
A KERNEL MACHINE BASED APPROACH FOR MULTI-VIEW FACE RECOGNITION

Juwei Lu, K.N. Plataniotis, A.N. Venetsanopoulos

Multimedia Laboratory
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, M5S 3G4, ONTARIO, CANADA

ABSTRACT

Techniques that can introduce low-dimensional feature rep-
resentation with enhanced discriminatory power is of para-
mount importance in face recognition applications. It is
well known that the distribution of face images, under a
perceivable variation in viewpoint, illumination or facial ex-
pression, is highly nonlinear and complex. It is therefore,
not surprising that linear techniques, such as those based on
Principle Component Analysis (PCA) or Linear Discrimi-
nant Analysis (LDA) cannot provide reliable and robust
solutions to those complex face recognition problems. In
this paper, we propose a kernel machine based discrimi-
nant analysis method, which deals with the nonlinearity
of the face patterns’ distribution. The proposed method
also effectively solves the “small sample size” (SSS) problem
which exists in most face recognition tasks. The new algo-
rithm has been tested, in terms of error rate performance,
on the multi-view UMIST Face Database. Results indi-
cate that the proposed methodology outperform other com-
monly used approaches, such as the Kernel-PCA (KPCA)
and the Generalized Discriminant Analysis (GDA).

1. INTRODUCTION

Feature selection for face representation is one of central
issues to face recognition (FR) systems. Among various so-
lutions to the problem, the most successful are those based
on statistical pattern recognition techniques such as PCA
and LDA. These methods, including the well known meth-
ods of Eigenfaces [1] and Fisherfaces [2], generally operate
directly on images or appearances of objects and avoid dif-
ficulties in 3D modeling.

When it comes to solving problems of pattern classifi-
cation, research indicates that LDA based algorithms out-
perform PCA based approaches, since the former optimizes
the low-dimensional representation of the objects with fo-
cus on the most discriminant feature extraction while the
latter achieves simply object reconstruction [2, 3, 4]. How-
ever, many LDA based algorithms suffer from the so-called
“small sample size” (SSS) problem which exists in high-
dimensional pattern recognition tasks where the number of
available samples is smaller than the dimensionality of the
samples [2, 3, 4]. The traditional solution to the SSS prob-
lem is to utilize PCA concepts in construction with LDA
(PCA+LDA) for example in Fisherface [2]. Recently, more
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effective solutions, called Direct LDA (D-LDA) methods,
have been presented [3, 4]. Although successful in many
cases, these linear methods fail to deliver good performance,
when face patterns are subject to large variations in view-
points, resulting in a highly non convex and complex dis-
tribution. The limited success of these methods should be
attributed to their linear nature. As a result, it is reasonable
to assume that a better solution to this inherent nonlinear
problem could be achieved using nonlinear methods.

In this paper, motivated by the success of Support Vec-
tor Machines (SVM) [5], KPCA [6] and GDA [7] in pattern
regression and classification tasks, we propose a new ker-
nel machine based discriminant analysis algorithm for face
recognition. The algorithm combines the strengths of the
traditional D-LDA and kernel machine algorithms while at
the same time overcomes many of their shortcomings and
limitations. In the proposed here method, following the
SVM paradigm, we first nonlinearly map the original input
space to an implicit high-dimensional feature space, where
the distribution of face patterns is hoped to be linearized
and simplified. Then, a new variant of the D-LDA method
is introduced to effectively solve the SSS problem and de-
rive a set of optimal discriminant basis vectors in the feature
space. The proposed variant of D-LDA avoids a problem re-
sulting from the wage of the zero eigenvalues of the within-
class scatter matrix as possible divisors in [4]. Therefore,
the proposed algorithm can be seen as an enhanced kernel
D-LDA method (hereafter KDDA).

2. METHODS

The problem to be solved can be stated as follows: A set of
L training face images {zi}L

i=1, each of which is defined as a

vector of length N(= Iw × Ih), i.e. zi ∈ RN , where Iw × Ih

is the face image size and RN denotes a N-dimensional real
space, is available. Each image belongs to one of C classes
{Zi}C

i=1, and each class Zi contains Ci images, resulting to

L = C
i=1 Ci. Our objective is to find a transformation

ϕ, based on optimization of certain separability criteria, to
produce a mapping yi = ϕ(zi), which leads to an enhanced
separability of different face objects.

2.1. Direct LDA (D-LDA)

Let SBTW and SWTH denote the between- and within-class
scatter matrices of the training set {zi}L

i=1. The LDA tech-
nique finds a set of optimal discriminant basis vectors, de-
noted by Ψ = [ψ1, . . . , ψM ], in such a way that the ratio
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of SBTW and SWTH is maximized. The maximization is
equivalent to solve the following eigenvalue problem,

Ψ = arg max
Ψ

(ΨT SBTW Ψ)

|(ΨT SWTHΨ)| (1)

In most cases, the number of training samples L is much
smaller than the dimensionality N leading to a degener-
ated SWTH , which produced the SSS problem. Traditional
methods including the GDA and Fisherfaces solve the SSS
problem just by removing null space from SWTH . Never-
theless, it has been shown that the null space may contain
significant discriminant information [3, 4].

Recently, Yang et al. [4] and Chen et al. [3] proposed
direct LDA (D-LDA) algorithms respectively to solve the
SSS problem without losing significant discriminant infor-
mation. The basic idea behind the algorithms is that the
null space of SWTH may contain significant discriminant
information if the projection of SBTW is not zero in that
direction, and that no significant information will be lost if
the null space of SBTW is discarded. Assuming, for exam-
ple, that A and B represent the null space of SBTW and
SWTH respectively, the complement space of A and B can
be written as A′ = R

N − A and B′ = R
N − B. Then,

the optimal discriminant subspace sought by the D-LDA
algorithm is the intersection space (A′ ∩ B).

The difference between Chen’s and Yang’s methods is
that Yang’s method firstly diagonalizes SBTW to find A′,
while Chen’s method firstly diagonalizes SWTH to find B.
Although there is no significant difference between the two,
it may be intractable to calculate B when the size of SWTH

is large, which is the case in most FR tasks.

2.2. Kernel Direct Discriminant Analysis (KDDA).

Let φ : z ∈ RN → φ(z) ∈ F be a nonlinear mapping from
the input space to a high-dimensional feature space F with
linear properties. The KDDA attempts to implement an
improved D-LDA in the feature space.

2.2.1. Eigen-analysis of SBTW in the Feature Space

We start by solving the eigenvalue problem of SBTW , which

can be expressed as: SBTW = C
i=1

˜̄φi
˜̄φi

T
= ΦbΦT

b , where

Φb = ˜̄φ1 · · · ˜̄φc , ˜̄φi = Ci
L

φ̄i − φ̄ , φ̄i = 1
Ci

Ci
j=1 φ(zij)

is the mean of class Zi and φ̄ = 1
L

L
n=1 φ(zn) is the mean

of the ensemble. Since the dimensionality of the feature
space F, denoted as N ′, could be arbitrarily large or possi-
bly infinite, it is intractable to directly compute the eigen-
vectors of the (N ′ × N ′) matrix SBTW . Fortunately, the
first m (≤ C − 1) most significant eigenvectors of SBTW ,
which correspond to non-zero eigenvalues, can be indirectly
derived from the eigenvectors of ΦT

b Φb (with size C × C).
Computing ΦT

b Φb, requires dot product evaluation in
F. This can be done in a manner similar to the one used
in SVM by utilizing kernel machine methods. For any
φ(zi), φ(zj) ∈ F, we assume that there exists a kernel func-
tion k(·) such that k(zi, zj) = φ(zi) · φ(zj). The introduc-
tion of the kernel function allows us to avoid the explicit
evaluation of the mapping. Typical kernel functions that

can be used for the task, include polynomial function, ra-
dial basis function (RBF) and multi-layer perceptrons [5].

Using the kernel function, for two arbitrary classes Zl

and Zh, a Cl × Ch dot product matrix Klh can be defined
as: Klh = (kij) i=1,···,Cl

j=1,···,Ch

, where kij = k(zli, zhj). For all

of classes {Zi}C
i=1, we can define a L × L kernel matrix

K = (Klh) l=1,···,C
h=1,···,C

, which allows us to express ΦT
b Φb as:

ΦT
b Φb = 1

L
B · (AT

LC · K · ALC − 1
L

(AT
LC · K · 1LC)−

1
L

(1T
LC · K · ALC) + 1

L2 (1T
LC · K · 1LC)) · B

where B = diag
√

C1 · · · √
Cc , 1LC is a L × C matrix

with terms all equal to: one, ALC = diag [ac1 · · · acc ] is
a L × C block diagonal matrix, and aci is a Ci × 1 vector
with all terms equal to: 1/Ci.

Let λi and ei be the i-th eigenvalue and its correspond-
ing eigenvector of ΦT

b Φb, where i = 1 · · ·C, sorted in de-
creasing order of eigenvalues. Thus, vi = Φbei is the eigen-
vector of SBTW . To remove the null space of SBTW , we
only use its first m (≤ C−1) eigenvectors whose correspond-
ing λi > 0, denoting them as V = [v1 · · · vm] = ΦbEm,
and it is not difficult to see that VT SBTW V = Λb, where
Em = [e1 . . . em] and Λb = diag[λ2

1 · · · λ2
m], a m × m

diagonal matrix.

2.2.2. Eigen-analysis of SWTH in the Feature Space

Let φij = φ(zij), SWTH can be expressed as: SWTH =
1
L

C
i=1

Ci
j=1 (φij − φ̄i)(φij − φ̄i)

T .

Let U = VΛ
−1/2
b . Projecting SBTW and SWTH into

the subspace spanned by U, we have UT SBTW U = I and

UT SWTHU = (EmΛ
−1/2
b )T (ΦT

b SWTHΦb)(EmΛ
−1/2
b ). Us-

ing the kernel matrix K, we can obtain a close form expres-
sion of ΦT

b SWTHΦb = 1
L

(J1 − J2), where

J1 = 1
L
B · (AT

LC · K · K · ALC − 1
L

(AT
Nc · K · K · 1LC)−

1
L

(1T
LC · K · K · ALC) + 1

L2 (1T
LC · K · K · 1LC)) · B

J2 = 1
L
B(AT

LCK · W · KALC − 1
L

(AT
LCK · W · K1LC)−

1
L

(1T
LCK · W · KALC) + 1

L2 (1T
LCK · W · K1LC))B

where W = diag [w1 · · · wc] is a L × L block diagonal
matrix, and wi is a Ci ×Ci matrix with terms all equal to:
1

Ci
.

Then, diagonalize UT SWTHU which is a tractable ma-
trix with size m × m, and let pi be the i-th eigenvector of
UT SWTHU, where i = 1 · · ·m, sorted in increasing order
of pi’s corresponding eigenvalue λ′

i. In the set of ordered
eigenvectors, those that correspond to the smallest eigenval-
ues should be considered the most discriminative features,
which maximize the ratio in Eq.1. We can optionally dis-
card those eigenvectors with the largest eigenvalues, and de-
note the M(≤ m) selected eigenvectors as P = [p1 · · · pM ].
Let Q = UP, and thus QT SWTHQ = Λw , with Λw =
diag[λ′

1 · · · λ′
M ], a M × M diagonal matrix.

Based on the calculations presented above, a set of op-
timal discriminant feature vectors can be derived through

Γ = QΛ
−1/2
w . The features form a low-dimensional sub-

space in F, where the ratio in Eq.1 is maximized. Similar to
the D-LDA framework, the subspace obtained contains the
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intersection space (A′ ∩ B) shown in section 2.1. However,
it is possible that there exist eigenvalues with λ′

i = 0 in Λw.
To alleviate the problem, any value below ε is promoted to ε
(a very small value) in [4]. Obviously, performance heavily
depends on the proper choice of the value ε, which is done
in a heuristic manner [4].

To avoid the problems related to the heuristic evaluation
of the parameter ε, we propose to use a modified Fisher’s
criterion instead of the conventional definition used in Eq.1
when UT SWTHU is singular. The new criterion can be
expressed as:

Ψ = arg max
Ψ

(ΨT SBTW Ψ)

|(ΨT SBTW Ψ) + (ΨT SWTHΨ)| (2)

The modified Fisher’s criterion of Eq.2 has been proved to
be equivalent to the conventional one (Eq.1) in [8].

The expression UT (SBTW + SWTH )U which is used in
Eq.2 instead of the UT SWTHU can be shown to be non-
singular by the following lemma (its proof is not difficult).

Lemma 1 Suppose D is a real matrix of size N × N , and
can be represented by D = ΦΦT where Φ is a real matrix of
size N×M. Then, (I+D) is positive definite, i.e. I+D > 0,
where I is a N ×N identity matrix.

Similar to SBTW , SWTH can be expressed as SWTH =
ΦwΦT

w , resulting in UT SWTHU = (UT Φw)(UT Φw)T . Since
UT SWTHU satisfies the conditions on D discussed in Lemma
1 and UT SBTW U = I, it can be easily seen that UT (SBTW +
SWTH )U is positive definite, resulting in a non-singular ma-
trix: QT (SBTW + SWTH)Q = Λw.

2.2.3. Dimensionality Reduction and Feature Extraction

For any input pattern z, its projection into the subspace
spanned by Γ, can be calculated by y = ΓT φ(z).

Let γ(φ(z)) = [ φT
11φ(z) φT

12φ(z) · · · φT
ccc

φ(z) ]T be
a L × 1 kernel vector. After rearrangement, we can obtain
y = Θ · γ(φ(z)), where

Θ =
1√
L

Em · Λ
−1/2
b · P · Λ−1/2

w

T

B · AT
LC − 1

L
1T

LC

is a M × L matrix which can be calculated offline.

Thus, through y = Θ · γ(φ(z)), a low-dimensional rep-
resentation y on z with enhanced discriminant power has
been introduced.

3. EXPERIMENTAL RESULTS

Two sets of experiments are included in the paper to demon-
strate the effectiveness of the proposed KDDA algorithm.
To show the high nonlinearity and complexity of the face
patterns’ distribution, the multi-view UMIST face data-
base, consisting of 575 gray-scale images of 20 people, is
used in the experiments. Fig.1 summarizes sample images
of a typical subset in the database.

Fig. 1. Some samples from the UMIST database.

3.1. Distribution of Multi-view Face Patterns

The first experiment aims to provide insights on how the
KDDA linearizes and simplifies the face pattern distribu-
tion. For the sake of simplicity in visualization, we only use
a subset of the database, which contains 170 images of 5
randomly selected subjects (classes). Four types of feature
bases are generalized from the subset by utilizing the PCA,
KPCA, D-LDA and KDDA algorithms respectively. For
each image, its projections in the first two most significant
feature bases of each subspace are visualized in Fig.2-3.

Fig. 2. Distribution of 170 samples of 5 subjects in A:
PCA-based subspace and B: KPCA-based subspace.

Fig. 3. Distribution of 170 samples of 5 subjects in A: D-
LDA-based subspace and B: KDDA-based subspace.

In Fig.2, the visualized projections are the first two
most significant principal components extracted by PCA
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and KPCA, and they provide a low-dimensional represen-
tation for the samples, which can be used to capture the
structure of data. Thus we can roughly learn the original
distribution of the samples from Fig.2:A, which is non con-
vex and complex as we expected. In Fig.2:B, KPCA gener-
alizes PCA to its nonlinear counterpart using a RBF kernel:
k(z1, z2) = exp(−||z1 − z2| |2/σ2) with σ2 = 5e6. It is hard
to find any useful improvement for the purpose of pattern
classification from Fig.2:B. It can be therefore concluded
that the low-dimensional representation obtained by PCA
like techniques are not necessarily useful for classification.

Fig.3 depicts the first two most discriminant features ex-
tracted by the D-LDA and KDDA respectively. Obviously,
these features outperform, in terms of discriminant power,
those obtained using the PCA technique. However, subject
to limitation of linearity, some classes are still non-separable
in the D-LDA-based subspace as shown in Fig.3:A. In con-
trast to this, we can see the linearization property of the
KDDA-based subspace, depicted in Fig.3:B, where all of
classes are well linearly separable when a RBF kernel with
σ2 = 5e6 is used.

3.2. Comparison with KPCA and GDA

The second experiment compares the KDDA to the KPCA
and the GDA in terms of the error rates. The FR procedure
is completed in two stages: (1) Feature extraction. The
overall database is randomly partitioned into two subsets:
a training set and a test set. The training set is composed of
120 images: 6 images per person are randomly chosen. The
remaining 455 images are used to form the test set. There
is no overlapping between the two. Then, both of them
are projected into the feature spaces derived by the KPCA,
D-LDA and KDDA methods. (2) Classification. This is
implemented by feeding feature vectors obtained in step-1
into a nearest neighbor classifier.

Fig. 4. Comparison of error rates, where ‘-.’: KPCA, ‘:’:
GDA and ‘-’: KDDA. A: error rates as functions of σ2. B:
error rate as functions of M .

The obtained error rates of the three methods when a
typical RBF kernel is used, is depicted in Fig.4. Fig.4:A
shows the error rates as functions of σ2 within the range
from 0.5e7 to 1.5e8, when the optimal number of feature
vectors: (M = Mopt) is used. The optimal number can be
found by searching the number of used feature vectors that
results in the minimal summation of the error rates over
the variation range of σ2. In Fig.4:A, Mopt = 99 is found

for KPCA, Mopt = 19 for GDA and Mopt = 19 for KDDA.
Fig.4:B shows the error rates as functions of M within the
range from 5 to 19, when optimal σ2 = σ2

opt is used. Similar
to Mopt, σ2

opt means the variance that results in the minimal
summation of the error rates over the variation range of M .
σ2

opt = 1.5e8 is found for KPCA, σ2
opt = 5.3333e7 for GDA

and σ2
opt = 1.3389e7 for KDDA in Fig.4:B.

Let αM and βM be the error rates of KDDA and any
one of other two methods respectively. From Fig.4:B, we
can obtain an interesting quantity comparison: the average
percentages of the error rates of KDDA over those of other
methods by 19

M=5 (αM/βM ). The results show that the
average error rate of KDDA is only about 33.669% and
47.866% of those of KPCA and GDA respectively.

4. CONCLUSION

A new method for face recognition has been introduced in
this paper. The proposed method combines kernel-based
methodologies with discriminant analysis techniques. The
kernel function is utilized to map the original face patterns
to a high-dimensional feature space, where the highly com-
plex distribution of face patterns is linearized and simpli-
fied, so that linear discriminant techniques can be used for
feature extraction. The SSS problem caused by high dimen-
sionality of mapped patterns, is addressed by an improved
D-LDA technique. Experimental results indicate that the
performance of the KDDA algorithm is overall superior to
that obtained by the KPCA or GDA approaches.
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