gt(zqj)=p

Dt(zqj), if p �= q

0, otherwise
(6)

where gt(z) = arg max
y∈Y

ht(z, y). As an effect of Ât(p, q) instead

of Eq.3, it can been seen that only those classes having the mis-
labelled samples by previous hypothesis ht−1 are contributed for
the construction of the current hypothesis ht (through Ŝb,t) in each
iteration. Thus, by manipulating Ât(p, q), we can reduce the over-
lapping extent of training samples utilized for different hypothe-
ses, and reach the goal of weakening the dependence among these
hypotheses. Also, this has the effect of forcing every hypothesis
produced to more specifically focus on the previously mislabelled
samples, and helps to generalize a more diverse committee of hy-
potheses. On the other hand, the classification ability of the indi-
vidual hypothesis ht is to some extent weakened due to less train-
ing samples being used. This weakening may result in decrease in
the margins of the training samples. However, it should be noted at
this point that there appears to be a trade-off between weak depen-
dence and large expected margins to achieve a low generalization
error [5]. In many cases, the modification of Eq.6 may yield a bet-
ter balance than At(p, q), and thereby lead to a better classification
performance.

With the introduction of At(p, q), Ât(p, q), Ŝb,t and Ŝw,t, we
now can give a new boosting algorithm as depicted in Fig.1, where
either At(p, q) or Ât(p, q) can used to substituted for one another.
It can been seen from Fig.1 that the JD-LDA learner at every it-
eration is tuned to conquer a particular sub-problem generalized
by the feedback D̂t in a manner of similar to automatic gain con-
trol, and they thereby can offer complementary information about



the patterns to be classified. The final solution is a mixture of T
JD-LDA based FR systems by weighted linear combination.

2.3. A cross-validation mechanism to weaken the learner

It should be noted that JD-LDA itself has been a quite strong
learner in terms of classification ability. As a consequence, εt = 0
is often obtained so that the boosting process cannot go forward.
To solve the problem, we have to artificially weaken the JD-LDA
learner by introducing a sort of cross-validation mechanism, with
which only a subset of the entire training set, Rt ⊂ Z , is utilized
to train the individual JD-LDA learner. The subset Rt is formed
in each iteration by choosing r ≤ L hardest examples per class
based on values of Dt(zij), thus |Rt| = C ·r, where |Rt| denotes
the size of Rt. This strategy does not only weaken the JD-LDA
learner, but also enhance the generalization ability of the overall
algorithm due to the introduction of cross-validation. Moreover,
since each time feeds the learner a different subset of the training
examples, this essentially increases the diversity or weakens the
dependence among the hypotheses produced.

3. EXPERIMENTAL RESULTS

3.1. The FR Evaluation Design

A set of experiments are included in this paper to assess the per-
formance of the proposed boosting method (hereafter B-JD-LDA).
To show the high complexity of the face patterns’ distribution, a
middle-size subset of the FERET database [6] is used in the ex-
periments. The subset denoted as G consists of 606 gray-scale im-
ages of 49 people, each one having more than 10 samples. These
images cover a wide range of variations in illumination, facial ex-
pression/details, acquisition time, races and others. We follow the
preprocessing sequence recommended in [6]. Some examples ob-
tained after preprocessing are depicted in Fig.2. For computational
requirement, each image is finally represented as a column vector
of length J = 17154.

Following standard FR practices, the database G is randomly
partitioned into two subsets: the training set Z and test set Q. The
training set is composed of |Z| = L ·C images: L images per sub-
ject are randomly chosen. The remaining images are used to form
the test set Q = G−Z . To enhance the accuracy of the assessment,
the correct recognition rates (CRRs) of all the methods evaluated
here are averaged over five runs. Each run is executed on a random
partition of the database G. Also, it is empirically found that the
selection between At(p, q) and Ât(p, q) is data dependent. For the
experiments reported here, B-JD-LDA with Ât(p, q) slightly out-
performs the one with At(p, q). Thus, for space limitations, only
the results obtained by B-JD-LDA(Ât(p, q)) are reported here.

3.2. The FR Performance Comparison

Besides the proposed B-JD-LDA method and the stand-alone JD-
LDA (without boosting, hereafter S-JD-LDA) method, the most
well-known FR algorithm, the so-called Eigenfaces method [7],
was also implemented to provide a performance baseline. For all
the three methods, the CRR is a function of the number of the
extracted feature vectors, M , and the number of available training
samples per subject, L. Also, B-JD-LDA’s performance is affected
by r, the number of samples per subject that is used to train the
based learner. Although a larger value of r will equivalently lead

Input: A set of training images Z = {(zij , yij)
Ci
j=1}C

i=1

with labels yij = i ∈ Y = {1, · · · , C}; the chosen
weak learner is JD-LDA; and number of iterations T .

Let B = {(i, j, y) : i ∈ Y, j ∈ {1, · · · , Ci}, y �= yij}.
Initialize D̂1(zij , y) = 1

|B| = 1
N(C−1)

, the mislabel
distribution over B.

Do for t = 1, · · · , T :
1. Update the sample distribution: Dt(D̂t), and

the PCDD: At with Eq.3 or Ât with Eq.6.
2. If t = 1 then randomly choose r samples per class

to form a learning set R1 ⊂ Z .
else choose r hardest samples per class based on

Dt to form Rt ⊂ Z .
3. Train a JD-LDA learner with (Rt, Dt, At or Ât).
4. Apply the trained JD-LDA(Rt, Dt, At or Ât)

into Z , and get back corresponding hypothesis
with Eq.2, ht : Z × Y → [0, 1].

5. Calculate the pseudo-loss of ht:
εt = 1

2

∑
(i,j,y)∈B

D̂t(zij , y) (1 − ht(zij , yij) + ht(zij , y)).

6. Set βt = εt/(1 − εt).
If βt = 0, then set T = t − 1 and abort loop.

7. Update the mislabel distribution D̂t:

D̂t+1(zij , y) = D̂t(zij , y) · β(1+ht(zij ,yij)−ht(zij ,y))/2
t .

8. Normalize D̂t+1 so that it is a distribution,

D̂t+1(zij , y) ← D̂t+1(zij ,y)∑
(i,j,y)∈B D̂t+1(zij ,y)

.

Output the final hypothesis,

hf (z) = arg max
y∈Y

T∑
t=1

(
log 1

βt

)
ht(z, y).

Fig. 1. The Algorithm of Boosting JD-LDA (B-JD-LDA).

Fig. 2. Some examples of six people after preprocessing.

to a stronger base learner, it is found in our experiments that B-
JD-LDA would fail to perform well when too weak (e.g. r = 2)
or too strong (e.g. r = 4) base learners are utilized as shown
in Fig.3:A,B. The observations are consistent with the boosting
theories discussed in [3]. Since space limitations prevent us from
presenting all the results within the variation range of r, L and M ,
those depicted in Fig.3 and Table 1 are obtained only from several
representative cases with L = 5, r = 2, 3, 4, and M = 20 being
used.

T iterations of B-JD-LDA produced T JD-LDA hypotheses
ht, and each one was assigned a weight (log 1

βt
), through which



Fig. 3. CRR comparisons as a function of T . A, B, C: Training and
test CRRs of B-JD-LDA with r = 2, 3, 4; D: Individual test CRRs
of T generalized hypotheses, and their corresponding β(×100).

they were linearly combined to form a mixture hf . Although each
hypothesis has its own focus, a hypothesis producing higher CRR
should be given a larger weight overall. The βt and the CRRs
of ht applied to the test set Q individually are shown in Fig.3:D,
from which it can been seen that, although the test CRR of indi-
vidual ht(Q) is only around 70%, their mixture hf can boost the
CRR up to more than 92% as shown in Fig.3:C, where it can be
also observed that B-JD-LDA continued to improve the test CRRs
(hf (Q)) when an appropriate value of r = 3 was used in the
learner, even long after the training CRRs (hf (Z)) had reached
100%, clearly showing the beautiful property of the boosting al-
gorithm as a large margin classifier against the overfitting.

Table 1. Comparisons of the CRRs (%) in five runs.
runs Eigenfaces S-JD-LDA B-JD-LDA

R∗/M∗ R20 R∗/M∗ R20 R20/T ∗

1st 78.4/63 73.1 88.9/30 83.7 91.4/15
2nd 77.8/147 71.5 88.9/30 86.7 93.6/39
3rd 73.1/121 67.9 88.6/32 84.8 93.6/18
4th 78.9/91 71.7 87.3/46 81.7 91.7/36
5th 72.3/131 65.9 87.8/36 80.3 93.1/27

Ave. 76.1/111 70.0 88.3/35 83.4 92.7/27

In addition, a quantitative comparison regarding the CRRs on
the test set Q among the three methods is summarized in Table 1,
where R20 denotes the CRR with M = 20, R∗ denotes the CRR
with the best found M∗, T ∗ denotes the iteration number used to

find the reported R20, and r = 3 was used in B-JD-LDA. Due to
the computational demand, the optimal M for B-JD-LDA was not
sought in the experiment. However, it can be clearly seen from
Table 1 that B-JD-LDA even with the sub-optimal CRRs, R20, has
greatly outperformed Eigenfaces and S-JD-LDA with their best
found results, R∗. The averaged improvement of B-JD-LDA (R20)
against S-JD-LDA (R∗) is around 4.5%, while the improvement is
up to 9.3% given the same value of M(= 20). Also, it should
be noted at this point that only T ∗ = 27 iterations, in average,
are required to find an excellent result using the B-JD-LDA frame-
work. Such a computational cost is affordable for most personal
computers.

4. CONCLUSION

A novel method for face recognition has been introduced in this
paper. The proposed method overcomes the limitations of tradi-
tional LDA techniques by utilizing a boosting algorithm to form a
mixture of LDA models, which can be used to address the nonlin-
earity commonly encountered in complex FR tasks. With the in-
troduction of the PCDD, a strong connection between the boosting
algorithm and the LDA-based learners is built. By manipulating
the PCDD, a set of LDA sub-models can be produced in a manner
of automatic gain control. Unlike most traditional mixture models
that are based on cluster analysis, these sub-models are general-
ized in the context of classification error minimization. The ef-
fectiveness of the proposed method including boosting power and
robustness against overfitting has been demonstrated through ex-
perimentation using the FERET database. It is anticipated that in
addition to JD-LDA, the performance of other LDA variants may
be greatly enhanced through the B-JD-LDA framework.
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