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Abstract

This paper introduces a multilinear principal component analysis (MPCA) framework for tensor object

feature extraction. Objects of interest in many computer vision and pattern recognition applications, such

as 2D/3D images and video sequences are naturally described as tensors or multilinear arrays. The

proposed framework performs feature extraction by determining a multilinear projection that captures

most of the original tensorial input variation. The solution is iterative in nature and it proceeds by

decomposing the original problem to a series of multiple projection subproblems. As part of this

work, methods for subspace dimensionality determination are proposed and analyzed. It is shown that

the MPCA framework discussed in this work supplants existing heterogeneous solutions such as the

classical principal component analysis (PCA) and its two-dimensional (2DPCA) variant. Finally, a tensor

object recognition system is proposed with the introduction of a discriminative tensor feature selection

mechanism and a novel classification strategy, and applied to the problem of gait recognition. Results

presented here indicate MPCA’s utility as a feature extraction tool. It is shown that even without a fully

optimized design, an MPCA-based gait recognition module achieves highly competitive performance and

compares favorably to the state-of-the-art gait recognizers.
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Index Terms
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I. INTRODUCTION

The term tensor object is used here to denote a multi-dimensional object, the elements of which are

to be addressed by more than two indices [1]. The number of indices used in the description defines the

order of the tensor object and each index defines one of the so-called “modes”. Many image and video

data are naturally tensor objects. For example, color images are three-dimensional (3rd-order tensor)

objects with column, row and color modes [2]. Gait silhouette sequences, the input to most if not all

gait recognition algorithms [3]–[7], as well as other gray-scale video sequences can be viewed as 3rd-

order tensors with column, row and time modes. Naturally, color video sequences are 4th-order tensors

with the addition of a color mode. In the most active area of biometrics research, namely that of face

recognition, three-dimensional face detection and recognition using 3D information with column, row and

depth modes, in other words a 3rd-order tensor, has emerged as an important research direction [8]–[10].

Moreover, the research problem of matching still probe images to surveillance video sequences can be

viewed as a pattern recognition problem in a 3rd-order tensorial setting [11]. Beyond biometrics signal

analysis, many other computer vision and pattern recognition tasks can be also viewed as problems in

a multilinear domain. Such tasks include 3D object recognition tasks [12] in machine vision, medical

image analysis and content-based retrieval, space-time analysis of video sequences for gesture recognition

[13] and activity recognition [14] in human-computer interaction (HCI), and space-time super-resolution

[15] for digital cameras with limited spatial and temporal resolution. The wide range of applications

explains the authors’ belief that a comprehensive study of a specialized feature extraction problem, such

as multilinear feature extraction, is worthwhile.

A typical tensor object in pattern recognition or machine vision applications is commonly specified in

a high-dimensional tensor space. Recognition methods operating directly on this space suffer from the so-

called curse of dimensionality [16]: handling high-dimensional samples is computationally expensive and

many classifiers perform poorly in high-dimensional spaces given a small number of training samples.

However, since the entries of a tensor object are often highly correlated with surrounding entries, it

is reasonable to assume that the tensor objects encountered in most applications of interest are highly

constrained and thus the tensors are confined to a subspace, a manifold of intrinsically low dimension [16],
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[17]. Feature extraction or dimensionality reduction is thus an attempt to transform a high-dimensional

data set into a low-dimensional equivalent representation while retaining most of the information regarding

the underlying structure or the actual physical phenomenon [18].

Principal Component Analysis (PCA) is a well-known unsupervised linear technique for dimensionality

reduction. The central idea behind PCA is to reduce the dimensionality of a data set consisting of a

larger number of interrelated variables, while retaining as much as possible the variation present in the

original data set [19]. This is achieved by transforming to a new set of variables, the so-called principal

components (PCs), which are uncorrelated, and ordered so that the first few retain most of the original

data variation. Naive application of PCA to tensor objects requires their reshaping into vectors with

high dimensionality (vectorization), which obviously results in high processing cost in terms of increased

computational and memory demands. For example, vectorizing a typical gait silhouette sequence of size

(120× 80× 20) results in a vector with dimensionality (192, 000× 1), the singular value decomposition

(SVD) or eigen-decomposition processing of which may be beyond the computing processing capabilities

of many computing devices. Beyond implementation issues, it is well understood that reshaping breaks

the natural structure and correlation in the original data, removing redundancies and/or higher order

dependencies present in the original data set and losing potentially more compact or useful representations

that can be obtained in the original form [20]. Vectorization as PCA preprocessing ignores the fact that

tensor objects are naturally multi-dimensional objects, e.g., gait sequences are three-dimensional objects,

instead of one-dimensional objects. Therefore, a dimensionality reduction algorithm operating directly

on a tensor object rather than its vectorized version is desirable.

Recently, dimensionality reduction solutions representing images as matrices (second order tensors)

rather than vectors (first order tensors) have been introduced. A two-dimensional PCA (2DPCA) algorithm

is proposed in [21], where the image covariance matrix is constructed using image matrices as inputs.

However, a linear transformation is applied only to the right side of the input image matrices. As a

result, image data is projected in one mode only, resulting in poor dimensionality reduction. The less

restrictive 2DPCA algorithm introduced in [20] takes into account the spatial correlation of the image

pixels within a localized neighborhood. Two linear transforms are applied to both the left and the right

side of the input image matrices. Thus, projections in both modes are calculated and better dimensionality

reduction results are obtained according to [22]. Similarly to the solutions introduced in [21] and [22],

the so-called Tensor Subspace Analysis algorithm of [23] represents the input image as a matrix residing

in a tensor space and attempts to detect local geometrical structure in that tensor space by learning a

lower dimensional tensor subspace.
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For the theoretically inclined reader, it should be noted that there are some recent developments in the

analysis of higher-order tensors. The higher-order singular value decomposition (HOSVD) solution, which

extends SVD to higher-order tensors, was formulated in [24] and its computation leads to the calculation

of N (the order) different matrix SVDs of unfolded matrices. An alternating-least-square (ALS) algorithm

for the best Rank-(R1, R2, ..., RN ) approximation of higher-order tensors was studied in [1], where tensor

data was projected into a lower dimensional tensor space iteratively. The application of HOSVD truncation

and the best Rank-(R1, R2, ..., RN ) approximation to dimensionality reduction in independent component

analysis (ICA) was discussed in [25]. These multilinear algorithms have been used routinely for multiple

factor analysis [26], [27], where input data such as images are still represented as vectors but with these

vectors arranged into a tensor for the subsequent analysis of the multiple factors involved in image/video

formation. It should be added that in [25]–[27], the tensor data under consideration is projected in the

original coordinate without data centering. However, for classification/recognition applications where

eigenproblem solutions are attempted, the eigen-decomposition in each mode can be influenced by the

mean (average) of the data set.

Recently, there have been several attempts to develop multilinear subspace algorithms for tensor object

feature extraction and classification. In [28], a heuristic MPCA approach based on HOSVD was proposed.

The MPCA formulation in [29] targets optimal reconstruction applications (where data is not centered)

with a solution built in a manner similar to that of [1]. It should be noted that the solution in [29] was

focused on reconstruction not recognition and that it did not cover a number of important algorithmic

issues, namely: initialization, termination, convergence and subspace dimensionality determination. When

applied to the problem of tensor object recognition, the methodology described in [29] uses all the

entries in the projected tensor for recognition although the discrimination power of these entries varies

considerably. There is also a recent work on multilinear discriminant analysis (MLDA) [30], [31], named

Discriminant Analysis with Tensor Representation (DATER), where an iterative algorithm similar to

ALS of [1] is utilized in order to maximize a tensor-based discriminant criterion. Unfortunately, this

MLDA variant does not converge and it appears to be extremely sensitive to parameter settings [32]. As

the number of possible subspace dimensions for tensor objects is extremely high (e.g., there are 225280

possible subspace dimensions for the gait recognition problem considered in this work), exhaustive testing

for determination of parameters is not feasible. Consequently, the algorithmic solution of [30], [31] cannot

be used to effectively determine subspace dimensionality in a comprehensive and systematic manner.

Motivated by the works briefly reviewed here, this paper introduces a new multilinear principal

component analysis (MPCA) formulation for tensor object dimensionality reduction and feature extraction.
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The proposed solution follows the classical PCA paradigm. Operating directly on the original tensorial

data, the proposed MPCA is a multilinear algorithm performing dimensionality reduction in all tensor

modes seeking those bases in each mode that allow projected tensors to capture most of the variation

present in the original tensors.

The main contributions of this work include:

1) The introduction of a new MPCA framework for tensor object dimensionality reduction and fea-

ture extraction using tensor representation. The framework is introduced from the perspective of

capturing the original tensors’ variation. It provides a systematic procedure to determine effective

representations of tensor objects. This contrasts to previous work such as those reported in [16],

[26], [27], where vector, not tensor, representation was used, and the works reported in [20], [21],

[23], where matrix representation was utilized. It also differs from the works reported in [1], [24],

[25], where tensor data are processed as part of a reconstruction/regression solution. Furthermore,

unlike previous attempts, such as the one in [29], design issues of paramount importance in

practical applications, such as the initialization, termination, convergence of the algorithm and

the determination of the subspace dimensionality, are discussed in detail.

2) The definition of eigentensors and n-mode eigenvalues as counterparts of the eigenvectors and

eigenvalues in classical PCA. The geometrical interpretation of these concepts is provided, enabling

a deeper understanding of the main principles and facilitating the application of multilinear feature

extraction.

3) The presentation of a recognition system that selects discriminative tensor features from tensor

objects and uses a novel weighting method for classification. This differs from traditional vector-

based object recognition systems [16] that often encounter computational and memory difficulties

when dealing with tensor object inputs. It also differs from the previously published work in [29],

where all of the projected features are used for recognition.

4) The development of a solution to the gait recognizer by representing gait sequences as tensor

samples and extracting discriminative features from them. This is a more natural approach that

differs from the previously published works (i.e., [3]–[7]), where either silhouettes or heuristic

features derived from silhouettes are used as features.

The rest of this paper is organized as follows: Section II introduces basic multilinear algebra notations,

concepts and the notion of multilinear projection for dimensionality reduction. In Section III, the problem

of MPCA is formulated and an iterative solution is presented. Initialization procedures, termination
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criteria, convergence and subspace dimensionality are discussed in detail. The connection to PCA and

2DPCA is illustrated. The computational aspects of the proposed framework are also discussed in this

section. The problem of tensor object recognition is discussed in Section IV. Section V lists experiments

on both synthetic data sets and true application data. Synthetic data sets are used to verify the properties

of the proposed methodology while gait data sets are used to demonstrate performance on a recognition

problem of particular importance. Finally, Section VI summarizes the major findings of this work.

II. MULTILINEAR PROJECTION OF TENSOR OBJECTS

This section briefly reviews some basic multilinear concepts used in the MPCA framework development

and introduces the multilinear projection of tensor objects for the purpose of dimensionality reduction.

A. Notations and basic multilinear algebra

Table VII in Appendix A-A lists the fundamental symbols defined in this paper. The notations followed

are those decreed by convention in the multilinear algebra, pattern recognition and adaptive learning

literature. Thus, in this work, vectors are denoted by lowercase boldface letters, e.g., x; matrices by

uppercase boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Their elements are denoted with

indices in brackets. Indices are denoted by lowercase letters and span the range from 1 to the uppercase

letter of the index, e.g., n = 1, 2, ..., N . To indicate part of a vector/matrix/tensor, “:” denotes the full range

of the corresponding index and n1 : n2 denotes indices ranging from n1 to n2. Throughout this paper, the

discussion is restricted to real-valued vectors, matrices and tensors since the targeted applications, such

as holistic gait recognition using binary silhouettes, involve real data only. The extension to the complex

valued data sets is out of the scope of this work and it will be the focus of a forthcoming paper.

An N th-order tensor is denoted as: A ∈ RI1×I2×...×IN . It is addressed by N indices in, n =

1, ..., N , and each in addresses the n-mode of A. The n-mode product of a tensor A by a matrix

U ∈ RJn×In , denoted by A ×n U, is a tensor with entries: (A ×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =∑
in
A(i1, ..., iN ) · U(jn, in). The scalar product of two tensors A,B ∈ RI1×I2×...×IN is defined as:

< A,B >=
∑

i1

∑
i2
...
∑

iN
A(i1, i2, ..., iN ) · B(i1, i2, ..., iN ) and the Frobenius norm of A is defined

as ∥ A ∥F=
√
< A,A >. The ithn “n-mode slice” of A is an (N − 1)th-order tensor obtained by fixing

the n-mode index of A to be in: A(:, ..., :, in, :, ..., :). The “n-mode vectors” of A are defined as the

In-dimensional vectors obtained from A by varying the index in while keeping all the other indices fixed.

A rank-1 tensor A equals to the outer product of N vectors: A = u(1) ◦ u(2) ◦ ... ◦ u(N), which means

that A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) for all values of indices. Unfolding A along the

March 12, 2011 DRAFT



7

n-mode is denoted as A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ). The column vectors of A(n) are the n-mode

vectors of A. Figure 1 illustrates the 1-mode (column mode) unfolding of a third-order tensor.

Fig. 1. Visual illustration of the 1-mode unfolding of a third-order tensor.

Following standard multilinear algebra, any tensor A can be expressed as the product:

A = S ×1 U
(1) ×2 U

(2) × ...×N U(N), (1)

where S = A×1 U
(1)T ×2 U

(2)T ...×N U(N)T , and U(n) =
(
u
(n)
1 u

(n)
2 ...u

(n)
In

)
is an orthogonal In × In

matrix. Since U(n) has orthonormal columns, ∥ A ∥2F=∥ S ∥2F [1]. A matrix representation of this

decomposition can be obtained by unfolding A and S as

A(n) = U(n) · S(n) ·
(
U(n+1) ⊗U(n+2) ⊗ ...⊗U(N) ⊗U(1) ⊗U(2) ⊗ ...⊗U(n−1)

)T
, (2)

where
⊗

denotes the Kronecker product. The decomposition can also be written as:

A =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

S(i1, i2, ..., iN )u
(1)
i1

◦ u(2)
i2

◦ ... ◦ u(N)
iN

, (3)

i.e., any tensor A can be written as a linear combination of I1 × I2 × ... × IN rank-1 tensors. This

decomposition is used in the following to formulate multilinear projection for dimensionality reduction.

B. Tensor subspace projection for dimensionality reduction

An N th-order tensor X resides in the tensor (multilinear) space RI1
⊗

RI2 ...
⊗

RIN , where RI1 , RI2 ,

..., RIN are the N vector (linear) spaces [23]. For typical image and video tensor objects such as 3D face

images and gait sequences, although the corresponding tensor space is of high dimensionality, tensor

objects typically are embedded in a lower dimensional tensor subspace (or manifold), in analogy to

the (vectorized) face image embedding problem where vector image inputs reside in a low dimensional

subspace of the original input space [33]. Thus, it is possible to find a tensor subspace that captures

most of the variation in the input tensor objects and it can be used to extract features for recognition and

classification applications. To achieve this objective, Pn < In orthonormal basis vectors (principle axes)
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of the n-mode linear space RIn are sought for each mode n and a tensor subspace RP1
⊗

RP2 ...
⊗

RPN

is formed by these linear subspaces. Let Ũ(n) denote the In×Pn matrix containing the Pn orthornormal

n-mode basis vectors. The projection of X onto the tensor subspace RP1
⊗

RP2 ...
⊗

RPN is defined as

Y = X ×1 Ũ
(1)T ×2 Ũ

(2)T ...×N Ũ(N)T .

The projection of an n-mode vector of X by Ũ(n)T is computed as the inner product between the n-

mode vector and the rows of Ũ(n)T . Figure 2 provides a visual illustration of the multilinear projection. In

Fig. 2(a), a third-order tensor A ∈ R10×8×6 is projected in the 1-mode vector space by a projection matrix

B(1)T ∈ R5×10, resulting in the projected tensor A×1 B
(1)T ∈ R5×8×6. In the 1-mode projection, each

1-mode vector of A of length 10 is projected by B(1)T to obtain a vector of length 5, as the differently

shaded vectors indicate in Fig. 2(a). Similarly, Fig. 2(b) depicts the 2-mode and 3-mode vectors.

(a) (b)

Fig. 2. Visual illustration of multilinear projection: (a) Projection in the 1-mode vector space. (b) 2-mode and 3-mode vectors.

III. MULTILINEAR PRINCIPAL COMPONENT ANALYSIS

In this section, a multilinear principal component analysis (MPCA) solution to the problem of dimen-

sionality reduction for tensor objects is introduced, researched and analyzed. Before formally stating the

objective, the following definition is needed.

Definition 1: Let {Am,m = 1, ...,M} be a set of M tensor samples in RI1
⊗

RI2 ...
⊗

RIN . The

total scatter of these tensors is defined as: ΨA =
∑M

m=1 ∥ Am − Ā ∥2F , where Ā is the mean tensor

calculated as Ā = 1
M

∑M
m=1Am. The n-mode total scatter matrix of these samples is then defined as:

S
(n)
TA

=
∑M

m=1

(
Am(n) − Ā(n)

) (
Am(n) − Ā(n)

)T , where Am(n) is the n-mode unfolded matrix of Am.

The statement above leads to the following formal definition of the problem to be solved:
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A set of M tensor objects {X1, X2, ..., XM} is available for training. Each tensor object Xm ∈

RI1×I2×...×IN assumes values in a tensor space RI1
⊗

RI2 ...
⊗

RIN , where In is the n-mode dimension of

the tensor. The MPCA objective is to define a multilinear transformation {Ũ(n) ∈ RIn×Pn , n = 1, ..., N}

that maps the original tensor space RI1
⊗

RI2 ...
⊗

RIN into a tensor subspace RP1
⊗

RP2 ...
⊗

RPN

(with Pn < In, for n = 1, ..., N ): Ym = Xm ×1 Ũ
(1)T ×2 Ũ

(2)T ... ×N Ũ(N)T ,m = 1, ...,M , such that

{Ym ∈ RP1
⊗

RP2 ...
⊗

RPN ,m = 1, ...,M} captures most of the variation observed in the original

tensor objects, assuming that these variation are measured by the total tensor scatter.

In other words, the MPCA objective is the determination of the N projection matrices {Ũ(n) ∈

RIn×Pn , n = 1, ..., N} that maximize the total tensor scatter ΨY :

{Ũ(n), n = 1, ..., N} = arg max
Ũ(1),Ũ(2),...,Ũ(N)

ΨY . (4)

Here, the dimensionality Pn for each mode is assumed to be known or pre-determined. Discussions on

the adaptive determination of Pn, when it is not known in advance, will be presented later.

A. The MPCA algorithm

To the best of the authors’ knowledge, there is no known optimal solution which allows for the

simultaneous optimization of the N projection matrices. Since the projection to an N th-order tensor

subspace consists of N projections to N vector subspaces, N optimization subproblems can be solved

by finding the Ũ(n) that maximizes the scatter in the n-mode vector subspace. This is discussed in the

following theorem.

Theorem 1: Let {Ũ(n), n = 1, ..., N} be the solution to Equation (4). Then, for given all the other

projection matrices Ũ(1), ..., Ũ(n−1), Ũ(n+1),..., Ũ(N), the matrix Ũ(n) consists of the Pn eigenvectors

corresponding to the largest Pn eigenvalues of the matrix

Φ(n) =

M∑
m=1

(
Xm(n) − X̄(n)

)
· ŨΦ(n) · ŨT

Φ(n) ·
(
Xm(n) − X̄(n)

)T
, (5)

where

ŨΦ(n) =
(
Ũ(n+1) ⊗ Ũ(n+2) ⊗ ...⊗ Ũ(N) ⊗ Ũ(1) ⊗ Ũ(2) ⊗ ...Ũ(n−1)

)
. (6)

Proof: The proof of Theorem 1 is given in Appendix A-B.

Since the product ŨΦ(n) · ŨT
Φ(n) depends on Ũ(1), ..., Ũ(n−1), Ũ(n+1),..., Ũ(N), the optimization of

Ũ(n) depends on the projections in other modes and there is no closed form solution to this maximization

problem. Instead, from Theorem 1, an iterative procedure can be utilized to solve (4), along the lines of the

pseudo-code summarized in Fig. 3. The input tensors are centered first: {X̃m = Xm−X̄ ,m = 1, ...,M}.
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With initializations through full projection truncation (FPT), which is to be discussed in details in the

following, the projection matrices are computed one by one with all the others fixed (local optimization).

The local optimization procedure can be repeated, in a similar fashion as the alternating-least-squares

(ALS) method [34], until the result converges or a maximum number K of iterations is reached.

Remark 1: The issue of centering has been ignored in the existing tensor processing literature. In the

authors’ opinion, the main reason for the apparent lack of studies on the problem of tensor data centering

is due to the fact that previously published works focused predominately on tensor approximation and

reconstruction. It should be pointed out that for the approximation/reconstruction problem, centering is

not essential, as the (sample) mean is the main focus of attention. However, in recognition applications

where the solutions involve eigenproblems, non-centering (in other words, an average different from zero)

can potentially affect the per-mode eigen-decomposition and lead to a solution that captures the variation

with respect to the origin rather than capturing the true variation of the data (with respect to the data

center).

Remark 2: The effects of the ordering of the projection matrices to be computed have been studied

empirically in this work and simulation results presented in Section V indicate that altering the ordering

of the projection matrix computation does not result in significant performance differences in practical

situations.

In the following subsections, several issues pertinent to the development and implementation of the

MPCA algorithm are discussed. First, in-depth understanding of the MPCA framework is provided. The

properties of full projection are analyzed, and the geometric interpretation of the n-mode eigenvalues

is introduced together with the concept of eigentensor. In the sequence, the initialization method and

the construction of termination criteria are described, and convergence issues are also discussed. Finally,

methods for subspace dimensionality determination are proposed and the connection to PCA and 2DPCA

is discussed, followed by computational issues.

B. Full projection

With respect to this analysis, the term full projection refers to the multilinear projection for MPCA

with Pn = In for n = 1, ..., N . In this case, ŨΦ(n) ·ŨT
Φ(n) is an identity matrix, as it can be seen from the

pertinent lemma listed in Appendix A-C. As a result, Φ(n) reduces to Φ(n)∗ =
∑M

m=1

(
Xm(n) − X̄(n)

)
·(

Xm(n) − X̄(n)

)T , with Φ(n)∗ determined by the input tensor samples only and independent of other

projection matrices. The optimal Ũ(n) = U(n)∗ is then obtained as the matrix comprised of the eigenvec-

tors of Φ(n)∗ directly without iteration, and the total scatter ΨX in the original data are fully captured.
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Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M}.

Output: Low-dimensional representations {Ym ∈ RP1×P2×...×PN ,m = 1, ...,M} of the input tensor samples with maximum

variation captured.

Algorithm:

Step 1 (Preprocessing): Center the input samples as {X̃m = Xm −X̄ ,m = 1, ...,M}, where X̄ = 1
M

∑M
m=1 Xm is the

sample mean.

Step 2 (Initialization): Calculate the eigen-decomposition of Φ(n)∗ =
∑M

m=1 X̃m(n) · X̃T
m(n) and set Ũ(n) to consist

of the eigenvectors corresponding to the most significant Pn eigenvalues, for n = 1, ..., N .

Step 3 (Local optimization):

• Calculate {Ỹm = X̃m ×1 Ũ
(1)T ×2 Ũ

(2)T ...×N Ũ(N)T ,m = 1, ...,M}.

• Calculate ΨY0 =
∑M

m=1 ∥ Ỹm ∥2F (the mean ¯̃Y is all zero since X̃m is centered).

• For k = 1 : K

– For n = 1 : N

∗ Set the matrix Ũ(n) to consist of the Pn eigenvectors of the matrix Φ(n), as defined in (5), corresponding to

the largest Pn eigenvalues.

– Calculate {Ỹm,m = 1, ...,M} and ΨYk .

– If ΨYk −ΨYk−1 < η, break and go to Step 4.

Step 4 (Projection): The feature tensor after projection is obtained as {Ym = Xm×1Ũ
(1)T ×2Ũ

(2)T ...×N Ũ(N)T ,m =

1, ...,M}.

Fig. 3. The pseudo-code implementation of the proposed MPCA algorithm.

However, there is no dimensionality reduction through this full projection. From the properties of eigen-

decomposition, it can be concluded that if all eigenvalues (per mode) are distinct, the full projection

matrices (corresponding eigenvectors) are also distinct and that the full projection is unique (up to sign)

[35].

To interpret the geometric meanings of the n-mode eigenvalues, the total scatter tensor Y∗
var ∈

RI1×I2×...×IN of the full projection is introduced as an extension of the total scatter matrix [36]. Each

entry of the tensor Y∗
var is defined as below:

Y∗
var(i1, i2, ..., iN ) =

M∑
m=1

[
(Y∗

m − Ȳ∗)(i1, i2, ..., iN )
]2

, (7)

where Y∗
m = Xm ×1 U

(1)∗T

...×N U(N)∗T

and Ȳ∗ = 1
M

∑M
m=1 Y∗

m. Using the above definition, it can be

shown that for the so-called full projection (Pn = In for all n), the ithn n-mode eigenvalue λ
(n)∗
in

is the

March 12, 2011 DRAFT



12

sum of all the entries of the ithn n-mode slice of Y∗
var.

λ
(n)∗
in

=

I1∑
i1=1

...

In−1∑
in−1=1

In+1∑
in+1=1

...

IN∑
iN=1

Y∗
var(i1, ..., in−1, in, in+1, ..., iN ). (8)

In this paper, the eigenvalues are all arranged in a decreasing order. Figure 4 shows visually what the

n-mode eigenvalues represent. In this graph, third-order tensors, e.g. short sequences (3 frames) of images

with size 5× 4, are projected to a tensor space of size 5× 4× 3 (full projection) so that a total scatter

tensor Y∗
var ∈ R5×4×3 is obtained.

(a) (b) (c) (d)

Fig. 4. Visual illustration of: (a) Total scatter tensor. (b) 1-mode eigenvalues. (c) 2-mode eigenvalues. (d) 3-mode eigenvalues.

Using equation (3), each tensor Xm can be written as a linear combination of P1×P2× ...×PN rank-1

tensors Ũp1p2...pN
= ũ

(1)
p1 ◦ũ

(2)
p2 ◦...◦ũ

(N)
pN . These rank-1 tensors will be called, hereafter, eigentensors. Thus,

the projected tensor Y∗
m can be viewed as the projection onto these eigentensors, with each entry of Y∗

m

corresponding to one eigentensor. These definitions and illustrations for MPCA help the understanding

of the MPCA framework in the following discussions.

C. Initialization by full projection truncation

Full projection truncation (FPT) is used to initialize the iterative solution for MPCA, where the first

Pn columns of the full projection matrix U(n)∗ is kept to give an initial projection matrix Ũ(n). The

corresponding total scatter is denoted as ΨY0
and this initialization is equivalent to the HOSVD-based

solution in [28]. Although this FPT initialization is not the optimal solution to (4), it is bounded and is

considered a good starting point for the iterative procedure, as will be discussed below.

Remark 3: There are other choices of initialization such as truncated identity matrices [20], [23], [31]

(named as pseudo identity matrices) and random matrices. Simulation studies (reported in Section V)

indicate that although in practical applications, the initialization step may not have a significant impact in

terms of performance, it can affect the speed of convergence of the iterative solution. Since FPT results

in much faster convergence, it is the one utilized throughout this work for initialization purposes.
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In studying the optimality, with respect to (4), of the initialization procedure, let us assume, without

loss of generality, that the 1-mode eigenvectors are truncated, in other words, only the first P1 < I1

1-mode eigenvectors are kept. In this case, the following theorem applies.

Theorem 2: Let U(n)∗ and λ
(n)∗
in

, in = 1, ..., In, be the matrix of the eigenvectors of Φ(n)∗ and the

eigenvalues of Φ(n)∗, respectively, and Ỹm = X̃m ×1 U
(1)∗T

...×N U(N)∗T

,m = 1, ...,M . Keep only the

first P1 < I1 eigenvectors with
∑I1

i1=P1+1 λ
(1)∗
i1

> 0 to get X̌m = Y̌m ×1 Ǔ
(1) ×2 U

(2)∗... ×N U(N)∗,

where Y̌m = Ỹm(1 : P1, :, ..., :) and Ǔ(1) = U(1)∗(:, 1 : P1). Let Φ̌(n) correspond to X̌m, and the matrix

of its eigenvectors and its eigenvalues be Û(n) and λ̂
(n)
in

, respectively. Then,

λ̂
(1)
i1

=

 λ
(1)∗
i1

, i1 = 1, ..., P1

0, i1 = P1 + 1, ..., I1.

For n > 1 (other modes), λ̂
(n)
in

≤ λ
(n)∗
in

. Furthermore, for each mode, at least for one value of in,

λ̂
(n)
in

< λ
(n)∗
in

.

Proof: The proof is given in Appendix A-D.

It can be seen from Theorem 2 that if a non-zero eigenvalue is truncated in one mode, the eigenvalues in

all the other modes tend to decrease in magnitude and the corresponding eigenvectors change accordingly.

Thus, the eigen-decomposition needs to be recomputed in all the other modes, i.e., the projection matrices

in all the other modes need to be updated. Since from Theorem 1, the computations of all the projection

matrices are interdependent, the update of a projection matrix Ũ(n∗) updates the matrices {ŨΦ(n) , n ̸= n∗}

as well. Consequently, the projection matrices in all the other modes {Ũ(n), n ̸= n∗} are no longer

consisting of the eigenvectors of the corresponding (updated) Φ(n) and they need to be updated. The

update continues until the termination criterion, which is discussed in the next subsection, is satisfied.

Figure 4 provides a visual illustration of Theorem 2. Removal of a basis vector in one mode results in

eliminating a slice of Y∗
var. In Fig. 4, if the last non-zero (fifth) 1-mode eigenvalue is discarded (shaded

in Fig. 4(b)), the corresponding (fifth) 1-mode slice of Y∗
var is removed (shaded in Fig. 4(a)), resulting

in a truncated total scatter tensor Ỹ∗
var ∈ R4×4×3. Discarding this slice will affect all eigenvalues in the

remaining modes, whose corresponding slices have a non-empty overlap with the discarded 1-mode slice.

In Figs. 4(c) and 4(d), the shaded part indicates the removed 1-mode slice corresponding to the discarded

eigenvalue.

Having proven the non-optimality of FPT with respect to the objective function (4), we proceed to

derive the bounds for FPT in the following theorem.

Theorem 3: Let λ(n)∗
in

denote the ithn n-mode eigenvalue for the n-mode full projection matrix. The
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upper and lower bounds for (ΨX − ΨY0
), the loss of variation due to the FPT (measured by the total

scatter), are derived as follows:

ΨL = max
n

In∑
in=Pn+1

λ
(n)∗
in

≤ (ΨX −ΨY0
) ≤

N∑
n=1

In∑
in=Pn+1

λ
(n)∗
in

= ΨU . (9)

Proof: The proof is given in Appendix A-E.

From (9), it can be seen that the tightness of the bounds is determined by the eigenvalues in each

mode. The bounds can be observed in Fig. 4. For instance, truncation of the last eigenvector in each of

the three modes results in another truncated total scatter tensor Ŷ∗
var ∈ R4×3×2, and thus the difference

between ΨX and ΨY0
(the sum of all entries in Y∗

var and Ŷ∗
var, respectively) is upper-bounded by the

total of the sums of all the entries in each truncated slice and lower-bounded by the maximum sum of all

the entries in each truncated slice. For FPT, the gap between the actual loss of variation and the upper

bound is due to the multiple counts of the overlaps between the discarded slice in one mode and the

discarded slices in the other modes of Y∗
var.

The tightness of the bounds ΨU and ΨL depends on the order N , the eigenvalue characteristics

(distribution) such as the number of zero-valued eigenvalues, and the degree of truncation Pn. For example,

for N = 1, which is the case of PCA, ΨL = ΨU and the FPT is the optimal solution so no iterations are

necessary. Larger N results in more terms in the upper bound and tends to lead to looser bound, and vice

versa. In addition, if all the truncated eigenvectors correspond to zero-valued eigenvalues, ΨY0
= ΨX

since ΨL = ΨU = 0, and the FPT results in the optimal solution.

D. Termination

The termination criterion is to be determined in this work using the objective function ΨY . In particular,

the iterative procedure terminates if (ΨYk
− ΨYk−1

) < η, where ΨYk
and ΨYk−1

are the resulted total

scatter from the kth and (k−1)th iterations, respectively, and η is a user-defined small number threshold

(e.g., η = 10−6). In other words, the iterations stop if there is little improvement in the resulted total

scatter (the objective function). In addition, the maximum number of iterations allowed is set to K for

computational consideration.

E. Convergence of the MPCA algorithm

The derivation of Theorem 1 (Appendix A-B) implies that per iteration, the total scatter ΨY is a

non-decreasing function (as it either remains the same or increases) since each update of the projection

matrix Ũ(n∗) in a given mode n∗ maximizes ΨY , while the projection matrices in all the other modes,
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{Ũ(n), n ̸= n∗}, are considered fixed. On the other hand, ΨY is upper-bounded by ΨX (the variation in

the original samples) since the projection matrices {Ũ(n)} consist of orthonormal columns. Therefore,

MPCA is expected to have good convergence property. Empirical results presented in Section V indicate

that the proposed MPCA algorithm converges very fast (within 5 iterations) for typical tensor objects.

Furthermore, when per mode eigenvalues are all distinct (with multiplicity 1), which is the case for the

simulated data as well as the gait data, the projection matrices {Ũ(n)}, which maximize the objective

function ΨY , is expected to converge as well. It should be noted that the claimed convergence regarding

the projection matrices {Ũ(n)} is under the condition that the sign for the first component of each n-

mode eigenvector is fixed since the eigenvector is unique up to sign. Simulation studies show that the

projection matrices {Ũ(n)} do converge well.

F. Determination of the tensor subspace dimensionality

When the targeted dimensionality {Pn, n = 1, ..., N} is not specified in advance, its value has to be

determined. Consequently, the objective function (4) needs to be revised to include a constraint on the

desired dimensionality reduction. The revised objective function is as follows:

{Ũ(n), Pn, n = 1, ..., N} = arg max
Ũ(1),Ũ(2),...,Ũ(N),P1,P2,...,PN

ΨY , subject to

∏N
n=1 Pn∏N
n=1 In

< Ω, (10)

where the ratio between the targeted (reduced) dimensionality and the original tensor space dimensionality

is utilized to measure the amount of dimensionality reduction, and Ω is a threshold to be specified by

the user or determined based on empirical studies.

The proposed here tensor subspace dimensionality determination solution is called Sequential Mode

Truncation (SMT). Starting with Pn = In for all n at t = 0, at each subsequent step t = t + 1, the

SMT truncates, in a selected mode n, the P th
n n-mode eigenvector of the reconstructed input tensors.

The truncation could be interpreted as the elimination of the corresponding P th
n n-mode slice of the total

scatter tensor. For the mode selection, the scatter loss rate δ
(n)
t due to the truncation of its P th

n eigenvector

is calculated for each mode. δ(n)t is defined as follows:

δ
(n)
t =

ΨY(t)
−ΨY(t−1)[

Pn ·
∏N

j=1,j ̸=n Pj

]
−
[
(Pn − 1) ·

∏N
j=1,j ̸=n Pj

] =
λ̃
(n)
Pn

ΠN
j=1,j ̸=nPj

, (11)

where ΨY(t)
is the scatter obtained at step t, ΠN

j=1,j ̸=nPj is the amount of dimensionality reduction

achieved, and λ̃
(n)
Pn

, which is the corresponding P th
n n-mode eigenvalue, is the loss of variation due

to truncating the P th
n n-mode eigenvector. The mode with the smallest δ

(n)
t is selected for the step-t

truncation. For the selected mode n, Pn is decreased by 1: Pn = Pn − 1 and
∏N

n=1 Pn∏N
n=1 In

< Ω is tested. The
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truncation stops when
∏N

n=1 Pn∏N
n=1 In

< Ω is satisfied. Otherwise, the input tensors are reconstructed according to

(1) using the current truncated projection matrices and they are used to recompute the n-mode eigenvalues

and eigenvectors corresponding to full projection. Since eigenvalues in other modes are affected by the

eigenvector truncation in a given mode (see Theorem 2), it is reasonable to assume that a procedure such

as the SMT, which takes into account this effect, constitutes a reasonable good choice for determining

Pn in the sense of (10).

The Q-based method, a suboptimal, simplified dimensionality determination procedure that requires no

recomputation, can be also used in practice. Let us define the ratio Q(n) =
∑Pn

in=1 λ
(n)∗
in∑In

in=1 λ
(n)∗
in

to be the remained

portion of the total scatter in the n-mode after the truncation of the n-mode eigenvectors beyond the P th
n ,

where λ
(n)∗
in

is the ithn full-projection n-mode eigenvalue. In the proposed Q-based method, the first Pn

eigenvectors are kept in the n-mode (for each n) so that: Q(1) = Q(2) = ... = Q(N) = Q (the equality

can hold approximately since it is unlikely to find Pn that gives the exact equality in practice). It should

be noted that
∑In

in=1 λ
(n)∗
in

= ΨX for all n since from Theorem 1, the total scatter for the full projection

was given as: Ψ∗
Y = ΨX =

∑M
m=1 ∥ Ym(n) − Ȳ(n) ∥2F=

∑In
in=1 λ

(n)∗
in

, n = 1, ..., N . This method can be

viewed as an extension of the dimensionality selection strategy in traditional PCA to the multilinear case.

The reason behind this choice is that loss of variation is (approximately) proportional to the sum of the

corresponding eigenvalues of the discarded eigenvectors. By discarding the least significant eigenvectors

in each mode, the variation loss can be contained and a tighter lower bound for ΨY0
is obtained. The

empirical study reported in the experimental section indicated that the Q-based method provides results

similar to those obtained by SMT (as measured in terms of the total scatter captured) and thus it can be

safely used instead of the more computationally expensive SMT alternative.

G. MPCA Vs PCA and 2DPCA solutions

It is not difficult to see that the MPCA framework generalizes not only the classical PCA solution but

also a number of the so-called two-dimensional PCA (2DPCA) algorithms.

Indeed, for N = 1, the input samples are vectors {xm ∈ RI1}. There is only one mode and MPCA is

reduced to PCA. For dimensionality reduction purposes, only one projection matrix U is needed in order

to obtain ym = xm ×1 U = UTxm. In this case, there is only one Φ(n) = Φ(1) =
∑M

m=1 (xm − x̄) ·

(xm − x̄)T , which is the total scatter matrix of the input samples in PCA [36]. The projection matrix

maximizing the total scatter (variation) in the projected space is determined from the eigenvectors of

Φ(1). Thus, MPCA subsumes PCA.

In the so-called 2DPCA solutions, input samples are treated as matrices, in other words second-

March 12, 2011 DRAFT



17

order tensors. Two (left and right) projection matrices are sought to maximize the captured variation in

the projected space. With N = 2, the proposed MPCA algorithm (Fig. 3) is equivalent to the 2DPCA

solution of [22], with the exception of the initialization procedure and termination criterion. Other 2DPCA

algorithms such as those discussed in [21] can be viewed as variations of the method in [22] and thus

they can be considered special cases of MPCA when second-order tensors are considered.

H. Computational issues

Apart from the actual performance of any proposed algorithm, its computational complexity, memory

requirements and storage needs are relative measures of its practicality and usefulness as they determine

the required computing power and processing (execution) time. To this end, we examine MPCA-related

computational issues in a fashion similar to that introduced in [20].

Since this is an iterative solution, the computational complexity analysis is performed for one iteration.

For simplicity, it is assumed that I1 = I2 = ... = IN =
(∏N

n=1 In

) 1

n

= I . From a computational

complexity point of view, the most demanding steps are the formation of the matrices Φ(n), the eigen-

decomposition of Φ(n), and the computation of the multilinear projection Ỹm. It should be noted that

the use of multilinear multiplication and unfolding in order to compute Φ(n) is more efficient comparing

to the use of Kronecker products. The computations needed to determine Φ(n), the Pn eigenvectors of

Φ(n) and Ỹm are in order of O(MN · I(N+1)) (upper bounded), O(I3) and O(N · I(N+1)), respectively.

The total complexity is O((N + 1) ·MN · I(N+1) +N ∗ I3).

In MPCA, X̄ and Φ(n) can be computed incrementally by reading Xm or X̃m sequentially without loss

of information. Hence, memory requirements for the MPCA algorithm can be as low as O(
∏N

n=1 In)

as MPCA computes the solution without requiring all data samples in the memory. This is a major

advantage that MPCA enjoys over the HOSVD-based solutions [26], [28], which requires the formation

of an (N + 1)th-order tensor when the input tensor samples are of N th-order. This is of considerable

importance in applications with large data sets as the size of the input database may lead to increased

complexity and high memory storage requirement 1.

MPCA compresses each tensor sample of size
∏N

n=1 In to
∏N

n=1 Pn, and it needs N matrices Ũ(n) ∈

RIn×Pn for compression and decompression. Thus, it requires
(
M ·

∏N
n=1 Pn +

∑N
n=1(In × Pn)

)
scalars

1As an iterative solution, MPCA has a higher I/O cost than a non-iterative solution. Nevertheless, since solving for the

projection matrices using MPCA is only in the training phase of the targeted recognition tasks, it can be done offline and the

additional I/O (and computational) cost due to iterations are not considered a disadvantage of the proposed MPCA solution.
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in the reduced space by MPCA and the compression ratio is defined as: CR =
M ·

∏N
n=1 In

M ·
∏N

n=1 Pn+
∑N

n=1(In×Pn)
.

In studying the subspace dimensionality determination performance in the experiments, algorithms are

compared under the same CR.

IV. MPCA-BASED TENSOR OBJECT RECOGNITION

The projection matrices {Ũ(n), n = 1, ..., N}, obtained by maximizing the total scatter ΨY of the

projected samples (in a reduced tensor space) from a set of training tensor samples {Xm,m = 1, ...,M},

can be used to extract features for various applications such as data compression, object retrieval, and

pattern recognition. This section presents the MPCA-based tensor object recognition framework depicted

in Fig. 5. In typical pattern recognition problems, such as human identification using fingerprints, face or

gait signals, there are two types of data sets: the gallery and the probe [7]. The gallery set contains the

set of data samples with known identities and it is used for training. The probe set is the testing set where

data samples of unknown identity are to be identified and classified via matching with corresponding

entries in the gallery set.

A. Preprocessing

MPCA accepts tensor samples of the same dimensions I1×I2×...×IN for feature extraction. However,

in practice, tensor object samples are often of different dimensions. Therefore, the input tensors need to be

normalized to standard dimensions first, and if they are noisy, a noise-removing preprocessing procedure

could follow. The normalized tensor samples are then centered by subtracting the mean obtained from

the gallery tensors.

B. Feature extraction

From the gallery set, a set of eigentensors is obtained, with reduced dimensionality (Pn ≤ In)

determined by a user-specified Q, and each entry of a projected tensor feature can be viewed as a (scalar)

feature corresponding to a particular eigentensor. Some of the small variation and noise are removed in

the projection. For recognition, it should be noted that MPCA is an unsupervised technique without taking

class labels into account. As a result, the variation captured in the projected tensor subspace includes both

the within-class variation and the between-class variation. In the task of classification, a larger between-

class variation relative to the within-class variation indicates good class separability, while a smaller

between-class variation relative to the within-class variation indicates poor class separability. Hence, a
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feature selection strategy is proposed to select eigentensors according to their class discrimination power

[30], [36], [37], which is defined to be the ratio of the between-class scatter over the within-class scatter:

Definition 2: The class discriminability Γp1p2...pN
for an eigentensor Ũp1p2...pN

is defined as

Γp1p2...pN
=

∑C
c=1Nc ·

[
Ȳc(p1, p2, ..., pN )− Ȳ(p1, p2, ..., pN )

]2∑M
m=1

[
Ym(p1, p2, ..., pN )− Ȳcm(p1, p2, ..., pN )

]2 , (12)

where C is the number of classes, M is the number of samples in the gallery set, Nc is the number of

samples for class c and cm is the class label for the mth gallery sample Xm. Ym is the feature tensor

of Xm in the projected tensor subspace. The mean feature tensor Ȳ = 1
M

∑
m Ym and the class mean

feature tensor Ȳc =
1
Nc

∑
m,cm=c Ym.

For the eigentensor selection, the entries in the projected tensor Ym (from the gallery set) are rearranged

into a feature vector ym, ordered according to Γp1p2...pN
in descending order, and only the first Hy most

discriminative components of ym are kept for classification, with Hy determined empirically or user-

specified. By this selection, a more discriminating subspace is resulted compared to the MPCA projected

tensor subspace that includes both features with good separability and features with poor separability.

Next, a weight tensor W is formed with entries defined as W(p1, p2, ..., pN ) =

√
ΠN

n=1λ
(n)
pn , where λ

(n)
pn

denotes the pthn n-mode eigenvalue corresponding to the projection matrix Ũ(n). W is rearranged into

a vector w in the same order as ym and only the first Hy components of w will be used in the next

section as weights in measuring distances.

The feature vector ym can be used directly for recognition, and a classical linear discriminant analysis

(LDA) can also be applied to obtain an MPCA+LDA approach for recognition [36], similar to the popular

approach of PCA+LDA. LDA seeks a projection V to maximize the ratio of the between-class scatter

matrix SB to the within-class scatter matrix SW , where SW =
∑M

m=1(ym − ȳcm)(ym − ȳcm)
T and

ȳc = 1
Nc

∑
m,cm=c ym, SB =

∑C
c=1Nc(ȳc − ȳ)(ȳc − ȳ)T , and ȳ = 1

M

∑
m ym. The solution Vlda =

argmaxV
|VTSBV|
|VTSWV| = [v1 v2 ... vHz

], where {vhz
, hz = 1, ..., Hz} is the set of generalized eigenvectors

of SB and SW corresponding to the Hz (≤ C − 1) largest generalized eigenvalues {λhz
, hz = 1, ..., Hz}

[38]: SBvhz
= λhz

SWvhz
, hz = 1, ...,Hz. Thus, the discriminant feature vector zm is obtained as:

zm = VT
ldaym.

C. Feature classification

In classification, the distance between feature vectors is of paramount importance as it determines the

performance of the classification module. For the feature vectors discussed above (ym or zm), seven

distance measures are adapted from [39] and tested: L1, L2, angle, modified Mahalanobis distance
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Fig. 5. Block diagram of the MPCA-based tensor object recognition system.

(MMD), modified L1 (ML1), modified L2 (ML2), and modified angle distance (MAD), as listed in

Table I, where g is a weight vector. The first four measures are commonly used for measuring vector

distances and the last three measures can be viewed as the weighted versions of the first three measures.

If zm is the feature vector, H = Hz and g(h) =
√
λh, which is the simplified Mahalanobis distance

introduced in [39]. If ym is the feature vector, H = Hy and g = w, where w is defined above.

To measure the similarity of one test sample feature y (or z) against Nc sample features ync
(or znc

)

of a class c, the principle of nearest neighbor classifier is applied in this work. The matching score of

y (or z) with class c is obtained as S(y, c) = −minnc
d(y,ync

) (or S(z, c) = −minnc
d(z, znc

)), using

one of the distance measures in Table I. Such a simple classifier is selected to study the performance

mainly contributed by the MPCA-based feature extraction algorithm although better classifiers can be

investigated.

TABLE I

SEVEN DISTANCE MEASURES TESTED FOR MPCA-BASED TENSOR OBJECT RECOGNITION.

Distance L1 L2 Angle MMD

d(a,b)
∑H

h=1 |a(h)− b(h)|
√∑H

h=1 [a(h)− b(h)]2 −
∑H

h=1 a(h)·b(h)√∑H
h=1

a(h)2
∑H

h=1
b(h)2

−
∑H

h=1
a(h)·b(h)

g(h)

Distance ML1 ML2 MAD

d(a,b)
∑H

h=1
|a(h)−b(h)|

g(h)

√∑H
h=1

[a(h)−b(h)]2

g(h)
−

∑H
h=1 a(h)·b(h)/g(h)√∑H
h=1

a(h)2
∑H

h=1
b(h)2

Revision on July 30, 2010: A typo for the MAD was found in the published version and it is corrected here. We thank Dr.

Irene Kotsia and Dr. Ioannis (Yiannis) Patras from the Queen Mary University of London for pointing this out.

March 12, 2011 DRAFT



21

V. EXPERIMENTAL RESULTS

This section summarizes a number of experiments performed here in support of the following objectives:

1) Investigate the various properties of the MPCA algorithm on synthetically generated as well as real

application data sets; 2) Illustrate the efficacy of MPCA in tensor object classification, by applying MPCA

to the very important problem of gait recognition and comparing its performance against state-of-the-art

gait recognition algorithms as well as the baseline algorithm.

A. Experimentation using synthetic data

Three synthetic data sets are constructed in order to study the behavior of the MPCA algorithm and in

particular: a) the effects of the initial conditions, b) the effects of the ordering of the projection matrix

computation, c) the evolution of the total scatter ΨY over iterations, d) the number of iterations needed

for convergence, and e) the performance of the tensor subspace dimensionality determination proposal.

1) Synthetic data generation: The core of the MPCA algorithm is the eigen-decomposition in each

mode so the distribution of the eigenvalues is expected to impact significantly the performance of the

algorithm. To study the MPCA properties on data of different characteristics, three synthetic data sets with

eigenvalues in each mode spanning different magnitude ranges are generated. In particular, M third order

tensor samples Am ∈ RI1×I2×I3 are generated per set according to Am = Bm×1C
(1)×2C

(2)×3C
(3)+Dm,

using a core tensor Bm ∈ RI1×I2×I3 , n-mode projection matrix C(n) ∈ RIn×In (n = 1, 2, 3) and a “noise”

tensor Dm ∈ RI1×I2×I3 . All entries in Bm are drawn from a zero-mean unit-variance Gaussian distribution

and are multiplied by
(
I1·I2·I3
i1·i2·i3

)f
. In this data generation procedure, f controls the eigenvalue distributions,

so that data sets are created having eigenvalues’ magnitudes in different ranges. Smaller f results in a

narrower range of eigenvalue spread. The matrices C(n) (n = 1, 2, 3) are orthogonal matrices obtained by

applying singular value decomposition (SVD) on random matrices with entries drawn from zero-mean,

unit-variance Gaussian distribution. All entries of Dm are drawn from a zero-mean Gaussian distribution

with variance 0.01. Three synthetic data sets, db1, db2 and db3, of size 30× 20× 10 with M = 100 and

f = 1/2, 1/4, and 1/16, respectively, are created. Figure 6(a) depicts the spread of eigenvalue magnitudes

and Fig. 6(b) depicts their eigenvalue cumulative distribution.

2) MPCA properties: First, the effects of the initial conditions are tested using the synthetic data

sets. Both random matrices and pseudo identity matrices (truncated identity matrices) have been utilized.

Typical examples are shown in Fig. 7. From the simulation studies, it can be observed that despite the

different initializations, the algorithm, when applied on sets db1 and db2, converges to the same point

within three iterations. On set db3, the algorithm with different initializations converges to the same point
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(a) The distribution of eigenvalues.

(b) The cumulative distribution of eigenvalues.

Fig. 6. The eigenvalue magnitudes and their cumulative distributions for the synthetic data sets: db1, db2 and db3.

within ten iterations for Q ≥ 0.35. For small value of Q (< 0.35) on set db3, the algorithm using random

matrices as initialization could converge to a point that is different from (lower than) the point to which

the algorithm using the other two initialization methods converges, as shown in Fig. 7(c), indicating that

initialization methods could affect the final results on data sets with similar characteristics as db3 when

a small Q is used. In summary, initialization has little effect on the final results for synthetic data sets

db1 and db2 with all values of Q, and for synthetic data set db3 with Q ≥ 0.35. In pattern recognition

applications, it is often desired to keep most of the variation/energy in the original data and hence the

proposed algorithm using different initializations is expected to converge well since Q > 0.35 is easily

satisfied in practice. Since the algorithm using the proposed initialization, Full Projection Truncation

(FPT), converges faster than the algorithm using the other initialization methods, the FPT is expected to

be closer to the local maximum point and it is used for initialization in this work.

Second, the effects of the ordering of the projection matrix computation are studied through simulations

on the synthetic data sets. Simulation results indicate that there is no significant difference in the captured

total scatter for db1 and db2, while there is some small difference for db3. For db3, the difference in
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(a) Convergence plot for db1 with Q = 0.75. (b) Convergence plot for db2 with Q = 0.75.

(c) Convergence plot for db3 with Q = 0.15. (d) Convergence plot for db3 with Q = 0.75.

Fig. 7. Convergence plot for different initializations.

total scatter captured using different orderings is negligible (< 0.01%) for Q > 0.5 and it increases as Q

decreases, e.g., the difference is about 1% when Q = 0.2. This observation is consistent with the poorer

convergence property of db3, especially for a small Q, in other experiments such as the initialization

study above and the convergence study in the following.

To study the evolution of the total scatter ΨY over iterations, the ratio of the value of ΨYk
over the

initial value ΨY0
is plotted against the number of iterations, as a function of dimensionality reduction

determined by Q. For illustration purpose, results obtained for up to 15 iterations with Q = 0.2 and

Q = 0.8 are shown in Figs. 8(a) and 8(b), respectively. As it can be seen from the figure, the first

iteration results in the greatest increase in ΨY while subsequent iterations result in smaller and smaller

increments, especially for data sets db1 and db2. To study the empirical convergence performance, the

number of iterations for convergence using a termination value of η = 10−6 is plotted in Fig. 8(c) as a
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function of the parameter Q. These figures demonstrate that in MPCA, the number of iterations needed

to converge decreases as the range spanned by the eigenvalues for the data samples or the value of Q

increases.

The dependency on Q can be explained from two aspects. Q is closely related to the number of

eigenvectors truncated. First, from Theorem 3, the bounds on ΨY0
tend to become looser when the

number of eigenvectors truncated increases (Q decreases), and vice versa. Looser (tighter) bounds tend

to result in a poorer (better) initialization and it takes more (less) iterations to reach a local optimum.

Second, by Theorem 2, more truncation (smaller value of Q) tends to decrease the eigenvalues in the

other modes more so that more iterations are needed to converge, and vice versa. The dependency on

the range of eigenvalue spread is less obvious. Narrower range in a mode means the variation along

each eigenvector in this mode is similar and each of the truncated eigenvectors tends to encode similar

amount of variation as each remaining one, which tends to make the convergence harder. On the other

hand, broader range of the eigenvalue spread in a mode means that the energy is more concentrated in

this mode and in this case, convergence is expected to be easier.

In practical recognition tasks, Q is commonly set to a large value in order to capture most of the

variation. Furthermore, the eigenvalues of practical data samples usually spread a wide range in each

mode due to redundancy/correlation. Therefore, in practice, the number of iterations can be set to a small

value such as 1 with little sacrifice in the variation captured while enjoying significant gain in empirical

efficiency. In the following experiments, there is only one iteration (K = 1) in MPCA and in this case,

the calculation of ΨYk
and Ỹm is not needed in the local optimization (step 3) of Fig. 3.

To investigate the Q-based method and the SMT method for subspace dimensionality determination, Pn

is determined for each mode n using these two methods with various degrees of truncation across all the

modes. The resulted total scatters are compared under the same compression ratio CR (the same reduced

dimensionality), as shown in Fig. 8(d). The figure indicates that these two methods have very similar

results for all the three data sets. Hence, in practice, the Q-based method, which is more efficient, is

used to determine the tensor subspace dimensionality. In addition, it is also verified through experiments,

which are not included here due to space limitation, that truncation in all modes is advantageous against

truncation in only one or two modes.

B. MPCA-based gait recognition

The emerging application of video-based gait recognition is of particular interest in the context of

surveillance-at-a-distance applications [3]. Gait video is naturally a third-order tensor with the column,
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(a) Evolution of ΨY for Q = 0.2. (b) Evolution of ΨY for Q = 0.8.

(c) Number of iterations to converge. (d) SMT Vs. Q-based selection of Pn

Fig. 8. Illustration of various properties of MPCA on the synthetic data sets.

row and time mode. Most of the gait recognition algorithms proposed in the literature extract features using

frame-by-frame processing and they did not fully utilize the natural spatial and temporal correlations of

the input data. Unfortunately, the linear subspace algorithms that have been successfully applied, adapted

or developed in other biometrics applications, such as faces [16], are not directly applicable to the gait

recognition problem because the vectorization of gait video input results in vectors with much higher

dimensions compared to that of vectorized face images, which are impossible to process. For example,

each gait silhouette sequence from the standard USF data sets has a frame size of 128 × 88 and each

sequence contains approximately 180 frames. The dimensionality of such a sequence is approximately

two orders of magnitude higher to that of the typical image dimensionality encountered in the NIST

FERET face database [40]. By treating a number of frames as a single tensor object from which features

are to be extracted, both the spatial and the temporal correlation of the original information is fully
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preserved, and thus a cost-effective feature extraction procedure can be obtained under the framework of

the MPCA-based tensor object recognition in Sec. IV. With each gait half-cycle treated as a tensor sample,

the proposed gait recognition solution introduces a novel representation called EigenTensorGait and it

can be extended readily to other recognition problems as well. A gait recognition algorithm typically

consists of the following steps: algorithm to partition a gait sequence into cycles (or half cycles), feature

representation and extraction method, and the matching algorithm. In addition, preprocessing may be

applied to further improve the quality of silhouette images for better recognition results, which is not

included in this work.

1) The Gait Challenge data sets: The experiments are carried out on the USF HumanID “Gait

Challenge” data sets version 1.7 [7]. This database consists of 452 sequences from 74 subjects (persons)

walking in elliptical paths in front of the camera. For each subject, there are three covariates: viewpoint

(left/right), shoe type (two different types) and surface type (grass/concrete). The gallery set contains 71

sequences (subjects) and seven experiments (probe sets) are designed for human identification as shown

in Table II. The capturing condition for each probe set is summarized in brackets after the probe name

in the Table, where C, G, A, B, L, and R stand for cement surface, grass surface, shoe type A, shoe type

B, left view, and right view, respectively. The capturing condition of the gallery set is GAR. Subjects

are unique in the gallery and each probe set and there are no common sequences between the gallery

set and any of the probe sets. Also, all the probe sets are distinct. A baseline algorithm is proposed

in [7] to extract human silhouettes and recognize individuals in this database. The extracted silhouettes

data provided by them is widely used in the literature. For this reason, it is considered as inputs to the

experiments reported here in order to facilitate a fair comparison amongst the gait recognition algorithms

considered here.

TABLE II

SEVEN EXPERIMENTS DESIGNED FOR HUMAN IDENTIFICATION IN USF HUMANID DATA SETS.

Probe set A (GAL) B(GBR) C(GBL) D(CAR) E(CBR) F(CAL) G(CBL)

Size 71 41 41 70 44 70 44

Difference View Shoe Shoe, view Surface Surface, shoe Surface, view Surface, shoe, view

2) The EigenTensorGait representation: While in many recognition problems, an input sample is

unambiguously defined, such as iris, face or fingerprint images, there is no obvious definition of a gait

sample. The proposed method treats each half gait cycle as a data sample. Thus, the input is a 3rd-order
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tensor, and the spatial column space, row space and the time space account for its three modes, as shown

in Fig. 9.

Fig. 9. Illustration of the gait silhouette sequence as a third-order tensor.

To obtain half cycles, a gait silhouette sequence is partitioned in a way similar to that used in [7]. The

number of foreground pixels is counted in the bottom half of each silhouette since legs are the major

visible moving body parts from a distance. This number will reach a maximum when the two legs are

farthest apart and drop to a minimum when the legs overlap. The sequence of numbers is smoothed with a

running average filter and the minimums in this number sequence partition the sequence into several half

gait cycles. Following the definition above, there are 731 gait samples in the Gallery set and each subject

has an average of roughly 10 samples available. This simple partition method may be improved further

by taking the periodic nature of the gait cycles into account, such as the more robust cycle partitioning

algorithm in [6], which is not investigated in this paper.

Each frame of the gait silhouette sequences from the USF data sets is of standard size 128×88, but the

number of frames in each gait sample obtained through half cycle partition has some variation. Before

feeding the gait samples to MPCA, the tensorial inputs need to be normalized to the same dimension

in each mode. Since the row and column dimensions are normalized by default, only the time mode,

i.e., the number of frames in each gait sample, is subject to normalization. The normalized time mode

dimension is chosen to be 20, which is roughly the average number of frames in each gait sample. Thus,

each gait sample has a canonical representation of I1 × I2 × I3 = 128× 88× 20, and feature vectors are

extracted according to the method described in Sec.IV for the gait samples {Xm,m = 1, ...,M}. In the

following, a simple procedure for this time-mode normalization is described.

Consider one sample A ∈ RI1×I2×D3 . While there are sophisticated algorithms available, such as

mapping a gait cycle to a unit circle using nonlinear interpolation [26], conventional interpolation

algorithms, such as linear interpolation, can be applied to the time-mode normalization as well. In this
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(a) 1-mode unfolding of a gait silhouette sample.

(b) 1-mode unfolding of the mean of the gait silhouette samples.

(c) The 1st, 2nd, 3rd, 45th and 92th discriminative EigenTensorGaits.

Fig. 10. A gait sample, the mean gait sample, and a number of representative EigenTensorGaits.

work, each 3-mode (time-mode) vector is interpolated linearly to the normal size I3 × 1, followed by

binarization to get binary silhouettes.

The 1-mode unfolding, i.e., concatenating the frames of a sequence sequentially in a row, of a gait

sample and the mean gait sample, are shown in Figs. 10(a) and 10(b), respectively. Figure 11 shows a

plot of the eigenvalues in three modes and their cumulative distributions. The 2-mode eigenvalues drop

sharply after the 20th eigenvalue, indicating high redundancy in the 2-mode (row mode). The 1-mode

(column mode) eigenvalues decrease gradually except at the last point, which may be due to the centering.

Fig. 11. The eigenvalue magnitudes and their cumulative distributions for the gallery set.
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The eigentensors obtained from the gallery gait sequences through MPCA are named EigenTensorGaits.

This approach to gait analysis is called hereafter the EigenTensorGait (ETG) approach and if LDA is

subsequently applied, the approach is called the ETG+LDA (ETGLDA) approach. Figure 10(c) shows the

1-mode unfolding of the 1st, 2nd, 3rd, 45th and 92th most discriminative EigenTensorGaits for illustration.

From the figure, it is observed that the EigenTensorGaits act as a set of multiresolution filters, where

each EigenTensorGait can be viewed as a filter, and the projection using them is very similar to a

filtering process applying a filter bank in multiresolution analysis. Using the proposed EigenTensorGait

representation, gait features are extracted from gait sequences for recognition.

3) Gait feature matching for recognition: In the ETG approach, to obtain the matching score of a

probe sequence p with Np samples against a gallery sequence g with Ng samples, the approach in

[4] is adopted, which proposed that the distance calculation process should be symmetric with respect

to probe and gallery sequences. If the probe and gallery sequences were interchanged, the computed

distance would be identical. The details are described as follows: each probe sample feature ynp
is

matched against the gallery sequence to obtain S(ynp
, g) and each gallery sample feature yng

is matched

against the probe sequence to obtain S(yng
, p). The matching score between the probe sequence p and

the gallery sequence g is the sum of the mean matching score of p against g and that of g against p:

S(p, g) = 1
Np

∑Np

np=1 S(ynp
, g) + 1

Ng

∑Ng

ng=1 S(yng
, p). The identity of the gallery sequence with the

highest matching score S(p, g) is assigned to the probe sequence p.

Feature matching in the ETGLDA approach is similar to that in the ETG approach, with y replaced

by z in the description above. The identification performance is measured by the Cumulative Match

Characteristic (CMC) [7], which plots identification rates PI within a given rank k (rank k results report

the percentage of probe subjects whose true match in the gallery set was in the top k matches).

4) Effects of centering on recognition: To emphasize the fact that centering is an important pre-

processing in classification/recognition applications, a simple example is shown here. The proposed ETG

approach is applied with and without centering of the input gait data. In both cases, the dimensionality

in each mode is reduced to half of the original: P1 = 64, P2 = 44, P3 = 10. The rank 1 and rank 5 gait

recognition results using the angle distance measure and the modified angle distance (MAD) measure are

shown in Fig. 12, with the number of EigenTensorGaits used (Hy) ranging from 20 to 680. Results on

centered data are significantly better than the results on the data without centering, implying that variation

captured with respect to the data center is more powerful in discriminating classes than variation captured

with respect to the origin.
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(a) Rank 1 results with angle distance. (b) Rank 5 results with angle distance.

(c) Rank 1 results with MAD distance. (d) Rank 5 results with MAD distance.

Fig. 12. Gait recognition results with and without centering.

5) Algorithm comparison: As this paper focuses on feature extraction, different feature extraction

methods need to be compared first, with the other algorithmic components fixed, as shown in Table III.

The following features used in the state-of-the-art gait recognition algorithms are compared: silhouettes,

features extracted by performing PCA+LDA on averaged silhouettes, and features from the proposed ET-

GLDA approach. Other heuristic features, such as widths of the outer contour [6] and angular transforms

[4] have been shown to be poorer than silhouettes so they are not compared here. As shown in Table

III, starting with the USF silhouettes, half cycles are partitioned by the method described in Sec. V-B2

and linear interpolation is used for time-mode normalization. The frame image size is resized to 64× 44

for all the feature extraction algorithms in this comparison and the matching algorithm described in Sec.

V-B3 is used with three distance measures: L1, L2 and angle.

Next, the proposed ETG and ETGLDA algorithms are compared against the state-of-the-art gait
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TABLE III

COMPARISON OF FEATURE EXTRACTION METHODS FOR GAIT RECOGNITION.

Approach Preprocessing Cycle partition Feature extraction Matching

Baseline [7] Baseline (half Running L1, L2,

HMM [6] image size) average Silhouettes or angle

LTN [4] and time-mode filtering with

GEI [5] linear and minima PCA+LDA on averaged silhouette symmetric

ETGLDA interpolation detection MPCA+LDA on gait tensor sample matching

recognition algorithms, with different processing steps, which is expected to have an impact on the

recognition results. Algorithms that under-perform, i.e., with average rank 1 identification rate (P̄ 1
I )

less than 50%, are not included, with the exception of the baseline algorithm [7]. Those included, as

summarized in Table IV in their original formulations, are the baseline algorithm [7], the Hidden Markov

Model (HMM) framework [6], the linear time normalization (LTN) algorithm [4] and the Gait Energy

Image (GEI) algorithm [5]. For the HMM algorithm, the direct approach, which uses the entire silhouette

as the feature, is chosen for comparison since the indirect approach, which uses the width of the outer

contour of the silhouette as the feature, has P̄ 1
I = 46%. For the LTN algorithm, the LTN using the

silhouette feature (LTN-S) is chosen for comparison since the LTN using the angular feature (LTN-A)

has P̄ 1
I = 41%. For the GEI method, the results involving the synthetic templates are not included for

fair comparison. Table IV illustrates the differences between algorithms. It should be pointed out that in

the HMM approach, besides feature extraction and matching, HMM parameter estimation (training) is a

major component too and it is not shown in the table.

In addition, there is a recent work applying the multilinear LDA algorithm in [30], [31] to the problem

of gait recognition using matrix representation (the average of silhouettes) [32], which can be viewed as

a second-order tensor representation where the time-mode information is ignored. This is fundamentally

different from the natural third-order tensor representation used in the MPCA-based approaches. As

mentioned before, the algorithm in [30] does not converge, as shown in Fig. 13, and their results are

shown to be very sensitive to parameter settings, as shown in Fig. 4 of [32]. Furthermore, exhaustive

testing is used to determine the number of iterations and the subspace dimension in [32], which is not

practical due to its high computational cost. The authors did their best to faithfully implement the gait

recognition algorithm in [32] based on [30] and tested 2125 parameter configurations, evenly sampled

from the total 56320 possible parameter configurations. The best result, obtained after five iterations
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with projected dimensions of 30 × 5, has (average) rank 1 and rank 5 recognition rates of 42% and

57%, respectively, on the gait data sets used in this paper. These results are poorer than the recognition

rates obtained by the baseline algorithm. Hence, the methods in [32] or [30] are not included in the

state-of-the-art gait recognition set used for comparison purposes.

Fig. 13. The evolution of the objective criterion over iterations when the DATER algorithm in [30] is applied on the gait data.

TABLE IV

COMPARISON OF THE STATE-OF-THE-ART GAIT RECOGNITION ALGORITHMS.

Approach Preprocessing Cycle partition Feature extraction Matching

Baseline [7] Baseline Period estimation from median Silhouettes Spatial-temporal

of distances between minima correlation

HMM [6] Baseline Adaptive filter Silhouettes Viterbi algorithm

LTN [4] Baseline & silhouette Autocorrelation, optimal Silhouettes LTN distance with

refinement filter, merging symmetric matching

GEI [5] Baseline Maximum entropy PCA+LDA on minimum Euclidean

spectrum estimation averaged silhouette distance to class mean

ETG Baseline & time-mode Running average EigenTensorGaits Nearest neighbor with

ETGLDA linear interpolation filter ETG+LDA symmetric matching

6) Gait recognition results and discussions: In the gait recognition experiments, the number of eigen-

vectors kept in each mode is: P1 = 61, P2 = 42 and P3 = 17, and they are determined by setting

Q(1) = Q(2) = Q(3) = Q = 0.97, which captures approximately 92% of the total energy variation of

the gallery gait samples in the projected tensor subspace. Although with the same Q, similar amount
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of variation is kept in each mode, the amount of dimensionality reduction in the image spatial modes

(52% for the column mode and 48% for the row mode) is more significant than that in the time-mode

(15%). This indicates that there are more redundancy in the spatial modes than in the time mode. For

the ETGLDA approach, the dimension of the feature vector z is fixed to be the maximum that can be

obtained by classical LDA: Hz = C − 1 = 70, where C is the number of gallery subjects (classes).

Two key design factors are varied to study their effects and to determine the best choices for them: the

number of selected EigenTensorGaits Hy and the distance measures. For different Hy (up to 800) and

for the distance measures listed in Table I, the average rank 1 and rank 5 identification rates are plotted in

Figs. 14(a) and 14(b), respectively, for the ETG approach, and in Figs. 14(c) and 14(d), respectively, for

the ETGLDA approach. For the ETG approach, the modified angle distance (MAD) measure, with the

proposed weight vector w, significantly outperforms all the other distance measures for Hy > 200. For

the ETGLDA approach, the angle and MAD measures outperform all the other measures at rank 1 and

the MAD measure is better than the angle at rank 5 for Hy < 200. Thus, both approaches choose MAD

as the distance measure. With MAD, when more and more eigentensors are included, i.e., Hy increases,

the ETG identification rate keeps increasing first, except some small fluctuations, and becomes steady

beyond a certain point, indicating that most of the EigenTesnorGaits selected first are good features for

classification. For the ETGLDA approach, due to the LDA feature extraction process where the feature

vector length is C−1, the performance against Hy is different: with the MAD measure, the identification

rates (rank 1 and 5) reach maximum around Hy = 200 and drop at a higher rate for Hy > 600, suggesting

that more EigenTensorGaits (than 200) may lower the performance of ETGLDA.

Table V compares the feature extraction algorithms in Table III. The feature vector length is 70 (C−1)

for both the GEI (PCA+LDA on averaged silhouette) and ETGLDA (MPCA+LDA on gait tensor sample)

approaches. The PCA in the GEI approach results in a feature vector of length 142, as recommended by the

authors of [5], and the ETGLDA results shown are obtained with Hy = 200, determined empirically. The

table shows that both the GEI and ETGLDA features outperform the silhouettes features significantly,

and the proposed ETGLDA features outperform the GEI features. Particularly, in the average rank 1

identification rate, the ETGLDA features with the (best-performing) angle distance measure result in

about 18% improvement over the GEI features with the (best-performing) L1 distance measure, indicating

that the proposed MPCA-based approach is more powerful in recognition than the PCA-based approach.

Based on empirical study, the best gait recognition performance for the ETG and ETGLDA approaches

is obtained with Hy = 620 and Hy = 170, respectively, using MAD. The detailed results are depicted

using the CMCs in Figs. 14(e) and 14(f), and they are compared with the state-of-the-art gait recognition
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(a) Rank 1 identification performance of ETG. (b) Rank 5 identification performance of ETG.

(c) Rank 1 identification performance of ETGLDA. (d) Rank 5 identification performance of ETGLDA.

(e) CMC curves up to rank 20 for ETG. (f) CMC curves up to rank 20 for ETGLDA.

Fig. 14. Gait recognition results: dependency on Hy and the distance measure used, and the CMC curves.

algorithms in Table VI, where the rank 1 and rank 5 identification rates are listed for each probe (A to

G) together with their averages. The best results for all the probe and rank combinations are highlighted

by boldface font in the table. From the table, the HMM, LTN, GEI, ETG and ETGLDA algorithms have
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TABLE V

COMPARISON OF FEATURE EXTRACTION METHODS.

P̄I (%) at Rank 1 with P̄I (%) at Rank 5 with

Feature extraction method L1 L2 Angle L1 L2 Angle

Silhouettes 34 35 33 54 54 53

PCA+LDA on averaged silhouette 45 44 43 68 69 69

MPCA+LDA on gait tensor sample 47 47 53 67 70 73

no significant difference in the rank 1 performance, although LTN is slightly poorer, and they outperform

the baseline results by more than 19%. For the rank 5 performance, ETGLDA has the best performance.

TABLE VI

COMPARISON OF THE MPCA-BASED AND THE STATE-OF-THE-ART GAIT RECOGNITION ALGORITHMS.

PI (%) at Rank 1 PI (%) at Rank 5

Probe Baseline HMM LTN GEI ETG ETGLDA Baseline HMM LTN GEI ETG ETGLDA

A (GAL) 79 99 94 100 92 99 96 100 99 100 96 100

B (GBR) 66 89 83 85 85 88 81 90 85 85 90 93

C (GBL) 56 78 78 80 76 83 76 90 83 88 81 88

D (CAR) 29 35 33 30 39 36 61 65 65 55 55 71

E (CBR) 24 29 24 33 29 29 55 65 67 55 52 60

F (CAL) 30 18 17 21 21 21 46 60 58 41 58 59

G (CBL) 10 24 21 29 21 21 33 50 48 48 50 60

Average 42 53 50 54 52 54 64 74 72 67 69 76

From the comparisons in Table IV, the performance of the HMM framework is mainly contributed

to the adaptive filter used for cycle partition, the Viterbi algorithm used for probabilistic matching, and

the iterative training of the HMM parameters, while the performance of LTN is mainly contributed to

the silhouette refinement, the robust cycle partition procedure and the LTN distance matching strategy.

Besides PCA+LDA in feature extraction, the GEI algorithm utilizes a robust estimator as well for the

cycle partition taking into account of the periodic nature of the gait signal and it seems that this tends to

improve the recognition performance. To summarize, silhouette refinement could be a beneficial step for

gait recognition and robust cycle partition seems to be an important component in these start-of-the-art

gait recognition algorithms. In addition, robust matching algorithms such as the Viterbi algorithm used

in HMM have great potential for gait recognition as well.
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Finally, the ETGLDA approach has some small gain (about 4% improvement on average) over the ETG

approach in rank 1 performance, especially on Probes A and C. In rank 5 performance, the ETGLDA

approach has greater improvement (about 10% on average) over the ETG approach. Thus, the combination

of the ETG approach with a classical LDA does result in better recognition results and the combination

with other linear subspace algorithms are promising future directions as well. On the whole, despite

a design without optimizing the preprocessing, cycle partition and matching algorithms, the MPCA-

based approaches to gait recognition are highly competitive against the state-of-the-art gait recognition

algorithms. The EigenTensorGaits, and EigenTensorObjects in general, are very promising features for

tensor object recognition.

VI. CONCLUSIONS

In this paper, a new multilinear principal component analysis (MPCA) framework is proposed for

analysis of tensor objects, such as 2D/3D images and video sequences. MPCA determines a multilinear

projection onto a tensor subspace of lower dimensionality that captures most of the signal variation present

in the original tensorial representation. An iterative solution was formulated. Issues including initialization,

convergence and subspace dimensionality determination were discussed in details. An MPCA-based tensor

object recognition framework was then introduced and applied to the problem of gait recognition. Each

half cycle of a gait silhouette sequence was treated as a gait sample and the proposed framework was

used to devise a novel gait representation called EigenTensorGait. Comparisons with the start-of-the-art

algorithms indicated that the MPCA-based approach is a very promising tool for gait recognition and

its performance can be further improved by silhouette refinement, robust cycle partition and matching

algorithms.
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APPENDIX A

LIST OF SYMBOLS AND PROOFS

A. List of symbols

Table VII summarizes the list of fundamental symbols defined in this paper for quick reference.

TABLE VII

LIST OF SYMBOLS.

Xm the mth input tensor sample, m = 1, ...,M

Ũ(n) the nth projection matrix, n = 1, ..., N

Ym the projection of Xm on {Ũ(n)}

ΨY the total tensor scatter of {Ym,m = 1, ...,M}

Φ(n) the n-mode matrix defined in (5)

ŨΦ(n) the kroneker product defined in (6)

X̃m, Ỹm the centered versions of Xm, Ym

Φ(n)∗, U(n)∗ Φ(n) and Ũ(n) for full projection

Y∗
var the total scatter tensor for full projection

λ
(n)∗
in

the ithn n-mode eigenvalue for full projection

ΨY0 the total tensor scatter for the FPT initialization

ΨX the input total tensor scatter

Ỹ∗
var , Ŷ∗

var truncated versions of Y∗
var

k the iteration step index in the MPCA algorithm

t the SMT step index

δ
(n)
t the scatter loss rate defined in (11)

λ̃
(n)
Pn

the P th
n n-mode eigenvalue of the reconstructed

input tensors

ym the vectorized Ym with only first Hy component

kept, ordered according to Γp1p2...pN

λ
(n)
pn the pthn n-mode eigenvalue corresponding to Ũ(n)

zm the projection of ym in the LDA space

B. Proof of Theorem 1

Proof: The mean tensor of all the projected samples is Ȳ = 1
M

∑M
m=1 Ym = X̄ ×1 Ũ(1)T ×2

Ũ(2)T ...×N Ũ(N)T ,m = 1, ...,M.

Write the objective function (4) in terms of the input tensor samples as:

ΨY =

M∑
m=1

∥ Ym − Ȳ ∥2F=
M∑

m=1

∥ (Xm − X̄ )×1 Ũ
(1)T ×2 Ũ

(2)T ...×N Ũ(N)T ∥2F . (13)
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From the definition of the Frobenius norm for a tensor and that for a matrix, ∥ A ∥F=∥ A(n) ∥F ,

and from (2), ΨY can be expressed using the equivalent matrix representation by n-mode unfolding as

follows:

ΨY =

M∑
m=1

∥ Ym(n) − Ȳ(n) ∥2F=
M∑

m=1

∥ Ũ(n)T ·
(
Xm(n) − X̄(n)

)
· ŨΦ(n) ∥2F , (14)

Since ∥ A ∥2F= trace(AAT ), ΨY can be written in terms of the n-mode total scatter matrix of the

projected tensor samples:

ΨY =

M∑
m=1

trace
(
Ũ(n)T ·

(
Xm(n) − X̄(n)

)
· ŨΦ(n) · ŨT

Φ(n) ·
(
Xm(n) − X̄(n)

)T · Ũ(n)
)

= trace
(
Ũ(n)T ·Φ(n) · Ũ(n)

)
, (15)

Therefore, for given Ũ(1), ..., Ũ(n−1), Ũ(n+1), ..., Ũ(N), the total scatter ΨY is maximized if and only

if trace
(
Ũ(n)T ·Φ(n) · Ũ(n)

)
is maximized. The maximum of trace

(
Ũ(n)T ·Φ(n) · Ũ(n)

)
is obtained

if Ũ(n) consists of the Pn eigenvectors of the matrix Φ(n) corresponding to the largest Pn eigenvalues.

C. Proof of Lemma 4

Lemma 4: When Pn = In for n = 1, ..., N , ŨΦ(n) · ŨT
Φ(n) is an identity matrix.

Proof: By successive application of the transpose property of the Kronecker product (A ⊗B)T =

AT ⊗BT [38]:

ŨT
Φ(n) =

(
Ũ(n+1)T ⊗ Ũ(n+2)T ⊗ ...⊗ Ũ(N)T ⊗ Ũ(1)T ⊗ Ũ(2)T ⊗ ...Ũ(n−1)T

)
. (16)

By the Kronecker product theorem (A⊗B)(C⊗D) = (AC⊗BD) [38],

ŨΦ(n) · ŨT
Φ(n) =

(
Ũ(n+1)Ũ(n+1)T ⊗ ...⊗ Ũ(N)Ũ(N)T ⊗ Ũ(1)Ũ(1)T ⊗ ...Ũ(n−1)Ũ(n−1)T

)
. (17)

For all n, when Pn = In , Ũ(n) is a square matrix and Ũ(n)T Ũ(n) = IIn , where IIn is an In×In identity

matrix. Then, Ũ(n)−1

= Ũ(n)T and Ũ(n)Ũ(n)T = IIn . Thus, ŨΦ(n) · ŨT
Φ(n) = II1×I2×...×In−1×In+1×...×IN .

D. Proof of Theorem 2

The following lemma explains the relationship between the eigenvalues of two covariance matrices

that are closely related.
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Lemma 5: Let X ∈ RI1×I2 be a sample matrix with I2 samples. X̃ ∈ RI1×P2 contains P2 < I2 samples

from X, and E ∈ RI1×(I2−P2) contains the rest. Let λi1 and λ̃i1 , denote the ith1 eigenvalues of XXT and

X̃X̃T , respectively. Then, λ̃i1 ≤ λi1 , for i1 = 1, ..., I1.

Proof: Without loss of generality, let X̃ = X(:, 1 : P2) and E = X(:, (P2+1) : I2). XXT and X̃X̃T

are both sample covariance matrices and hence symmetric. E is related to them by XXT = X̃X̃T +EET .

EET is a covariance matrix as well and hence it is positive semidefinite. From the Weyl’s theorem [35],

which is derived from the Courant-Fisher “min-max theorem” [35], the eigenvalues of X̃X̃T is not greater

than the corresponding eigenvalues of X̃X̃T +EET = XXT , i.e., λ̃i1 ≤ λi1 , for i1 = 1, ..., I1.

The proof of Theorem 2 follows:

Proof: For n = 1, X̌m(1) = Ǔ(1) · Y̌m(1) ·UT
Φ(1)∗ ,m = 1, ...,M . Thus,

Φ̌(1) =
∑
m

X̌m(1)UΦ(1)∗UT
Φ(1)∗X̌

T
m(1)

=
∑
m

Ǔ(1) · Y̌m(1) ·UT
Φ(1)∗UΦ(1)∗ ·UT

Φ(1)∗UΦ(1)∗ · Y̌T
m(1) · Ǔ

(1)T

=
∑
m

Ǔ(1) · Y̌m(1)Y̌
T
m(1) · Ǔ

(1)T = Ǔ(1) ·
∑
m

(
Y̌m(1)Y̌

T
m(1)

)
· Ǔ(1)T ,

where UT
Φ(1)∗UΦ(1)∗ results in an identity matrix. Since Y̌m(1) is simply the first P1 rows of Ỹm(1),

λ̂
(1)
i1

= λ
(1)∗
i1

for i1 = 1, ..., P1, and λ̂
(1)
i1

= 0 for i1 = P1 + 1, ..., I1.

Similarly for n ̸= 1, Φ̌(n) = Ǔ(n) ·
∑

m

(
Y̌m(n)Y̌

T
m(n)

)
·Ǔ(n)T . The columns of Y̌m(n) are a subset of

the columns of Ỹm(n). Therefore, by Lemma 5, λ̂(n)
in

≤ λ
(n)∗
in

. Since
∑

i1
λ̂
(1)
i1

<
∑

i1
λ
(1)∗
i1

,
∑

in
λ̂
(n)
in

=∑
i1
λ̂
(1)
i1

<
∑

in
λ
(n)∗
in

=
∑

i1
λ
(1)∗
i1

. Thus, for each mode, at least for one value of in, λ̂(n)
in

< λ
(n)∗
in

.

E. Proof of Theorem 3

Proof: For the lower bound, considering the 1-mode eigenvalues λ
(1)∗
i1

first,

ΨX −ΨY0
=

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )−

P1∑
i1=1

P2∑
i2=1

...

PN∑
iN=1

Y∗
var(i1, i2, ..., iN )

≥
I1∑

i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )−

P1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )

=

I1∑
i1=1

λ
(1)∗
i1

−
P1∑

i1=1

λ
(1)∗
i1

=

I1∑
i1=P1+1

λ
(1)∗
i1

, (18)

where Y∗
var is the total scatter tensor (corresponding to the full projection) defined in (7). The above

inequality can be similarly derived for the other n-mode eigenvalues λ(n)∗
in

, ΨX −ΨY0
≥

∑In
in=Pn+1 λ

(n)∗
in
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for n = 2, ..., N . Therefore,

ΨX −ΨY0
≥ max

n

In∑
in=Pn+1

λ
(n)∗
in

. (19)

For the upper bound,

ΨX −ΨY0
=

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )−

P1∑
i1=1

P2∑
i2=1

...

PN∑
iN=1

Y∗
var(i1, i2, ..., iN )

≤
I1∑

i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )−

P1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )

+

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )−

I1∑
i1=1

P2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )

+...

+

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗
var(i1, i2, ..., iN )−

I1∑
i1=1

I2∑
i2=1

...

PN∑
iN=1

Y∗
var(i1, i2, ..., iN )

=

N∑
n=1

In∑
in=Pn+1

λ
(n)∗
in

. (20)

REFERENCES

[1] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of higher-

order tensors,” SIAM Journal of Matrix Analysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.

[2] K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications. Springer Verlag, Berlin, 2000.

[3] N. V. Boulgouris, D. Hatzinakos, and K. N. Plataniotis, “Gait recognition: a challenging signal processing technology for

biometrics,” IEEE Signal Process. Mag., vol. 22, no. 6, Nov. 2005.

[4] N. V. Boulgouris, K. N. Plataniotis, and D. Hatzinakos, “Gait recognition using linear time normalization,” Pattern

Recognition, vol. 39, no. 5, pp. 969–979, 2006.

[5] J. Han and B. Bhanu, “Individual recognition using gait energy image,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,

no. 2, pp. 316–322, Feb. 2006.

[6] A. Kale, A. N. Rajagopalan, A. Sunderesan, N. Cuntoor, A. Roy-Chowdhury, V. Krueger, and R. Chellappa, “Identification

of humans using gait,” IEEE Trans. Image Process., vol. 13, no. 9, pp. 1163–1173, Sep. 2004.

[7] S. Sarkar, P. J. Phillips, Z. Liu, I. Robledo, P. Grother, and K. W. Bowyer, “The human ID gait challenge problem: Data

sets, performance, and analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 2, pp. 162–177, Feb. 2005.

[8] K. W. Bowyer, K. Chang, and P. Flynn, “A survey of approaches and challenges in 3D and multi-modal 3D + 2D face

recognition,” Computer Vision and Image Understanding, vol. 101, no. 1, pp. 1–15, Jan. 2006.

[9] S. Z. Li, C. Zhao, X. Zhu, and Z. Lei, “3D+2D face recognition by fusion at both feature and decision levels,” in Proc.

IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, Oct. 2005.

[10] A. Colombo, C. Cusano, and R. Schettini, “3D face detection using curvature analysis,” Pattern Recognition, vol. 39, no. 3,

pp. 444–455, Mar. 2006.

March 12, 2011 DRAFT



41

[11] R. Chellappa, A. Roy-Chowdhury, and S. Zhou, Recognition of Humans and Their Activities Using Video. Morgan &

Claypool Publishers, 2005.

[12] H. S. Sahambi and K. Khorasani, “A neural-network appearance-based 3-d object recognition using independent component

analysis,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 138–149, Jan. 2003.

[13] C. Nolker and H. Ritter, “Visual recognition of continuous hand postures,” IEEE Trans. Neural Netw., vol. 13, no. 4, pp.

983–994, Jul. 2002.

[14] R. D. Green and L. Guan, “Quantifying and recognizing human movement patterns from monocular video images-part ii:

applications to biometrics,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 2, pp. 191–198, Feb. 2004.

[15] E. Shechtman and Y. C. ad M. Irani, “Space-time super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 4,

pp. 531–545, Apr. 2005.

[16] G. Shakhnarovich and B. Moghaddam, “Face recognition in subspaces,” in Handbook of Face Recognition, S. Z. Li and

A. K. Jain, Eds. Springer-Verlag, 2004, pp. 141–168.

[17] J. Zhang, S. Z. Li, and J. Wang, “Manifold learning and applications in recognition,” in Intelligent Multimedia Processing

with Soft Computing, Y. P. Tan, K. H. Yap, and L. Wang, Eds. Springer-Verlag, 2004, pp. 281–300.

[18] M. H. C. Law and A. K. Jain, “Incremental nonlinear dimensionality reduction by manifold learning,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 28, no. 3, pp. 377–391, Mar. 2006.

[19] I. T. Jolliffe, Principal Component Analysis, second edition. Springer Serires in Statistics, 2002.

[20] J. Ye, R. Janardan, and Q. Li, “GPCA: An efficient dimension reduction scheme for image compression and retrieval,” in

The Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 354–363.

[21] J. Yang, D. Zhang, A. F. Frangi, and J. Yang, “Two-dimensional PCA: a new approach to appearance-based face

representation and recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 131–137, Jan. 2004.

[22] J. Ye, “Generalized low rank approximations of matrices,” Machine Learning, vol. 61, no. 1-3, pp. 167–191, 2005.

[23] X. He, D. Cai, and P. Niyogi, “Tensor subspace analysis,” in Advances in Neural Information Processing Systems 18

(NIPS), 2005.

[24] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singualr value decomposition,” SIAM Journal of Matrix

Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[25] L. D. Lathauwer and J. Vandewalle, “Dimensionality reduction in higher-order signal processing and rank-(R1, R2, ..., RN )

reduction in multilinear algebra,” Linear Algebra and its Applications, vol. 391, pp. 31–55, Nov. 2004.

[26] C. S. Lee and A. Elgammal, “Towards scalable view-invariant gait recognition: Multilinear analysis for gait,” in Proc. Int.

Conf. on Audio and Video-Based Biometric Person Authentication, Jul. 2005, pp. 395–405.

[27] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles: Tensorfaces,” in Proc. 7th European

Conference on Computer Vision, May 2002, pp. 447–460.

[28] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Multilinear principal component analysis of tensor objects for

recognition,” in Proc. Int. Conf. on Pattern Recognition, August 2006, pp. 776 – 779.

[29] D. Xu, S. Yan, L. Zhang, H.-J. Zhang, Z. Liu, and H.-Y. Shum;, “Concurrent subspaces analysis,” in Proc. IEEE Computer

Society Conf. on Computer Vision and Pattern Recognition, vol. II, June 2005, pp. 203–208.

[30] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang, “Discriminant analysis with tensor representation,” in Proc.

IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. I, June 2005, pp. 526–532.

[31] ——, “Multilinear discriminant analysis for face recognition,” IEEE Trans. Image Process., vol. 16, no. 1, pp. 212–220,

Jan. 2007.

March 12, 2011 DRAFT



42

[32] D. Xu, S. Yan, D. Tao, L. Zhang, X. Li, and H.-J. Zhang, “Human gait recognition with matrix representation,” IEEE

Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 896–903, Jul. 2006.

[33] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neurosicence, vol. 3, no. 1, pp. 71–86, 1991.

[34] P. Kroonenberg and J. Leeuw, “Principal component analysis of three-mode data by means of alternating least squares

algorithms,” Psychometrika, vol. 45, no. 1, pp. 69–97, 1980.

[35] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge Unverisity Press, 1985.

[36] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using class specific linear

projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.

[37] J. Wang, K. N. Plataniotis, and A. N. Venetsanopoulos, “Selecting discriminant eigenfaces for face recognition,” Pattern

Recognition Letters, vol. 26, no. 10, pp. 1470–1482, 2005.

[38] T. K. Moon and W. C. Stirling, Mathematical methods and Algorithms for Signal Processing. Prentice Hall, 2000.

[39] H. Moon and P. J. Phillips, “Computational and performance aspects of PCA-based face recognition algorithms,” Perception,

vol. 30, pp. 303–321, 2001.

[40] P. J. Phillips, H. Moon, S. A. Rizvi, and P. Rauss, “The FERET evaluation method for face recognition algorithms,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1090–1104, Oct. 2000.

Haiping Lu (S’01) received the B.Eng. and M.Eng degrees in electrical and electronic engineering from

Nanyang Technological University, Singapore, in 2001 and 2004, respectively. He is currently working

towards the Ph.D. degree in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ON, Canada.

His current research interests include statistical pattern recognition and tensor object processing, with

applications in human detection, tracking and recognition.

Konstantinos N. (Kostas) Plataniotis (S’90-M’92-SM’03) received his B. Eng. degree in Computer

Engineering & Informatics from University of Patras, Greece in 1988 and his M.S and Ph.D degrees in

Electrical Engineering from Florida Institute of Technology(Florida Tech) in Melbourne, Florida, in 1992

and 1994 respectively. He is now an Associate Professor with The Edward S. Rogers Sr. Department of

Electrical and Computer Engineering at the University of Toronto in Toronto, Ontario, Canada.

Kostas Plataniotis is a registered professional engineer in the province of Ontario, and a member of

the Technical Chamber of Greece. Dr. Plataniotis is the 2005 recipient of IEEE Canada’s Outstanding Engineering Educator

Award ”for contributions to engineering education and inspirational guidance of graduate students” and the co-recipient of the

2006 IEEE Trans. on Neural Networks Outstanding Paper Award for the published in 2003 paper ” Face Recognition Using

Kernel Direct Discriminant Analysis Algorithms” (Juwei Lu, Konstantinos N. Plataniotis and Anastasios N. Venetsanopoulos,

IEEE TNN, Vol. 14, No. 1, 2003).

March 12, 2011 DRAFT



43

Anastasios N. Venetsanopoulos (S’66-M’69-SM’79-F’88) received the Bachelors of Electrical and Me-

chanical Engineering degree from the National Technical University of Athens (NTU), Greece, in 1965,

and the M.S., M.Phil., and Ph.D. degrees in Electrical Engineering from Yale University in 1966, 1968

and 1969 respectively. He has served as lecturer in 138 short courses to industry and continuing education

programs and as a consultant to numerous organizations; he is the co-author of four and a contributor to

thirty-five books, and has published over 800 papers in refereed journals and conference proceedings. He

served as the 12th Dean of the Faculty of Applied Science and Engineering of the University of Toronto and is currently the

Vice President for Research and Innovation at Ryerson University, Canada.

Prof. Venetsanopoulos has served as Chair on numerous boards, councils and technical conference committees of the Institute

of Electrical and Electronic Engineers (IEEE). He is a Fellow of the IEEE, a Fellow of EIC, and a Fellow of Canadian Academy

of Engineering. He was awarded an Honorary Doctorate from the National Technical University of Athens, in October 1994. In

October 1996 he was awarded the Excellence in Innovation Award of the Information Technology Research Centre of Ontario

and Royal Bank of Canada, for innovative work in color image processing and its industrial applications. He is the recipient of

the Millennium Medal of IEEE. In 2003 he was the recipient of the highest award of the Canadian IEEE, the MacNaughton

Award and in 2003 he served as the Chair of the Council of Deans of Engineering of the Province of Ontario (CODE). He is

the joint recipient of the 2006 IEEE Transactions on Neural Networks Outstanding Paper Award.

March 12, 2011 DRAFT


