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Abstract—A zooming framework suitable for single-sensor dig-
ital cameras is introduced and analyzed in this paper. The pro-
posed framework is capable of zooming and enlarging data ac-
quired by single-sensor cameras that employ the Bayer pattern as
a color filter array (CFA). The approach allows for operations on
noise-free data at the hardware level. Complexity and cost imple-
mentation are thus greatly reduced. The proposed zooming frame-
work employs: 1) a spectral model to preserve spectral character-
istics of the enlarged CFA image and 2) an adaptive edge-sensing
mechanism capable of tracking the underlying structural content
of the Bayer data. The framework readably unifies numerous so-
lutions which differ in design characteristics, computational effi-
ciency, and performance. Simulation studies indicate that the new
zooming approach produces sharp, visually pleasing outputs and
it yields excellent performance, in terms of both subjective and ob-
jective image quality measures.

Index Terms—Bayer pattern, color filter array (CFA), demo-
saicking, digital still camera, image restoration, interpolation,
zooming.

I. INTRODUCTION

THE commercial proliferation of single-sensor digital cam-
eras (Fig. 1)1 and their use in novel applications, such as

wireless phones, sensor networks, pocket devices, surveillance,
and automotive apparatus, have increased the demand for new
algorithmic and technical developments in the area of color filter
array (CFA) image filtering [1], [2], demosaicking [3]–[7], post-
processing [8], compression [9]–[11], and zooming [12]–[14].
Most solutions are designed to operate on the Bayer pattern2

which provides an array or mosaic of red (R), green (G) and blue
(B) color components (Fig. 2) [17]. Since only a single color
component is available at each spatial location, the so-called
CFA interpolation [3], [18], [19] or demosaicking [4], [5], [20]
process is employed in the imaging pipeline to produce the full
color (RGB) camera output.

The camera acquires the scene by first (Fig. 1) focusing and
transmitting the light through the Bayer CFA and then sam-
pling the visual information using the charge-coupled device
(CCD) [21], [22] or complementary metal–oxide semiconductor
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1The figures in this paper can be seen in color at http://www.dsp.utoronto.ca/
~lukacr/color3.pdf.

2By allocating more spatial samples (50%) to the Green plane, the Bayer pat-
tern improves the perceived sharpness of the digital image [3] since it is well
known that the human visual system (HVS) is more sensitive to luminance
which is composed primarily of green light [15], [16].

(CMOS) [23], [24] sensor,3 and an analog-to-digital (A/D) con-
verter. The DRAM buffer temporally stores the digital data from
the A/D converter and then passes them to the application-spe-
cific integrated circuit (ASIC) which realizes the digital data
processing operations such as demosaicking [25], [26]. The de-
mosaicking step [Fig. 3(a)] essentially performs spectral inter-
polation since it [1], [8], [27]: 1) re-arranges the acquired gray-
scale (scalar) sensor data to the RGB vectorial field; 2) com-
pletes missing color components from the adjacent Bayer data
using an interpolator operating in the spectral (color) domain,
and 3) preserves the dimensions (spatial resolution) of the input
image by generating an output image with spatial dimensions
identical to those of the input.

Since the cost of digital cameras rapidly increases with
optical zooming and Megapixel capturing capabilities, to keep
it at a reasonable level, camera manufacturers produce cameras
capable of performing digital zooming. An image zooming
technique [Fig. 3(b)] performs spatial interpolation since it
[1], [28], [29]: 1) enlarges the spatial resolution of the input
image; 2) completes the missing data from the spatially ad-
jacent data using some type of the interpolation operations;
and 3) preserves the spectral representation of the input image.
In other words, a zooming solution operating on a gray-scale
image, such as CFA image, generates a gray-scale image of
different spatial dimensions but not a color image. As can
be seen from the above listings and the example shown in
Fig. 3, the demosaicking and zooming processing steps are
fundamentally different in terms of their functionality, although
they often employ similar, if not identical, signal processing
concepts. Finally, it should be noted that both demosaicking
and zooming operations are probably the most commonly
performed processing operations in digital cameras.

In this paper, a unique edge-sensing CFA zooming frame-
work for single-sensor imaging devices is introduced. Instead
of replicating CFA pixels as was done in [12], [30], the new
method generalizes the proposal of [14] and assigns original
CFA pixels to positions in an enlarged CFA image using, in
a systematic way, nonlinear, edge-sensing spatial interpolators.
Unlike the approach of [14], the proposed solution constitutes
a powerful framework that unifies previously presented results
and ensures compatibility with demosaicking schemes such as
those listed in [3], [4], [18], [19], and [31]. In particular, by em-
ploying the spectral modeling approaches of [8], [27], [32], and
[33], the proposed zooming framework incorporates the spectral
image characteristics into the spatial interpolation process to en-
hance performance. To eliminate the blurred details caused by

3Since the sensor is essentially a monochromatic device, the raw sensor data
captured by a single-sensor camera constitutes a gray-scale image [4], hereafter
called the CFA image.
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Fig. 1. Hardware components used in a conventional single-sensor digital camera.

Fig. 2. RGB Bayer CFA pattern [17] with the GRGR phase in the first row. In
this CFA, green color filters are arranged in a quincunx lattice format, whereas
red and blue color filters are arranged in a rectangular lattice format.

the lack of edge sensitivity in the nonadaptive linear interpola-
tion approach of [14], the proposed framework utilizes a variety
of edge-sensing mechanisms. Thus, the missing CFA data in the
spatially enlarged Bayer image are interpolated using spectral,
spatial, and structural information. The nonlinear, data-adaptive
nature of the solution sets it apart from all previously proposed
CFA zooming approaches including the linear solution of [14].
To the best of the authors’ knowledge, the approach proposed
here is the first attempt to devise an adaptive, spectral mod-
eling-based zoomer. Results included in this paper show that the
proposed solution produces sharp, visually pleasing color out-
puts with excellent fidelity in both color and structural content.

The remainder of this paper is organized as follows. The
state-of-the-art image zooming techniques are briefly described
in Section II. The proposed method is introduced in Section III.
Motivation and design characteristics are discussed in detail.
In Section IV, the proposed framework is tested using a variety
of images. Performance comparisons with relevant zooming
approaches are provided. Evaluations are performed in terms
of commonly used image quality measures both subjectively

Fig. 3. Main differences between demosaicking and zooming operations: (a)
demosaicking transforms a gray-scale (scalar) CFA-sensor image to a full color
(vector) image of the same spatial dimensions while (b) zooming transforms a
gray-scale image to an enlarged gray-scale image, or it transforms a color image
to an enlarged color image.

and objectively. The computational complexity of the proposed
method is analyzed in Section V. Finally, this paper concludes
in Section VI.

II. PRIOR ART

When single-sensor digital cameras are used, the spatial res-
olution of the acquired, displayed, and transmitted color images
can be increased in two ways, namely as follows:

• demosaicked image zooming [Fig. 4(a)], which employs a
demosaicking scheme at the first processing stage to pro-
duce a full color image. The spatial resolution of the de-
mosaicked image is then increased using a color image
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Fig. 4. Image zooming in digital still cameras: (a) demosaicked image zooming operating in the RGB color domain and (b) CFA image operating in the Bayer
CFA domain.

zooming technique operating on the RGB color vectors
[1], [28], [38];

• CFA image zooming [Fig. 4(b)], which operates directly
on the CFA data [12]–[14]. An enlarged CFA image is gen-
erated by zooming in the CFA domain. In the sequence,
the enlarged CFA image is processed by the demosaicking
algorithm producing a full color output image of the in-
creased spatial resolution.

A. Demosaicked Image Zooming

Most of the demosaicked (color) image zooming methods de-
veloped in the last few years are classified into [29]:

• nonadaptive (conventional) interpolation techniques: they
utilize an interpolation function, which is indiscriminately
applied to the whole images;

• adaptive methods: they analyze the local structure of the
source image and then utilize different areas of support to
assist the interpolation process.

In general, conventional interpolation techniques such
as pixel replication, bilinear interpolation, and spline-based
method produce enlarged color images which suffer from
aliasing, edge burring, jagged lines or blockiness, and false
colors [28]. The degradation in image quality is due to the
deviation from the assumptions of ideal low-pass filtering,
which forms the basic framework for most of those methods.
Other approaches such as those based on Markov random field
models produce better results in terms of image fidelity, how-
ever, at a higher computational cost due to the large number
of design parameters [34]. Adaptive interpolation methods
[29], [35]–[37] incorporate structural information into the in-
terpolation process and preserve the image details better when
compared to conventional schemes. Finally, it should be noted
that all of the above-mentioned methods separately process
each color channel, which often leads to the introduction of
color artifacts. To alleviate the problem, vector techniques [1],
[28], [38] based on the theory of robust order-statistics [39],
have been introduced. The vectorial nature of these techniques
reduces the presence of most color artifacts and eliminates
shifted color edges [1].

Visual inspection of the single-sensor image processing
pipeline shown in Fig. 4(a) suggests that the quality of the
demosaicked, enlarged output image depends on several fac-
tors, not the least of which is the demosaicking scheme’s
performance. The demosaicking efficiency and the color image
zooming precision usually determine the overall performance.
It has been widely observed that most demosaicking approaches
introduce an initial inaccuracy mainly in the form of blurred
edges and false colors [8], [31], [40]. Increasing the spatial

resolution of such a demosaicked image, using digital spatial
interpolation, means that missing image pixels in the enlarged
image are often interpolated from inaccurate estimated values.
Therefore, spatial interpolators, both nonadaptive and adaptive,
simply amplify imperfections and visual impairments which
have been introduced in the preceding demosaicking step.
Moreover, digital spatial interpolation in the RGB domain may
require the use of an additional software components. The
CFA image data zooming [Fig. 4(b)] may represent a more
viable alternative in producing enlarged demosaicked images
especially for the slim, easy-to-use, high-quality ultrapocket
devices and the next generation of digital cameras [12], [13],
and its principles are briefly discussed in the next subsection.

B. CFA Image Zooming

By operating on the CFA data directly [12]–[14], the de-
signers avoid zooming on the RGB vectors where imperfections
or noise introduced during demosaicking may create visual im-
pairments. The adaptive technique of [12] and [30] depend on
two global parameters which are used to determine the direc-
tion in which the interpolation process is directed. The technique
operates in a four-stage processing mode in order to complete
the enlargement. Since the scheme does not proportionally rep-
resent the contribution of the inputs, the method often fails in
high-frequency image areas blurring the image. The linear non-
adaptive CFA zooming scheme of [14] is a fully automated so-
lution, as it requires no user assistance and does not depend on
global parameters. The interpolator in [14] does not utilize any
edge information, and it simply performs an averaging operation
over the four neighboring inputs. The use of the Bayer pattern
configuration and the utilization of the spectral characteristics
of the Bayer data significantly boosts its efficiency, making it a
candidate solution for CFA image zooming. However, the lack
of edge-sensing ability results in blurred fine details and shifted
color edges in the final restored (color) output.

Improving the visual quality, especially in terms of image
sharpness, can be obtained by using edge-sensing CFA zooming
schemes [13], [41]–[43]. The use of edge-sensing weighting
coefficients ensures that the zoomer is able to follow the non-
linearities and structural content of the input image. Unfortu-
nately, the utility of the approach in [41] is limited due to the
fact that the edge-sensing process is controlled by a user set
parameter. Early attempts to introduce an automated, adaptive
edge-sensing scheme using weights defined through inversely
proportional gradients [42] or aggregated gradients [13], [43]
have generated promising results and prompted the development
of the framework reported here.

Using the novel and unique processing approach depicted in
Fig. 5, the above-listed developments are unified into a new,



1478 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 11, NOVEMBER 2005

Fig. 5. Unique construction elements used in the proposed CFA image
zooming framework.

powerful CFA image zooming framework. The framework em-
ploys an edge-sensing mechanism and a spectral model to re-
duce edge blurring and to minimize the color artifacts present
in the enlarged output. By utilizing the twice averaging oper-
ator (low-pass filter) in the interpolator’s kernel, the proposed
approach has been robustified against noise present in the input
data. It should be emphasized that the noise-free term is used
throughout the paper to denote our assumption that the original
(unprocessed) CFA data captured by the sensor are noise-free.
This assumption is needed for comparison purposes since all
previously defined spatial interpolators operate exclusively on
noise-free inputs.

III. PROPOSED ZOOMING SCHEME

Let us consider a Bayer image
with the pixels representing the data received from the
A/D converter and characterizing the image row (for

) and column (for ). Using
the commonly accepted Bayer CFA pattern with the GRGR
phase in the first row (Fig. 2), the Bayer image contains the R
components at (odd , even ) and the B components at (even ,
odd ). The rest of locations, namely (odd , odd ) and (even ,
even ), correspond to the G components. To increase the spatial
resolution of , camera hardware components such as the ASIC
and the microprocessor [26] can easily be designed to perform
the zooming operation directly on the Bayer data.

Fig. 5 shows the basic construction elements of the proposed
framework. As it can be seen, the characteristics of the zooming
procedure are essentially determined by the edge-sensing mech-
anism and the spectral model. The edge-sensing mechanism is
used here to preserve the sharpness and structural information
of the enlarged image. Its role within the proposed zooming
framework will be described in the sequence. The second essen-
tial component—spectral model4 (Fig. 6)—is used to preserve
the spectral correlation that exists between the color compo-
nents. Since natural RGB images exhibit strong spectral corre-
lation characteristics [1], [15], [16], both researchers and practi-
tioners in the camera image processing community rely on spec-
tral models, such as the color-ratio model [32], the normalized
color-ratio models [8], [27], and the color-difference model [33]
to eliminate spectral artifacts and color shifts. Following the

4Any spectral model for CFA image processing is essentially constructed
using the spectral quantity formation and spectral normalization blocks [7], [27].

Fig. 6. Spectral model-based versus conventional interpolator’s architectures.
(a) The use of the spectral model in the interpolation procedure requires: 1)
to transform image data to spectral quantities which are used as the input for
an interpolator and 2) to normalize the interpolated, output spectral quantity
to obtain the output image intensity. (b) The omission of the spectral model
reduces the proposed architecture to the conventional interpolator’s architecture
operating directly on image data.

dominant contribution of the G information to human percep-
tion and the large number of Bayer G CFA locations, a common
feature in all of these models is that they incorporate RG or BG
spectral characteristics into the interpolation process. Since the
main objective of this study is to introduce the CFA zooming
framework, the color-difference model is used throughout this
paper as the spectral model, due to its simplicity and pervasive
use in the CFA related literature. However, the proposed frame-
work allows easily the utilization of other more sophisticated
spectral models such as those described in [8] and [27]. Pre-
liminary results on the use of sophisticated spectral models in
demosaicking have been reported recently [7], [27], while an
analytical investigation is currently under way.

A. Mapping of the CFA Data Into the Enlarged CFA Image

Zooming the Bayer CFA data by a factor of results in
a zoomed Bayer image . The zooming
factor can be an arbitrary positive integer, however, the
value is selected here to facilitate the discussion. As-
suming the aforementioned setting, the use of the conventional
zooming procedure maps the original CFA data with spa-
tial coordinates and into the enlarged image as follows:

(1)

where the values denote the new rows and columns (e.g.,
of zeros) added to the original data.

Operating on the Bayer data in this way destroys the struc-
ture of the Bayer pattern, since R and B components from the
original Bayer image are used to fill in positions reserved
for G samples in the enlarged Bayer image [Fig. 7(a)]. This
atypical arrangement destroys the Bayer mosaic in and pro-
hibits the subsequent utilization of any Bayer CFA-based de-
mosaicking procedure. In conclusion, conventional zooming ap-
proaches cannot be used to perform image enlargement in the
Bayer CFA domain.
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Fig. 7. Bayer pattern zooming by (a) the standard zooming approach, which destroys the structure of the Bayer pattern (color elements do not correspond to
Bayer color positions) and (b) the proposed method continuing in (c)–(h).

To zoom the Bayer data and at the same time preserve the
basic structuring assumption behind the CFA, at first the original
sensor data should be assigned unique positions corresponding
to the proper Bayer structure of the enlarged image as follows
[Fig. 7(b)] [13], [14]:

for odd and
for even and odd
otherwise

(2)

where and denote coordinates in the original (small) Bayer
image .

B. Proposed Edge-Sensing Interpolator for CFA Zooming

Upon completion of (2), the zooming process interpolates the
missing CFA data corresponding to the empty positions of
shown in Fig. 7(b). Due to the fact that the G components occur
twice as frequently compared to the R and the B values, the
proposed algorithm starts the interpolation at pattern locations
with missing G components.

It can be easily observed in Fig. 8(a) that the missing G com-
ponents are surrounded by four original G components which
form a diamond-shape mask on the image lattice. To proportion-
ally represent the contribution of the adjacent G components, a
missing G component is obtained using the spatial interpolator
shown in Fig. 9(a) as follows:

(3)

where . The
term , for , and

, , denotes the spatial
position of the estimated G values in the enlarged Bayer image
and denotes the
area of support. The averaged values are defined using
any two of the original G neighbors , ,
and as follows:

(4)

resulting thus, for , in six possible values
.

Visual inspection of Fig. 8(a) reveals that the averaged
quantities and are defined in the vertical and

horizontal directions, respectively, whereas , ,

, correspond to diagonal directions. Each of

the six averaged quantities is associated with a posi-

tive, real-valued, edge-sensing weighting coefficient
defined, in general, as follows:

(5)

where is a function of the absolute difference between the
CFA inputs and . The properties of a weight such
as the one in (5), which is calculated over the inversely pro-
portional gradients as well as the physical
meaning of the definition are discussed in detail in [13] and [27].
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Fig. 8. Spatial arrangements of the CFA inputs used to define the averaged quantities z for a zooming factor of 2: (a) � = f(p� 2; q); (p; q� 2); (p; q+
2); (p+2; q)g, (b) � = f(p�1; q�1); (p�1; q+1); (p+1; q�1);(p+1; q+1)g, and (c) � = f(p�2; q�2); (p�2; q+2); (p+2; q�2);(p+2; q+2)g.
The spatial arrangements (a) and (b) are used to interpolate the values corresponding to G CFA locations, whereas arrangements (c) and (a) are used to interpolate
the values corresponding to R or B CFA locations. Bold, dashed, and dotted lines are used to demonstrate the averaging quantities defines in diagonal, horizontal,
and vertical directions, respectively.

Fig. 9. Architecture of the proposed zooming solution: (a) spatial interpolator operating over the G samples within the neighborhood � and (b) spectral
model-based spatial interpolator operating over R (or B) samples within the neighborhood � and spatially shifted G samples. The framework allows for the
utilization of the various edge sensing mechanisms defined in (6)–(11) and/or the various spectral models in [8], [27], [32], [33].

In addition to the properties, the actual shape of the function
determines the efficiency of the weights’

implementation, [44]. A cost-effective, easy-to-implement
function is the one initially proposed in [42]

(6)

A more sophisticated form of (6) can be obtained using the
aggregated distance concept of [13], [43]

(7)

where . How-
ever, any improvement in terms of performance is obtained at
the expense of higher complexity.

Depending on the design’s performance/complexity tradeoff,
more computationally advanced solutions can be devised. One
such solution uses the concept of the -trimmed mean [39].
Based on the comparisons between the gradient values and the
threshold, the extreme observations in the interpolator’s input
are eliminated. In this way, (3) is robustified against atypical,
noise-like, inputs which may degrade the performance if they
are left unchecked. The corresponding -trimmed edge-sensing
weights are defined as

if
otherwise

(8)
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where is a predefined threshold value. If the absolute value
of the difference between the inputs is bellow the threshold, the
maximum weight value of 1 is assigned to the corresponding in-
terpolator’s input . Otherwise, the weight value is zero,

and thus the corresponding does not contribute in cal-
culating the output in (3).

Contributions from samples defined across an edge can also
be eliminated by thresholding the corresponding weighting co-
efficient. In such a case, the edge-sensing weights are defined as
follows:

if
otherwise

(9)

where is a threshold value which provides the end-user with
the means to regulate edge sensitivity. The elimination of atyp-
ical observations through the use of (9) may result in increased
accuracy compared to the accuracy afforded by the solutions in
[13], [42], or [43].

It is not difficult to see that the popular nearest-neighbor
concept used in demosaicking [45] can be derived from
the same framework using the maximum weight

for . In this case, the frame-
work determines the weighting coefficients using the following
rule:

if
otherwise

(10)

The rule suggests that the averaged quantity which cor-
responds to the maximum similarity between the interpolator’s
inputs and is selected as the output of the oper-
ation in (3).

Finally, it should be added that another popular choice for the
function in (5) is the exponential function. As empirical
evidence suggests that the relationship between perception and
distances measured in physical units is exponential in nature
[44], weights in (3) can be defined as follows:

(11)

Similarly to (11), which represents a perception-oriented alter-
native to (6), the novel variants of (7) and (8) can be easily ob-
tained by replacing the absolute value term with its exponential
form.

In conclusion, any of these weights can be used in the
edge-sensing mechanism proposed here. The framework is
sufficiently flexible to accommodate weighting functions with
different properties and implementation requirements. What is
important is that, for the first time, an edge-sensing mechanism
suitable for a single-sensor camera is devised using a systematic
framework which clearly offers options and flexibility.

C. Proposed Interpolation Steps for CFA Zooming

Using the spatial interpolation step (3) with the supporting
components defined in (4) and (6), the proposed scheme pro-
duces the pattern depicted in Fig. 7(c). Since the spatial in-
terpolation step in (3) does not generate all the needed values

Fig. 10. Proposed interpolation steps divided into the color planes with the
textured missing components. (a) Original G components. (b) G components
after the initial G component interpolation. (c) original R components. (d)
R components after the initial R component interpolation. (e) original B
components. (f) B components after the initial B component interpolation.

[Fig. 10(a) and (b)], an additional interpolation step is needed
to complete the calculation of the G components in the enlarged
pattern. Fig. 10(a) shows the enlarged Bayer image with all
its original G components. The locations of the missing G com-
ponents correspond to textured pixels. The initial interpolation
step (3) is used to interpolate the pixels occupying the center of
the four-original G components which form a diamond-shape
mask on the
image lattice. Upon completion of this step, Fig. 10(b) depicts
the new situation with the G components positioned in the center
of the square-shape mask described by

. Therefore, the method
continues by interpolating the missing G components , for

, , which occupy
the center of G components , ,
and .

Averaged values and the corresponding weighting co-

efficients are calculated using (4) and (6), respectively,
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but now with
. As shown in Fig. 8(b), the averaged quantities

and are defined in diagonal directions,

whereas , and , cor-
respond to horizontal and vertical directions, respectively. The
use of (3) with the above-defined support results in the pattern
shown in Fig. 7(d). This concludes the process of determining
the G components.

Analogously to the G component interpolation, the R (or B)
components are interpolated in two steps [Fig. 10(c)–(f)]. The
missing R components are located at the centers of the square-
shape mask [Fig. 10(c)] referenced by the spatial coordinates

and . The
purpose of this interpolation step is to estimate the R values
at the center of a square which has been created by four sur-
rounding original R values , , ,

occupying the square’s corners [Fig. 10(c)]. Since
the Bayer image contains double the number of original G
components compared to original R or B components, and the
G channel is considered to be more reliable in terms of original
CFA data structural content [3]–[5], both original and interpo-
lated G components are used to interpolate the R and B compo-
nents [4]–[6], [19]. The proposed spectral model based spatial
interpolator, with the structure depicted in Fig. 9(b), uses both
spatial and spectral characteristics of the CFA data to produce
the output.

Based on the color-difference model of [33], the output of an
unbiased, spectral model based spatial interpolator [Fig. 9(b)]
can be defined as follows:

(12)

where . The
values are the weighting coefficients obtained in (6)
with the area of support

. The sample in (12) denotes
the original G value neighboring the estimated R component

and are the color-difference quantities
defined using R components , and G components

.
It can be observed that the missing R component of

(12) is neighboring with the G component . Similarly,
the original R components , ,
and located at the corners of the square shown in
Fig. 10(c) neighbor the original G components ,

, , . The analogy in spatial shifts
between G and R components necessitates the use of the added
G component in (12) so that the output of the weighted

sum of averaged RG color differences is
normalized in the intensity range [43].

It is not difficult to see that the use of (12) with
and

produces the pattern shown in Fig. 7(e). Due to the spatial
diagonal symmetry between the original R and B positions as

Fig. 11. Block diagram representation of the proposed CFA image zooming
framework.

defined in (2), the square-shape masks can be easily reconsti-
tuted [Fig. 10(e)] for the purpose of B component interpolation.
The missing B components are obtained by modifying the spec-
tral model based spatial interpolator (12) as follows [Fig. 9(b)]:

(13)

where , and
and denote the

interpolated locations surrounded by the four original B com-
ponents , , , . These
components along with the four, spatially shifted, G components

, , , are used to define

averaged BG color-difference quantities ,
which calls for the utilization of the normalizing G component

. Employing the interpolation step (13), the process pro-
duces the pattern shown in Fig. 7(f).

In this incomplete mosaic, the missing R (or B) components
are located in the center of a diamond-shape mask defined by
four R (or B) values , and ,
as Fig. 10(d) [or Fig. 10(f)] illustrates. Thus, the rest of the
R values are obtained using the interpolation step of (12) with

and resulting in
the pattern shown in Fig. 7(g). Analogously, the missing B com-
ponents are completed using (13) with
and . Both these interpolation steps are
based on . This
process results in the fully enlarged, interpolated Bayer image

depicted in Fig. 7(h).
A block diagram representation of the proposed CFA image

zooming framework is given in Fig. 11 while the interpolation
steps performed by the proposed CFA zooming method are
summarized, in pseudo-code format, in Fig. 12. From this
summary and the construction blocks shown in Fig. 5, it can
be claimed that by: 1) replacing the simplest form of the
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Fig. 12. Pseudocode format of the proposed CFA zooming method.

edge-sensing mechanism (6) employed in (3), (12), and (13)
with more sophisticated variants such as those described in
previous subsection and/or 2) substituting the color-difference
model used in (12) and (13) with the powerful normalized
spectral models of [8], [27], the framework can offer solu-
tions which differ in the design philosophy, characteristics,
computational complexity, and performance. The enumera-
tion of all available options or the determination of the best
configuration of construction elements, according to specified
criteria, is beyond the scope of this paper. This study focuses
on the development of a zooming framework for CFA data.
To demonstrate the suitability of the proposed framework, the
simplest solution belonging to this class is devised (Fig. 12)
and used in the sequence for comparison purposes. Studies on
the determination of the optimal structure and issues related
to the unification of the CFA zooming, demosaicking and
postprocessing [8] algorithmic steps will be the subject of a
forthcoming submission.

IV. EXPERIMENTAL RESULTS

The proposed zooming method is tested using the color test
database5 shown in Fig. 13. These images have been captured
using three-sensor cameras or color scanners and they have been
extensively used by practitioners and researchers working in
camera image processing, especially in demosaicking. This is
mainly due to the fact that the database: 1) contains natural,

5The used color image database is posted online at www.dsp.utoronto.ca/
~lukacr/images8.zip.

real-life images; 2) represents real-life scenarios, and 3) has im-
ages that vary in complexity and color appearance. Note that, in
order to facilitate comparisons, all images have been normalized
to the standard 512 512, 8-bit per channel RGB representa-
tion.

A. Problem Formulation

To measure the efficiency of the zooming methods objec-
tively, the approach shown in Fig. 14 is used. The process starts
with the original color image which is
down-sampled with a factor of 2 to produce the
color image . Following the procedure of [12],
the down-sampling operations are realized here by averaging
the original RGB vectors as follows:

(14)
where denotes the spatial position in the small, down-
sampled image .

Upon completion of the down-sampling step, the image is
then transformed into the Bayer image

as follows [4], [7]:

for odd and even
for even and odd
otherwise

(15)

where denotes the color vector
in a down-sampled image with spatial co-
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Fig. 13. Used test image database.

ordinates and . Since
the original Bayer image is usually unavailable, researchers re-
sort to the approach of (15) in order to obtain test Bayer image
data used for demosaicking [3], [19], [40], filtering [2], zooming
[12], [14], and compression [11] comparative evaluations.

Using the proposed CFA-zooming method, we can obtain the
zoomed Bayer image . It is known that
half of the pixels correspond to the G channel, whereas
the R and B channels are assigned the other half of the pixels
in the Bayer pattern. Assuming that and

denote the spatial position of the pixels in vertical
(image rows) and horizontal (image columns) directions shown
in Fig. 14, gray-scale pixels can be transformed into the
RGB vectors , using the fol-
lowing transformation [4], [7]:

for odd and even
for even and odd
otherwise.

(16)

This transformation results in a RGB image
representing a two-dimensional (2-D) matrix with three-di-

mensional (3-D) vector samples. Note that each color vector
relates to one true component varying in of
from position to position, whereas the other two compo-

nents of are set to zero.
Using demosaicking methods, the missing color components

of are obtained. The resulting interpolated RGB
image should be as close as possible to the
desired RGB image . This design objectively corresponds to
the minimization of the expected value of the mean square error
as follows:

minimize (17)

where indicates statistical expectation guaranteeing the
minimum average loss or risk.

The difference between the original and the interpolated
image constitutes the error image .
This error is the result of both the zoomer’s inaccuracy and the
limitations of the demosaicking method.

To objectively compare the efficiency of the proposed
zooming method, we will make use of two approaches, namely,
the so-called demosaicked image zooming approach shown
in Fig. 4(a), and the proposed CFA image zooming approach
shown in Fig. 4(b). It is evident that the efficiency of both
approaches depends on the demosaicking. To this end, we
will use the most commonly utilized Bayer CFA-based de-
mosaicking solutions, such as the alternating projection (AP)
approach [3], the correlation-correction approach (CCA) [4],
the adaptive color plane interpolation (API) scheme [18], the
bilinear difference (BD) interpolation scheme [19], and the
bilinear interpolation (BI) scheme [31], [45].

Following the conventional camera zooming paradigm of
Fig. 4(a), first the selected demosaicking algorithm is applied
to the original Bayer data of (15). The obtained color image
output is then enlarged by applying standard image zooming
algorithms, such as the (bi)linear zooming (BICZ) scheme [46]
and bicubic zooming (BCCZ) scheme [47], [48]. The spatially
enlarged color image is considered to be the output of the
overall process.

For the novel camera zooming approach [Fig. 4(b)], the pro-
posed CFA zooming algorithm as well as the locally adaptive
CFA zooming algorithm (LZ) [12] and the advanced linear av-
eraging CFA zooming (AAZ) scheme [14] are applied to the
original Bayer data . The enlarged CFA image is produced at
the end of this step. In the sequence, the selected demosaicking
scheme is applied to generate the enlarged color image , which
forms the output of the overall process.
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Fig. 14. Procedure used for objective evaluation of results.

B. Performance Evaluation

To measure the similarity between the original and interpo-
lated image with the spatial dimensions of pixels,
a number of different objective measures based on the differ-
ence in statistical distributions of the pixel values can be uti-
lized. In this paper, the mean absolute error (MAE), the mean
square error (MSE), and the normalized color-difference (NCD)
criteria [16] are considered.

The MAE and MSE criteria are defined as follows:

MAE (18)

MSE (19)

where is the original pixel
and is the restored pixel, with

denoting a spatial position in a color image and
characterizing the color channel.
To quantify the perceptual similarity between the original and

the obtained solution, the NCD criterion is used as follows:

NCD (20)

TABLE I
COMPARISON OF THE STANDARD COLOR IMAGE ZOOMERS USING THE

AVERAGED RESULTS CORRESPONDING TO THE DATABASE IN FIG. 13

where and
are the vectors representing the RGB

vectors and , respectively, in the CIE LUV color space [49].

C. Achieved Results

Results presented in Tables I and II correspond to zooming
and restoration of the test images shown in Fig. 13. These re-
sults demonstrate the robustness of the proposed method, since
the error values are calculated as aggregated measures averaged
through the number of images in the test database (Fig. 13).
Note that Table I summarizes results achieved using the con-
ventional zooming schemes, which zoom the (demosaicked)
RGB color images obtained after demosaicking. Table II sum-
marizes results obtained by applying the CFA zooming scheme
followed by the demosaicking scheme in cascade. Comparing
these results, it can be observed that the reported error values
depend critically on the demosaicking efficiency. Therefore, the
CFA zooming techniques followed by the CCA demosaicking
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TABLE II
COMPARISON OF THE CFA IMAGE ZOOMERS USING THE AVERAGED RESULTS CORRESPONDING TO THE DATABASE IN FIG. 13

scheme or the CCA demosaicking scheme followed by con-
ventional color image zooming in the RGB domain produce
the best results. Other combinations of demosaicking schemes
(AP, API, BD, BI) and zooming algorithms produce results
inferior to those reported by the CCA demosaicking scheme.
It should be also emphasized that the cost-effective pocket
devices, mobile phones, and imaging devices for surveillance
and automotive applications are restricted in their computa-
tional resources and, thus, expensive demosaicking solutions
such as AP, CCA, or API can hardly be embedded in these
devices. Therefore, the objective of these comparisons is to
find the zooming solution producing the highest image quality
while employing the cost-effective BI demosaicking scheme.
The results indicate that, in this set of processing cascades, the
proposed zooming framework significantly outperforms other
solutions in terms of both MAE and MSE values. Moreover,
excellent design characteristics of the proposed CFA zooming
framework always result in the best values of objective criteria
among the CFA zooming methods and the significant improve-
ment compared to previously developed LZ and AAZ CFA
zooming schemes in terms of all objective measures.

Fig. 15 allows the visual comparison of the original images,
down-sampled images, and the enlarged outputs achieved using
the BI demosaicking scheme combined with the BCCZ zooming
and the proposed CFA zooming approach followed by the CCA
demosaicking scheme. These results illustrate that the standard
approach (BI demosaicking BCCZ zooming) blurs image
edges, structural content, and fine details. Moreover, the cor-
responding outputs depicted in Fig. 15(c) contain a number of
color artifacts comparing with the original images shown in
Fig. 15(a). However, the proposed CFA zooming method fol-
lowed by the CCA demosaicking scheme preserves the image
details and eliminates color artifacts. This results in naturally
colored outputs such as those depicted in Fig. 15(d).

Figs. 16 and 17 present zoomed parts of the restored im-
ages and allow the comparison of many methods, in terms
of the subjective evaluation of the restored images. It is ev-
ident that inaccurate zooming performance [Fig. 16(b) and
(c) and Fig. 17(b) and (c)] significantly affects the restored
image quality, even when the powerful demosaicking schemes
(i.e., BD, API, and CCA) are applied. Inappropriate zooming
leads to strong color artifacts and significantly blurred image
edges. Since many interpolation methods fail near edges
[Fig. 16(b)–(d) and Fig. 17(b)–(d)] and produce color artifacts
[3], [4], [40], design of an efficient zooming algorithm is a
key to performance. Following the structural information of
the Bayer data, the proposed zooming scheme is capable of
enlarging the color images with a high visual quality and
avoids many image imperfections related to previously intro-

duced zooming methods. Morevover, the proposed framework
provides the coloration which is much truer to the original.
Combining with the efficient demosaicking solution such as
the CCA scheme, the proposed CFA zooming method results
in impressive visual quality of the restored images shown in
Fig. 16(l) and Fig. 17(l).

Since the down-sampling operations, such as those in (14),
may affect the overall performance in the evaluation approach
of Fig. 14, an evaluation test using the original images without
down-sampling is performed. Each one of the original
images is sampled with the Bayer CFA to obtain the “equiv-
alent” sensor data, and then the enlarged color
image is generated by applying either the demosaicked image
zooming [Fig. 4(a)] or the CFA image zooming [Fig. 4(b)] pro-
cessing pipelines. The image quality is evaluated subjectively,
only due to the lack of an original input with the appropriate
spatial dimensions. Visual inspection of the results depicted
in Fig. 18(a) and (b) and Fig. 19(a) and (b) suggests that the
conventional zooming solution generates the images which
suffers from zipper effects, color shifts, and blurred edges. The
amount of visual impairments is reduced, if not eliminated,
when the proposed framework is applied. The results presented
in Fig. 18(c) and (d) and Fig. 19(c) and (d) clearly indicate that
the proposed CFA zooming framework produces the highest
visual quality also in this case.

Summarizing the results presented above, the following con-
clusions can be drawn.

• Employing a cost-effective demosaicking solutions such
as the BI scheme, the proposed CFA zooming method
outperforms both the previously introduced CFA-based
zooming schemes and conventional image zooming
methods operating on demosaicked (RGB color) image
outputs, both in terms of objective and subjective evalu-
ation methods.

• The proposed framework utilizes the additional informa-
tion afforded by the employed spectral model along with
the structure of the Bayer pattern to accurately estimate
missing values of the enlarged CFA image. In addition,
the employed edge-sensing mechanism allows us to fully
utilize the structural content of the Bayer data. By utilizing
the readily available knowledge regarding the underlying
structure, the proposed zooming scheme achieves signif-
icant improvements in terms of objective and subjective
evaluation of the image quality.

• The proposed method can zoom at an arbitrary zooming
factor, preserving every time the underlying structure of
the Bayer color data array.

• The proposed method curbs the proliferation of imper-
fections introduced during the demosaicking process. The
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Fig. 15. Visual extremes comparing the images corresponding to Fig. 13(c), (g), and (h). (a) Original images. (b) Down-sampled images. (c) BI demosaicking+
BCCZ zooming. (d) Proposed CFA zooming + CCA demosaicking.

edge-sensing mechanism and spectral model used in our
adaptive CFA zooming framework helps us to produce
sharp, visually pleasing, zoomed color images.

V. COMPUTATIONAL COMPLEXITY

Apart from the numerical behavior (actual performance) of
the proposed algorithm, its computational complexity is a re-
alistic measure of its practicality and usefulness. Therefore, the
proposed method is analyzed here in terms of normalized opera-
tions, such as additions (ADDs), subtractions (SUBs), divisions
(DIVs), multiplications (MULTs) and absolute values (ABSVs).

The spatial interpolator (3) depicted in Fig. 9(a) is used to
interpolate the missing G components. Each one of the six av-
eraged quantities of (3) requires one ADD and one DIV

for its evaluation. Each of the corresponding weighting coef-
ficients requires to realize one DIV, ADD, ABSV, and SUB.
Counting together six MULTs, ten ADDs, and one DIV rep-
resent the cost of implementing the normalized weighting op-
eration in (3). Thus, the total number of operations needed to
recover the missing G component per interpolated location is

(21)
When the spectral model based spatial interpolator (12) or

(13) is used to estimate the R or B components [Fig. 9(b)],
respectively, two additional SUBs per color-difference quan-
tity evaluation are necessary. Moreover, one extra ADD, corre-
sponding to the use of the normalizing G component in
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Fig. 16. Enlarged parts of the results corresponding to Fig. 13(g). (a) Original image. (b) BI demosaicking + BICZ zooming. (c) BI demosaicking + BCCZ
zooming. (d) LAZ-CFA zooming + BI demosaicking. (e) AAZ-CFA zooming + BI demosaicking. (f) Proposed CFA zooming + BI demosaicking. (g) CCA
demosaicking + BICZ zooming. (h) CCA demosaicking + BCCZ zooming. (i) Bilinear CFA zooming + CCA demosaicking. (j) LAZ-CFA zooming + CCA
demosaicking. (k) AAZ-CFA zooming + CCA demosaicking. (l) Proposed CFA zooming + CCA demosaicking.

(12) or in (13), should be added. Thus, the total number
of operations per R or B component location is

(22)

Since the color-difference model of (12) is not used during
RGB-based zooming, implementing the proposed method on
the color vector domain decreases the number of spectral sub-
tractions. However, RGB-based zooming requires operations to
be performed on each color channel. Thus, the total cost associ-
ated with the RGB based implementation per spatial location is

(23)

It can be therefore argued that, by performing zooming in the
CFA domain, significant computational savings can be obtained.
The relative advantage increases with both the image size and
the zooming factor. The proof of this claim can be easily done
by counting the total cost per a whole image.

Let us consider a zooming factor and a (small)
Bayer image . The zooming scheme output is always of size

pixels. This suggests that sam-
ples need to be interpolated. The G components represent half
of missing components in the Bayer image .
Therefore, the total number of operations needed during interpo-
lation at the G locations is , where division
by indicates that only half of the interpolated locations refer to
the G components in the enlarged Bayer image . Analogously,
the total number of operations necessary during interpolation of
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Fig. 17. Enlarged parts of the results corresponding to Fig. 13(h). (a) Original image. (b) BI demosaicking + BICZ zooming. (c) BI demosaicking + BCCZ
zooming. (d) LAZ-CFA zooming + BI demosaicking. (e) AAZ-CFA zooming + BI demosaicking. (f) Proposed CFA zooming + BI demosaicking. (g) CCA
demosaicking + BICZ zooming. (h) CCA demosaicking + BCCZ zooming. (i) Bilinear CFA zooming + CCA demosaicking. (j) LAZ-CFA zooming + CCA
demosaicking. (k) AAZ-CFA zooming + CCA demosaicking. (l) Proposed CFA zooming + CCA demosaicking.

the R and B samples is . In summary,
the proposed CFA zooming method performs

(24)

operations during interpolation of the missing values in the en-
larged CFA image .

In the case of the RGB-based zooming, the adaptive spatial
interpolator (3) requires performing at all
interpolated locations. Thus, the total number of operations per
whole enlarged image in the RGB-based implementation is

(25)

which represents a significant expense compared to (24). The
difference in the cost between these two approaches signifi-
cantly increases with both the spatial dimensions of the
input image and the zooming factor .

The analysis suggests that the proposed zooming framework
can be considered a computationally efficient method useful
for practical, cost-effective camera solutions. Potentially de-
manding solutions such as those utilizing the edge-sensing
mechanisms defined in (7)–(11) or their other variants may be
implemented in a companion personal computer (PC) which
interfaces with the digital camera which stores the images
in the raw (CFA) format. In this case, a PC-based software
application supports the zoomer and, thus, the parameter in
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Fig. 18. Enlarged parts of the results achieved using Fig. 13(d). (a) BI
demosaicking + BICZ zooming. (b) CCA demosaicking + BICZ zooming.
(c) Proposed CFA zooming+ BI demosaicking. (d) proposed CFA zooming+
CCA demosaicking.

(8) or (9) can be optimally set, based on subjective evaluations,
by the end user.

Finally, the efficiency of the zooming schemes is measured, in
terms of the execution time, using a conventional PC equipped
with a commonly used operating system and a standard pro-
gramming environment. When implemented in software, the ex-
ecution of the proposed zooming tool on a PC with an Intel
Pentium IV 2.40-GHz CPU, 512-MB RAM, Windows XP op-
erating system, and MS Visual C++ 5.0 programming environ-
ment took (on average) 0.22 s per a 256 256 pattern to be en-
larged. As opposed to this case, the BICZ, BCCZ, LZ, and AAZ
took 0.25, 0.48, 0.24, and 0.15 s, respectively. The recorded
values suggest that the proposed procedure represents an effi-
cient and cost-effective image zooming solution. It should be
noted that the objective of the comparisons performed between
the BICZ, BCCZ, LZ, AAZ, and the proposed zooming proce-
dure is to provide benchmark information regarding implemen-
tation issues. The development of software-optimized realiza-
tions of the algorithms under consideration is beyond the scope
of this paper.

VI. CONCLUSION

A novel zooming framework operating on Bayer CFA data
was introduced and analyzed. The framework employed an edge
sensing mechanism and a color-difference model. Combining
their advantages, our solution enlarges Bayer images, while pre-
serving edges and structural contents. Used in conjunction with
the demosaicking procedure, the introduced zooming algorithm

Fig. 19. Enlarged parts of the results achieved using Fig. 13(h). (a) BI
demosaicking+ BICZ zooming. (b) CCA demosaicking+ BICZ zooming. (c)
Proposed CFA zooming + BI demosaicking. (d) Proposed CFA zooming +
CCA demosaicking.

avoids color artifacts and produces enlarged color images plea-
surable for viewing. At the same time it yields excellent re-
sults in terms of commonly used objective image quality cri-
teria. Simulation results and comparisons reported here indi-
cate that the proposed framework is sufficiently robust, com-
putationally efficient and relatively easy to implement. More-
over, employing the effective BI demosaicking procedure the
proposed cost-effective solution can significantly outperform
previously developed approaches which utilize the identical BI
demosaicking step.
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